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Abstract
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choice for pooled annuity funds. A pooled annuity fund constitutes an alternative way
to protect against mortality risk compared to purchasing a life annuity. The crucial
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insurance company is that participants of a pooled annuity fund still have to bear some
mortality risk while insured annuitants bear no mortality risk at all. The population
of the pool is modeled by employing a Poisson process with time-dependent hazard-
rate. It follows that the pool member’s optimization problem has to account for the
stochastic investment horizon and for jumps in wealth which occur if another pool
member dies. In case the number of pool members goes to infinity analytical solutions
are provided. For finite pool sizes the solution of the optimization problem is reduced
to the numerical solution of a set of ODEs. A simulation and welfare analysis show that
pooled annuity funds insure very effectively against longevity risk even if their pool size
is rather small. Only very risk averse investors or those without access to small pools
are more inclined to pay a risk premium to access private life annuity markets in order
to lay off mortality risk completely. As even families constitute such small pools the
model provides theoretical justification for the low empirical annuity demand.
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1 Introduction

The most prominent financial risk in the late stage of the investor’s life-cycle is to run out

of savings and to have nothing left to cover the very basic needs - called longevity risk.1 On

the flipside, the investor also faces brevity risk as she could decease without consuming all

her estate but leave an unintended bequest. Both outcomes are results of the unknown time

of death also referred to as mortality risk.

The typical means to insure against both outcomes of mortality risk is to purchase a

life-annuity offered by an insurance company during the late stage of the life-cycle. In return

for an initially paid premium the investor retains a life long stream of income. This conver-

sion of life-time savings into a life-annuity is called annuitization. As the insurance company

redistributes wealth of deceased former members to surviving members the implicit rate of

return is higher than the capital market return. The excess return finances longevity and

is often referred to as mortality credit. The mortality credit comes with some opportunity

costs since the annuity purchase is irrevocable and the bequest potential is lost. Insurance

companies completely take over the mortality risk of the pool as they guarantee (with a

certain probability) that the mortality credit is paid out in a deterministic manner commen-

surate to an ex ante specified mortality table. However, the risk transfer has to reduce the

mortality credit by a certain risk premium required by the insurance to ensure risk adequate

solvency capital and to control the default risk.2 Impressive effort has been undertaken in the

literature to discuss the consumption and portfolio choice problem with life annuities since

the introduction of life annuities in a portfolio context is not straight forward as one has to

deal with the irreversibility of the purchase of life annuities, their age dependent risk/return

1There is a vast literature studying the personal bankruptcy risk of investors who do not insure against
longevity risk and follow the so called self-annuitization strategies: see, for instance, Albrecht and Maurer
(2002); Ameriks, Veres, and Warshawsky (2001); Bengen (1994, 1997); Ho, Milevsky, and Robinson (1994);
Hughen, Laatsch, and Klein (2002); Milevsky (1998, 2001); Milevsky and Robinson (2000); Milevsky, Ho,
and Robinson (1997); and Pye (2000, 2001).

2Depending on the organization of the insurance there may arise incentive problems regarding the risk
adequate pricing of annuities and/or the adequate default risk. Regulation and supervision is needed to
resolve potential conflict of interests between annuitants (policy owners) and insurance owners.
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profile, and the stochastic investment horizon of individuals.3

An alternative way to insure against mortality risk is to construct a pooled annuity fund

(also sometimes called tontine) and follow a group self annuitization strategy. Contrary to

the individual self annuitization strategy alluded above a group of investors pool their wealth

into one annuity fund. Pooled annuity funds combine the features of an insurance product

and a mutual fund. Just like in the case of mutual funds, one advantage of pooling is that this

fund can usually better diversify investments due to a bigger size and can also be managed

by an investment professional. The crucial difference to a mutual fund is that in case one

investor perishes, her fund’s assets are redistributed among the surviving investors just like

in the case of a life annuity.4 In contrast to life-annuities, the redistribution of the mortality

credit is uncertain due to the remaining mortality risk. The participation in a pooled annuity

fund constitutes an endogenous bequest motive. The investor is willing to leave estate to

the other pool members to be in turn rewarded with the estate of prematurely died pool

members. In fact, pooled annuity funds are the most common type of longevity insurance as

each family can be regarded as a small annuity pool (Kotlikoff and Spivak (1981)).

The most recent literature studying pooled annuity funds is the work of Piggott, Valdez,

and Detzel (2005) and Valdez, Piggott, and Wang (2006). Piggott, Valdez, and Detzel (2005)

provided an excellent analysis of the organization and mechanics of pooled annuity funds.

They derive the recursive evolution of payments over time given that investment returns and

mortality deviate from expectation. However, they do not model the underlying risk factors

explicitly. Valdez, Piggott, and Wang (2006) find within a two period model theoretical

evidence that the adverse selection problem inherent in life annuities markets is alleviated in

3Beginning with Yaari (1965) the list of literature discussing the optimal consumption and portfolio choice
problem with life annuities has become quite respectable. For an overview of the field of literature I refer the
interested reader to Horneff et al. (2006). Most recent contributions include Babbel (2006), Cairns, Blake, and
Dowd (2006), Davidoff, Brown, and Diamond (2005), Horneff, Maurer, and Stamos (2006a,2006b), Horneff
et al. (2006,2007), Koijen, Nijman, and Werker (2006), Milevsky and Young (2006), and Milevsky, Moore,
and Young (2006).

4Pooled annuity funds potentially bear moral hazard problems as pool members can profit from the
decease of others. This holds true for life annuity contracts offered by insurance companies. The problem
could be alleviated if the pool is organized anonymously. After all, this moral hazard problem would require
the offender to have a high degree of criminal energy.
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pooled annuity funds. The reason is that investors of pooled annuity funds cannot exploit

the gains of adverse selection as well as when purchasing a life annuity because investors

cannot perfectly predict the distribution of mortality credits anymore.

Although there is work done on the dynamic optimal consumption and portfolio choice

problem for both cases individual self annuitization and life annuities there is to the author’s

best knowledge no study done in the context of group self annuitization strategies. The

present paper closes this gap as it derives in the tradition of Merton (1969,1971) the optimal

consumption and portfolio choice for a finite number l (potentially thousands) of homogenous

investors collecting their wealth in a pooled annuity fund. Exploring group self annuitization

strategies in a consumption and portfolio choice context is not trivial as one has to model the

finite population of the pooled annuity fund in order to determine when the mortality credits

are released. We employ for each investor a separate Poisson process with time-dependent

jump intensity that determines the time at which a member perishes and committed funds

are redistributed among the survivors.5 The evolution of the pool’s population is a sum of

Poisson processes which is itself a Poisson process with (globally) stochastic hazard rate and

jump size as both depend on the number of current pool members.

Investors are assumed to be expected lifetime-utility maximizer who derive no utility

from bequest.6 Within the pool surviving investors can continuously choose the consumption

fraction withdrawn from the fund as well as the fund’s asset allocation in stocks and money

market. The assumed framework contains the special case l = 1, reflecting the individual

5Very similar to modeling defaults in reduced form credit risk models the time of death is the first jump
time of a Poisson process.

6Naturally, the investor would put only that part of wealth into a pooled annuity fund which is not
intended to serve as bequest. Therefore, throughout the paper I consider only that part of wealth which is
reserved for consumption needs. Empirical studies such as Kotlikoff and Summers (1981) find that almost
80 percent of the total accumulated wealth in the United States is due to intergenerational transfers. This
fact raises the question as to whether bequests are accidental or intentional. The literature on intentional
bequests distinguishes between altruistic and strategic bequest motives as opposite ends of the spectrum.
For instance, Abel and Warshawsky (1988) study the altruistic bequest motive in a reduced form and find a
joy of giving parameter that is of a substantial magnitude. Bernheim, Shleifer, and Summers (1985) analyze
the strategic bequest motive and discover empirical evidence. By contrast, Hurd (1987) does not find any
evidence of bequest motives because the pattern of asset decumulation is similar among different household
sizes. In addition, Hurd (1989) can support his prior findings by showing that the nature of most bequests
is accidental because the date of death is uncertain to an individual.
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self annuitization strategy and l = ∞, reflecting the perfect pool which is often assumed to

model a life-annuity.

In the case l = 1, representing the consumption and portfolio choice problem of one

investor with uncertain investment horizon, the Hamilton-Jacobi-Bellman-equation can be

solved analytically. Merton (1971) already explored the implications of uncertain investment

horizons on consumption and portfolio choice, but restricted the analysis to constant jump-

intensities. Since exponentially distributed time of death clearly does not relfect empirical

mortality rates we expand the analysis to time-dependent jump intensities. This case serves

as a benchmark case against which group self annuitization strategies can be compared.

In the case l = ∞, representing a perfectly diversified pool, analytical solutions are avail-

able, too. Since mortality risk is completely eliminated, this case resembles the purchase of a

variable life-annuity. Consequently, the derived optimal consumption strategy is equivalent

to the optimal payout structure of life-annuities. Thus, the present paper contributes to the

prior life-annuity literature by deriving also the optimal payout pattern of life annuities while

the previously mentioned life-annuity related literature has fixed the payout pattern exoge-

nously.7 The derivation of the optimal annuity payout structure is a result of our assumption

that all pool members are homogenous so that all would follow the equal consumption strat-

egy. It is shown that having access to a perfect pool substantially increases the optimal

consumption fraction compared to the benchmark case (l = 1) since the additional income

from the deterministic mortality credit reduces the need to hold capital stock.

For finite pool sizes 1 < l < ∞ the problem is solved up to the solution of a set of l − 1

ODEs (as for l = 1 the analytic solution is available).8 The finite pool size implies that the

earned mortality credit realizes at uncertain times. Anytime a pool member persishes the

wealth of the surivors jumps by a certain amount which depends on the number of current

7The previous literature on asset allocation and consumption problems with life-annuities, e.g. Milevsky
and Young (2006a), Milevsky, Moore, and Young (2006b), Koijen, Nijman, and Werker (2006), have assumed
that the life-annuity payment pattern is exogenously given by imposing a certain assumed interest rate (AIR).

8As the numerical solution of the set of ODEs is rather straightforward, the calculation with up to
thousands of pool members is finished within the matter of minutes.
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survivors. Hence, the optimal policy depends on both age and the number of current pool

members l. The higher the pool size, the higher is the optimal withdrawal rate, since the

anticipated mortality credit increases with l. For small pool sizes the optimal consumption

policy converges to the individual self annuitization case and for large pool sizes to the life-

annuity case. In all considered cases the optimal portfolio follows exactly the constant mix

Merton rule since the investment opportunity set is constant and the correlation between

asset returns and mortality risk is zero. Further the size of the mortality credit does not

depend on in which asset classes the annuity fund invests.

A final welfare analysis suggests that pooling generates remarkable utility gains equivalent

to a wealth increase of up to 45% at age 60 and above 100% from age 80 on as the mortality

credit surges. The utility gain of pooled annuity funds with size above l = 100 is around

90% of the utility gain generated by life annuities. Even pooled annuity funds with a small

number of members 5 < l < 10 (such as families) hedge mortality risk very effectively.

The remainder of this paper is organized as follows. Section II presents the mechanics

of the pooled annuity fund comprising the population model, financial markets, and the

fund’s wealth dynamics. In section III the analytical and numerical solution of the dynamic

optimization problem of pool members is described. Section IV continues with a numerical

calibration of the model including a Monte Carlo and welfare analysis based on computations

of certainty equivalents. Section V concludes.

2 The Pooled Annuity Fund

2.1 Population Model

When modeling pooled annuity funds it is essential to employ an appropriate population

model to determine the dates at which the funds from perished members are reallocated

among the survivors. As the pool size could be low, it is especially important that the

population model accounts for the finiteness of the pool size. Furthermore, the model should
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also be able to capture empirical mortality rates. Finally, it is required that the model is

tractable in a dynamic consumption and portfolio choice framework. To this end, I set up

a model in which the time of death of each pool member is determined by the first jump

time of a Poisson process with time-dependent pre-jump intensity. Let L0 ∈ {1, 2, ...} be the

initial number of living pool members. Each pool member’s time of death τi, i ∈ {1, ..., L0}

is determined by the first jump time of an inhomogeneous Poisson process Ni = {Ni,t}t≥0

with time-dependent pre-jump intensity λt,i:

τi = {min t : Nt,i = 1}. (1)

To model homogeneous investors I assume that the jump intensity does not depend on i.

This assumption could well correspond to the case in which all individuals are of same age

and gender. The pre-jump intensity λt is assumed to be deterministic over time. It follows

that the probability of survival between two dates t and s ≥ t is given by

p(t, s) = exp

{
−

∫ s

t

λu du

}
. (2)

The number of living fund members in t follows from the above assumptions and is given by

Lt = L0 −
∑L0

i=1 Ni,t. Accordingly, the number of surviving investors evolves according to

dLt = −
Lt∑
i=1

dNt,i. (3)

Equation (3) can be rewritten as follows

dLt = −dNt, (4)
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Figure 1: Illustration of Simulated Populations. This figure presents simulated paths of the
development of populations for initial pool sizes L0 = 5 and 30 and the survival probabilities
p(0,Age-60). At t = 0 investors are assumed to be aged 60. Survival probabilities are
calibrated according to the 1996 population 2000 basic mortality table for US females (m =
86.85, b = 9.98).

since the sum of Poisson processes
∑Lt

i=1 Ni is itself a Poisson process N = {Nt}t≥0 with

E[dLt] =
∑Lt

i=1 λtdt = Ltλtdt.9 As a consequence, the population can be modelled with only

one risk factor which will below facilitate the solution of the consumption and portfolio choice

problem. It is convenient to assume that λt follows the Gompertz law of mortality:

λt =
1

b
e(t−m)/b, (5)

where m > 0 denotes the modal time of death and b > 0 is a dispersion parameter. This

assumption implies that the dynamics of λt is given by dλt = λt

b
dt > 0. The Gompertz

law of mortality constitutes the standard mortality law in population models since it is

parsimonious to handle as only two parameters are to be estimated. Further, it captures

9It is just required that the Poisson processes Ni, i ∈ {1, ..., L0} do not jump at the same time which is
fulfilled almost surely.
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empirical mortality rates remarkably well.10 The probability of survival between two dates t

and s ≥ t (2) can be rewritten as ebλt(1−e(s−t)/b).

2.2 Financial Markets

The fund assets can be invested into one risky asset (the stock market) and one riskless asset

(the money market). The price dynamics of the risky asset is given by the standard geometric

Brownian motion

dSt

St

= µ dt + σ dZt, (6)

where dZt is the increment of the one-dimensional Brownian motion Z = {Zt}t≥0 which is

not correlated with the jump process. The riskless asset evolves according to

dBt

Bt

= r dt, (7)

where r is the locally and globally riskless interest rate. The simple conception of the asset

model maybe deserves some justification. As the focus of this paper does not lie on the

effects of grouping mortality risks a more complex asset model will not improve the intuition

of group self annuitization strategies. The investment horizon of this paper is potentially a

couple of decades. Hence, short term active trading on changes in the investment opportunity

set lies not at the heart of this study. However, stock market price risk clearly is the dominant

source of risk in a portfolio and has the strongest impact on welfare.

2.3 The Wealth Dynamics of the Pooled Annuity Fund

At t = 0 investors i ∈ {1, ..., L0} pool their wealth Wi,0 inside the annuity fund. The total

initial value is therefore given by

WAF,0 =

L0∑
i=1

Wi,0. (8)

10For an illustration of the goodness of fit of the Gompertz mortality law see for example Milevsky (2006b).
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The value of the annuity fund evolves according to

dWAF,t

WAF,t

= [r + πt(µ− r)− ct] dt + πtσ dZt, (9)

where πt is the portfolio weight of stocks and ct is the rate withdrawn from the fund at time

t. The fraction of fund wealth owned by investor i is given by hi,t = Wi,t/WAF,t. Anytime

a pool member j 6= i dies prematurely his remaining wealth Wj,t− = hj,t−WAF,t− becomes

reallocated among survivors i so that their wealth Wi,t− jumps according to

Wi,t = Wi,t− +
hi,t−

1− hj,t−
Wj,t−

= Wi,t−

(
1 +

hj,t−

1− hj,t−

)
.

From Itô’s lemma for jump-diffusion processes follows the evolution of Wi,t:

dWi,t

Wi,t−
= [r + πt(µ− r)− ct] dt + πtσ dZt +

L0∑
j=1,j 6=i

hj,t−

1− hj,t−
dNj,t, t < τi. (10)

So, the fraction of fund wealth owned by the surviving members hi,t = Wi,t/WAF,t evolves

according to

dhi,t = hi,t−

L0∑
j=1,j 6=i

hj,t−

1− hj,t−
dNj,t, t < τi, (11)

until hi,t = 1 in case i is the only remaining survivor. In turn, if the considered pool

member i herself dies accumulated funds are spread among the other surviving members,

hence dWi,t=τi
= −Wi,t−,dhi,t = −hi,t−.

Since pooling has only a positive impact on the wealth evolution over life time it is

obviously a dominant strategy to conduct the group self annuitization strategy if no bequest

motive is present. Much more, the presence of a pool produces the motive to bequeath

remaining estate to other pool members in order to share their released estate. Further

notice, that the chosen asset allocation has no influence on the size mortality credit as it is
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just an additional source of income.

As the size of the mortality credit depends on how much wealth was owned by the

deceased pool member, it is necessary to record the wealth fraction of each living pool

member. For the sake of simplicity and to diminish the curse of dimensionality it is assumed

that each investor has the same initial endowment W0 since otherwise the number of state

variables would be equal to the number of living investors. Thus, the fraction of pool wealth

owned by each investor in t is ht = 1/Lt. Hence, the dynamics (10) can be simplified to

dWi,t

Wi,t−
= [r + πt(µ− r)− ct] dt + πtσ dZt +

1

Lt− − 1
dNt, t < τi, Lt− > 1, (12)

where the instantaneous probability that one of the other pool members dies is E[dNt] =

(Lt− − 1)λt dt. For instance, if one other pool member dies and the pool size is L = 2, the

additional income is 1/(Lt− − 1) = 100%, if the pool size is L = 3 the additional income

reduces to 50% and so on. The smaller the pool size the higher is the additional return but

the smaller is the probability that one of the other investors dies. Of course, if L = 1, the

last survivor earns no mortality credit anymore and has also no loss of bequest potential:

dWi,t

Wi,t

= [r + πt(µ− r)− ct] dt + πtσ dZt, Lt = 1. (13)

Calculating the instantaneously expected mortality credit gives:

E

[
1

Lt− − 1
dNt

]
= λt dt, Lt− > 1. (14)

It can be seen that the expected instantaneous mortality credit is independent from the pool

size as the term (Lt−− 1) cancels out. The intuition is that the higher the pool size L is the

lower is the mortality credit but the higher is the probability to earn the mortality credit.

The only relevant state variable is age because the older the pool and thus the higher λt is,

the more released funds will be shared among fewer survivors.
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The look at the instantaneous variance of the mortality credit gives insight about the

associated (local) risks:

V ar

[
1

Lt− − 1
dNt

]
=

λt

Lt− − 1
dt, Lt− > 1. (15)

While the expected mortality credit does only depend on the current hazard rate λt , the

local variance depends also on the number of living investors Lt−. The higher the number

of investors the more predictable becomes the mortality credit. In fact, the (idiosyncratic)

jump risk can be completely eliminated for infinitely large pools:

lim
Lt−→∞

V ar

[
1

Lt− − 1
dNt

]
= 0. (16)

Hence, this would constitute a perfect insurance pool as mortality risk is eliminated. 1/(Lt−−

1) dNt in (12) can be replaced with the expected mortality credit λt dt. This result is a

consequence of the standard assumptions that the mortality of all pool members is equal and

that the hazard rate does not vary stochastically over time.

Consequently, having access to a perfect pool yields a deterministic income λtdt from

earned mortality credits so that the dynamics (12) can be restated as follows

dWt

Wt

= [r + πt(µ− r) + λt − ct] dt + πtσ dZt. (17)

It is also informative to derive the long term wealth dynamics in order to get insight into the

long term wealth effects of the earned mortality credit. According to Itô’s lemma for jump

diffusions the growth rate of wealth between t and s ≥ t is:

Wi,s

Wi,t

= exp

{∫ s

t

(r + πu(µ− r)− cu −
1

2
π2

uσ
2) du +

∫ s

t

πuσ dZu

}
×

∆N(t,s)∏
j=1

(
1 +

1

Lt − j

)
, Ni,s = 0

(18)
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Figure 2: Expected Annualized Mortality Credit for Various Ages and Initial Pool Sizes. The
annualized expected mortality credit is defined as (EMC(l, t = 0, s))1/s− 1. The calibration
of survival probabilities corresponds to that of Figure (1).

where ∆N(t, s) = Ns −Nt is the number of deaths within the pool excluding the considered

investor. The lower product term expresses the extra return component which is backed by

the sum of earned mortality credits. Given that the current pool size is Lt = l, the at t

expected mortality credit which is received between t and s conditional on the survival of

the considered pool member i is given by

EMCi(l, t, s) = E

∆N(t,s)∏
i=1

(
1 +

1

Lt − i

)
|Lt = l, Ni,s = 0


= P (Ls ≥ 1|Lt = l) MC(t, s),

(19)

where P (Ls ≥ 1|Lt = l) =
∑l−1

k=0

(
l
k

)
(1−p(t, s))k p(t, s)l−k is the probability that at least one

pool member survives until s and MC(t, s) is the (deterministic) mortality credit exp
∫ s

t
λu du

in case of a perfect pool.11 Contrary to the expected instantaneous mortality credit λt dt

11Please see the Appendix A for a detailed derivation of (19).
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derived above, the expected cumulative mortality credit increases with the size of the pool l

because P (Ls ≥ 1|Lt = l) increases with l monotonically to liml→∞ P (Ls ≥ 1|Lt = l) = 1.

Figure (2) illustrates how the annualized expected mortality credit evolves over time

for t = 0 (age=60) and varying pool sizes L0 = l. For example if the initial pool size

is L0 = 5 and the considered pool member survives until age 90 the expected annualized

addition return from pooling is 4%. As the considered investor would on average be able to

increase the consumption rate by 4% the effect from pooling should have substantial impact

on utility which is analyzed below. A further implication of the figure is that high pool sizes

only contribute to the expected income from mortality credits in the very late stage of the

life-cycle.

3 The Dynamic Optimization Problem

3.1 The Value Function

Having derived the dynamics of the pool members’ wealth, the structure of the mortality

credit, and the connection between indvidual self insurance (L0 = 1), group self insurance

(1 < L0 < ∞) and a perfect pool L0 = ∞, the arising questions are manifold: how does

the mortality credit affect the optimal consumption and portfolio choice, how crucial is it to

account for the finiteness of the pool size, how high is the utility gain from pooling funds, on

the other hand how high is the potential utility loss if the pool size is only finite compared

to a perfect pool.

To answer these questions I assumed that all investors have homogenous preferences

described by

U =

∫ τ

0

e−δtu(Ct) dt, (20)

where δ > 0 denotes the time preference rate, τ denotes the stochastic time of death and

Ct = ctWt is the level of consumption at time t. The utility function u(C) is assumed to be
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of the standard CRRA type given below:

u(C) =
C1−γ

1− γ
γ 6= 1, γ > 0, (21)

where γ is the level of relative risk aversion. The value function of any pool member at time

t is given by

V (w, l, t) = sup
[πs,cs]∞t

E

[∫ τ

t

e−δ(s−t)u(Cs) ds |Wt = w, Lt = l

]
. (22)

The value function depends on the three state variable wealth Wt, number of living investors

Lt, and time t. First, the value function (22) can be rewritten by integrating over the

stochastic time of death:

V (w, l, t) = sup
[πs,cs]∞t

E

[∫ ∞

t

e−
R τ

t λudu

∫ τ

t

e−δ(s−t)u(Cs) ds dτ |Wt = w, Lt = l

]
= sup

[πs,cs]∞t

E

[∫ ∞

t

e−
R s

t (λu+δ) duu(Cs) ds |Wt = w, Lt = l

]
.

Thus, utility at a certain point of time s > t is discounted by the factor exp(−
∫ s

t
(λu + δ) du)

to account for both time preference and mortality risk. Finally, the indirect value function

is given by

V (w, l, t) = sup
[πt,ct]

lim
∆t→0

{
(Wtct)

1−γ

1− γ
∆t + e−(λt+δ)∆tE [V (w, l, t + ∆t) |Wt = w,Lt = l]

}
.

(23)
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3.2 The Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman (HJB) equation follows immediately when calculating the ex-

pected drift of the value function using Itô’s lemma:

(λt + δ)V = sup
[π,c]

{
(cw)1−γ

1− γ
+ Vt + Vw w(r + π(µ− r)− c) +

1

2
Vww π2σ2w2

+λt(l − 1)

[
V

(
w

(
1 +

1

l − 1

)
, l − 1, t

)
− V (w, l, t)

]}
,

(24)

where Vt and Vw denote the first partial derivatives of V with respect to t and w, respectively

and Vw,w the second partial derivative with respect to w. While the upper term of the right

hand side reflects the standard HJB without pooling (l = 1) the lower term reflects the

positive impact on utility if the investor receives the mortality credit. If one pool member

dies wealth jumps to w
(
1 + 1

l−1

)
and the number of the other pool members reduces to l−1.

After solving the first order condition for π the optimal portfolio policy is given by:

π∗ =
µ− r

γ σ2
. (25)

It becomes apparent that the optimal portfolio follows the constant mix Merton rule and

is independent of w, l, and t. The independence from w is the consequence of assuming

CRRA preferences. The independence from l stems from the fact that the relative size of the

mortality credit does not depend on the asset allocation of the pooled annuity fund. Further,

the investment opportunity set does not depend on the calendar date t. In order to derive

the optimal consumption policy, V (w, l, t) is conjectured to have the form

V (w, l, t) = f(l, t)
w1−γ

1− γ
, (26)
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with terminal conditions limt→∞ f(l, t) = 0, and f(0, t) = 0. The optimal consumption policy

is then obtained by

c(l, t) = f(l, t)−
1
γ . (27)

The dependence from t is induced by the time-dependent hazard rate. The increasing hazard

rate implies two conflicting effects: the older investors become the higher is their time pref-

erence rate δ + λt, but the higher is also the expected instantaneous mortality credit λtdt.

The dependence from l is induced as the potential mortality credit increases with l as shown

above. Due to CRRA preferences the optimal consumption rate is independent from w.12

The guess can be verified by plugging (26) and (25) in the HJB (24) so that f(l, t) must

obey

ft(l, t)

f(l, t)
+ γf(l, t)−1/γ + (A− λtl) + λt(l − 1)

(
l

l − 1

)1−γ
f(l − 1, t)

f(l, t)
= 0, (28)

where ft(l, t) denotes the partial derivative with respect to t and with A being a constant

A = (1− γ)

[
r +

1

2γ

(
µ− r

σ

)2
]
− δ. (29)

Analytic solutions to the set of ODEs (28) can only be derived for the two extreme cases

l = 1 and l = ∞.

3.3 Special Case: l = 1

This case reflects the situation where only one investor lives either because no other investor

is there or because all other investors already have perished. In this case equation (28)

reduces to the following ODE with time-dependent coefficients:

ft(1, t)

f(1, t)
+ γf(1, t)−1/γ + (A− λt) = 0. (30)

12This is also a consequence of the assumption that the hazard rate does not depend on the level of wealth.
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It can be easily verified that

f(1, t) =

{∫ ∞

t

e
1
γ

R s
t (A−λu) du ds

}γ

(31)

satisfies equation (30) for all t when it is plugged back in (30). Thus the optimal consumption

policy (27) becomes

c(1, t) =

{∫ ∞

t

e
1
γ

R s
t (A−λu) du ds

}−1

. (32)

It can be seen that the optimal consumption fraction increases over time as present con-

sumption becomes more valuable the older the individual is and the more the hazard rate

increase.13

3.4 Special Case: l = ∞

Using the wealth dynamics for a perfect pool (17) to derive the HJB and applying guess (26)

yields

f(∞, t) =

{∫ ∞

t

e
1
γ

R s
t (A−γλu) du ds

}γ

(33)

and

c(∞, t) =

{∫ ∞

t

e
1
γ

R s
t (A−γλu) du ds

}−1

. (34)

Comparing the integrand A − γλu with the integrand A − λu of the previous case l = 1

shows that the optimal consumption rate increases if γ > 1 and decreases if γ < 1. The

intuition is that in case γ > 1 lower capital stock is needed since the mortality credit finances

future consumption. Contrary, in case γ < 1, the investor bets on a long life and postpones

consumption into the late stage of the life-cycle in order to attain the mortality credit later

on.

13The optimal consumption rate would only be constant if we impose the same restriction as in Merton
(1971) where λt = λ. However, this assumption would imply that the individual never ages as the probability
of death is constant.
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3.5 Case: 1 < l < ∞

As no analytical results are available for this case equation (28) has to be solved numerically

by using finite difference methods.14 The function f(l, t) is approximated by values f̂l,i where

l ∈ {1, ..., L0}, i ∈ {0, 1, ...,M} with t = i ∆t. The boundary conditions for this problem

are f̂l,M = limt→∞ f(l, t) = 0, and f̂1,i = f(1, t) , and f̂∞,i = f(∞, t). The partial derivative

ft(l, t) is approximated by the forward differential quotient (f̂l,i+1 − f̂l,i)/∆t. Plugging this

approximation back into equation (28) yields

f̂l,i+1 − f̂l,i

f̂l,i ∆t
+ γf̂

−1/γ
l,i + (A− λtl) + λt(l − 1)

(
l

l − 1

)1−γ
f̂l−1,i

f̂l,i

= 0, (35)

If f̂l−1,i and f̂l,i+1 are known the only variable to make the equation hold is f̂l,i. After

calculating the boundaries f̂l,M = limt→∞ f(l, t) = 0 and f̂1,i = f(1, t) equation (35) is

solved recursively. Holding l = 2 constant, f̂2,i is computed backward from i = M to i = 0.

Then this procedure is repeated for l = 3 and so on. Thus the solution of the equation has

the complexity of solving l− 1 ODEs. Then f̂l,i is used to compute the approximate solution

of the optimal consumption strategy

ĉl,i = f̂
−1/γ
l,i . (36)

4 Numerical Example

4.1 Optimal Consumption Rules for Different Pool Sizes

In order to show concrete results and assess the economical relevance of the analytical deriva-

tions above I set up a base case with stylized parameters. I assume that the level of relative

risk aversion is γ = 5 representing a moderate level and that the time preference parameter

is equal to δ = 0.04. The parameter γ determines the investor’s willingness to substitute

14Even if one treats l as constant in order to solve the l resulting ODEs iteratively, there is no analytical
solution available.
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consumption among both states and time as the intertemporal elasticity of consumption is

given by 1/γ. In the later welfare analysis results are reported for a range of risk aversion

coefficients from γ = 2 to γ = 30.

The expected instantaneous real stock return is µ = 0.06 and the instantaneous volatility

is σ = 0.18. The real interest rate is set to r = 0.02. The implicit discrete equity premium

of the above settings is exp(µ) − exp(r) = 0.042. Especially the choice of the equity risk

premium has been subject to numerous theoretical and empirical articles in the past (see, for

instance, Siegel (2005) for a survey). While the equity premium in the US has been around

6 percent since 1872 most forward looking economists doubt whether this is also true for

the future. A current consensus in the long term portfolio choice literature lies around 3-4

percent (see for example Cocco, Gomes, and Maenhout (2005) or Gomes and Michaelides

(2005)). Under this parameterization follows immediately that the optimal stock fraction is

π∗ = 24.69% according to equation (25).

The survival probabilities are fitted by least squares estimation to the survival proba-

bilities between age 60 and 115 given by the 1996 Population 2000 Basic Mortality Table.

I will do the numerical calculation for men and women as mortality risk depends crucially

on the gender of pool members. For US Females the resulting parameters are m = 86.85,

b = 9.98 and for males m = 81.90, b = 11.05. These parameter estimators for m reflect

the higher mortality of men having a modal time of death lying at 81.9 years versus the

modal of women at age 86.85. The estimated value for b shows that the dispersion of the

time of death (mortality risk) is higher in the case of men than in the case of women. In the

numerical calculations the starting age is set to 60 (at t = 0) and the maximum age to 110

(T = 110− 60) as it is very unlikely that a 60 year old individual will survive that long (see

Figure (1)).

The upper graph of Figure (3) reveals the impact of pooling on the optimal consump-

tion/withdrawal decision. From age 60 on investors will start with higher withdrawals if

they participate in a pool. The higher the number of pool participants is the higher are
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Figure 3: Optimal Withdrawal Policies for Varying Age and Population Size. The upper
graph presents the optimal discrete withdrawal fraction (1 − exp(−c(l, t))) of the base case
for different ages and population sizes l. For example, at age 80 the optimal withdrawal
rate is 0.066 if the current pool size is l = 1 and 0.095 if l = 5. The lower graph presents
the optimal discrete withdrawal fraction of the base case for different ages and gender. The
optimal policies are depicted for l = 1, l = 10, and l = ∞. For the cases l = 1 and l = ∞
analytical solutions are given in (32) and (34), respectively. For 1 < l < ∞ the set of ODEs
(35) is solved numerically. The minimum age is set to 60 (t = 0), the maximum age to 110
(T = 110− 60) and the time step is one month, ∆t = 1/12. Thus, the grid size in which the
ODEs are solved is {L0 = 1000} × {T/∆t = 600}.
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Figure 4: Expected Optimal Consumption Path for Varying Age and Initial Pool Size. The
calculation of the expectations is done based on the optimal consumption policy c(l, t) via
100, 000 Monte Carlo simulations in which the time step is set to ∆t = 1/240.

the withdrawal rates because the more do pool members benefit from the mortality credit.

Investors anticipate the extra income from deceasing pool members so that less capital stock

is saved. The the smaller the pool size the larger is the increase of optimal consumption in

l. Even if the pool size is only l = 5 or l = 10, the optimal consumption rate almost doubles

from age 80 on. In cases l ≥ 50 the anticipated mortality credit is so high that the optimal

consumption rate more than doubles from age 70 on. Focusing the cases l ≥ 50 also makes

clear that the optimal consumption rate is only slightly below the one of the case l = ∞.

This indicates that the individual anticipates a stream of mortality credits that is similar

to the one of the perfectly diversified pool. The lower graph of Figure (3) demonstrates the

optimal withdrawal policy of women vis-à-vis that of men. Although the expected age of

men is much lower then that of women, men can afford only a slightly higher withdrawal

rate in the case l = 1. But if male investors pool their wealth, they can afford much higher

consumption rates (up to 5 percent points more in the case l = ∞) than women since they

can expect higher mortality credits due to their shorter live.
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It is also instructive to report the expected consumption levels for the different pool sizes

in order to get a grasp of the expected consumption path and the magnitude of the mortality

credit. To this end a Monte Carlo simulation is conducted in which the wealth dynamics

(12) is discretized. The time step is set to ∆t = 1/240 and the number of iterations to

100, 000. For dates t not lying on the grid of the numerical solution of the set of ODEs (35)

the optimal consumption rate is approximated by linear interpolation. The results of the

calculation are shown in Figure (4). The consideration of the expected consumption paths

shows that the realized level of consumption can be raised even if the initial pool size is rather

small. Interesting is also the hump shaped consumption profile at very high ages. This shape

can be explained by the high skewness in consumption which is generated by the jumps in

wealth due to the stochastic mortality credit at high ages. The jumps are larger the older

the individual becomes as the pool size has shrunk in the meanwhile so that released funds

are allocated among fewer survivors.

4.2 Welfare Analysis: Self Annuitization versus Life Annuity ver-

sus Group Self Annuitization

The substantial increase in consumption rates suggests that utility gains from pooling are

economically significant. In order to estimate the economic importance of pooling, I calculate

the equivalent wealth increase of cases l > 1 relative to the case l = 1. Especially it is of

interest how high the pool size l has to be in order to reach utility levels close to the ideal

case l = ∞. The equivalent wealth increase R(l, t) is defined by the following equation:

(W0(1 + R(l, t)))1−γ

1− γ
f(1, t) =

W 1−γ
0

1− γ
f(l, t), (37)
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which imposes that the lifetime utility of the case l = 1 and the general case l > 1 has to be

equated with the equivalent wealth increase R(l, t). It follows that

R(l, t) =

(
f(l, t)

f(1, t)

)1/(1−γ)

− 1. (38)

Consequently, R(l, t) can be interpreted as the additional fraction of initial wealth that is

needed in the case without pooling (l = 1) to be as well off as in the case with pooling (l > 1).

Figure (5) shows the results under our base case parameterization. The figure presents R(l, t)

for each combination of l ∈ {1, 2, 3, ..., 100,∞} and 0 ≤ t ≤ 60 (i.e. 60 ≤ age ≤ 110) . The

positive effect of pooling on lifetime utility is quite strong. For instance, in the case l = 100,

age = 60 the equivalent wealth increase R(l, t) is around 45%.15 For very old investors R(l, t)

can easily exceed 100% and more. R(l, t) increases with t because of the increasing mortality

intensity λt. As expected, R(l, t) rises also with l since the potential mortality credit rises

with the number of pool members as mentioned above. Surprisingly, the increase of R(l, t)

in l is initially so steep that 10 − 20 pool members are already sufficient to generate utility

gains of more than 90% of that of perfect pools l = ∞. The increase in utility gains becomes

rather small from around l = 50 upwards.

To understand how the various pool sizes would be assessed by men and women with

different levels of risk aversion, the same welfare analysis is done for γ = 2 in order to reflect

an investor with low risk aversion, γ = 5 for moderate risk aversion, and γ = 30 for high risk

aversion . The impact of different gender and risk aversions on welfare gains are reported in

Table I. Irrespective of gender and risk aversion, investors enhance their wellbeing the larger

the initial pool size L0 is. This is reasonable in light of the previously shown result that

the mortality credit increases with the pool size. By contrast, utility gains do not increase

uniformly for a given L0 if the risk aversion parameter is raised. Specifically, in case the

investor is a female and the pool size is L0 = 5, they drop from about 28% to 17% if risk

15The approach to assess the utility gains be certainty equivalent comparisons is similar to the welfare
analysis undertaken by Mitchell et al. (1999) and Brown, Mitchell, and Poterba (2001) for the case of life
annuities. This study reported comparable utility gains in the range of 40%.
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Figure 5: Equivalent Wealth Increase for Various Pool Sizes and Ages. This figure presents
the equivalent wealth increase R(l, t) which is calculated according to equation (38). R(l, t)
is the additional fraction of wealth needed in the case without pooling (l = 1) to be as well
off as in the case with pooling (l > 1).

aversion is increased from γ = 5 to γ = 30. This utility decrease also holds true for males

and pool size L0 = 10. The reason is that benefits from self-insuring in a small sized pool are

reduced because high risk averse investors evaluate the riskiness of the mortality credit more

critically than low risk averse investors. In turn, very risk averse individuals would be more

inclined to pay a premium in order to access a pool with higher pool size or a life annuity.

Comparing utility gains of men and women shows that men benefit more from pooling.

This seems at first glance surprising as the problem to finance longevity is more eminent in

case of longer living women. But the calibration of the Gompertz law parameter b indicates

that mortality risk (dispersion of the time of death) is higher in case of men than in case of

women whereas the fact that women life longer on average is deterministic. Accordingly men

are more exposed to the risk to life longer or less than expected and hence can benefit more

from insurance.

Table I indicates that if the pool size is l = 100, the difference in utility gains to the perfect
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Table I
Equivalent Increase in Initial Wealth: Impact of Gender and Risk Aversion

Females
γ L0 = 5 L0 = 10 L0 = 100 L0 = 1000 L0 = ∞
2 23.78 28.21 32.97 33.30 33.59
5 27.66 35.75 46.82 48.12 48.64
30 17.13 29.64 62.48 71.39 72.92

Males
γ L0 = 5 L0 = 10 L0 = 100 L0 = 1000 L0 = ∞
2 30.52 36.53 43.25 43.75 44.12
5 35.21 46.01 61.30 63.17 63.91
30 22.11 38.23 82.39 95.15 97.44

Note: Table I reports the equivalent increase in initial wealth (in percent) for varying gender
and risk aversion if L0 > 1 investors pool their wealth compared to the case without pooling
L0 = 1. The equivalent increase in initial wealth can be interpreted as the additional fraction
of initial wealth needed in the case without pooling to have at age 60 the same expected
utility as in the cases with pooling. All parameters but risk aversion and mortality laws are
set according to the base case. The calculations are done according to equation (38).

pool l = ∞ becomes rather small, irrespective of the investor’s risk aversion and gender.

This suggests that the remaining risks of non perfect pools are negligible if investors are

homogenous and have CRRA preferences if the pool size is around l = 100. The results imply

that people with access to a large pooled annuity fund would only pay low risk premiums

in order to access the private life annuity market. Thus, if external capital for insurance

companies is costly, grouped annuity funds may be preferred. Moreover, even very small

pools (L0 = 5,L0 = 10) such as families can replicate more than 50% of the utility gains

of perfect pools which could provide an explanation for the empirical low demand for life

annuities.16 Only investors with restricted opportunity to create a small pool (e.g. due to

small family size) or investors with high risk aversions seem to be more inclined to afford the

risk premium for a life annuity.

16This result indicates that even a family could manage longevity risk effectively. See also Kotlikoff and
Spivak (1981) for a theoretical discussion of family self-insurance.
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5 Conclusion

Pooled annuity funds are alleged to constitute an alternative to the classic longevity insurance

via life annuities offered by insurance companies (see Piggott, Valdez, and Detzel (2005)

and Valdez, Piggott, and Wang (2006)). To answer the question how pooled annuity funds

perform compared to life annuities this paper analyzes the optimal dynamic consumption and

portfolio choice problem of pooled annuity funds in a continuous time framework with CRRA

preferences. It is shown that the research question translates into an optimal control problem

with stochastic investment horizon and jumps in wealth. Wealth of surviving members of

the fund jumps if one other fund member dies and forfeit wealth is reallocated among the

survivors.

The framework embraces also the case l = 1 reflecting the self annuitization strategy and

the case l = ∞ reflecting the purchase of a life-annuity. In these cases analytical solutions for

the optimal consumption rate are derived. In the case l = 1 we extent the analysis of Merton

(1971) by allowing time-dependent hazard rates to capture empirical mortality patterns. In

the case l = ∞, we contribute to the prior literature on life-annuities which exogenously

imposed a certain payout structure of life-annuities. The present study endogenously derives

the optimal payout pattern by assuming that all investors of the annuity are homogenous.

The present paper also contributes to the literature by solving the optimal dynamic

consumption and portfolio choice problem for a finite number of homogenous pool members

1 < l < ∞. The optimization problem can be reduced to a set of ODEs whose number is

equal to the number of annuity fund members l. It is shown that the optimal consumption

fraction increases monotonically with the number of fund members and age. The reason for

the first result is that the more fund members are in the pool the more mortality credits

can be paid out in the future. The increase in age is explained by the increasing time

preference due to the increasing mortality when becoming old. The optimal portfolio follows

the standard Merton rule as mortality risk is assumed to be not correlated with the given

investment opportunity set and because the size of the mortality credit does not depend
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on the fund’s asset allocation. The participation in a pooled annuity fund constitutes an

endogenous bequest motive because the investor is willing to leave estate to the other pool

members to be in turn potentially rewarded with their estate.

Welfare calculations suggest that the utility increase from pooling is substantial, e.g. 45%

in the case of hundred pool members l = 100. The magnitude of this number is comparable

to those attained by Mitchell et al. (1999) and Brown, Mitchell, and Poterba (2001) for

the case of life-annuities. At first glance maybe surprisingly it turns that pooling generates

higher utility gains for men than for women since women live longer on average and are thus

thought to be more exposed to longevity risk. However the opposite is true if longevity risk is

seen as the risk to live longer than expected. Then, men face higher risk since the mortality

risk i.e. the dispersion of the men’s time of death is higher than that of women.

It is also demonstrated that even rather small sized pools with about l = 100 members

can produce around 90% of those utility gains generated by a perfect pool or equivalently

life annuities. Thus, the remaining mortality risks which have to be borne by pooled annuity

fund members seem to be economically negligible under CRRA preferences indicating that

pooled annuity funds may be preferred if external capital for insurance companies is costly.

Even pools being not bigger than a family can self-insure against mortality effectively and

reach more than 50% of the utility gains of a perfect pool. This result is in line with the low

empirical take up for private life annuities. Only investors with high risk aversion may be

inclined to pay a risk premium in order to transfer mortality risk completely to a insurance

company.

It remains to be explored whether stochastic changes in the mortality probabilities over

time would change the above given picture structurally. However, empirically improvement in

mortality was rather smooth and predictable. Thus, considering the risk of changing hazard

rates in a pure diffusion model calibrated to historical data should also have a negligible

impact on utility. However, it would be interesting to introduce extreme mortality changes

via jumps in mortality hazard rates in order to compare the utility outcome of group self
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annuitization strategies versus life annuities. This analysis should then also take into account

that also the insurance company could default in such extreme events.
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APPENDIX

A. Derivation of the Expected Cumulative Mortality Credit

Given that the current pool size is Lt = l, the at t expected mortality credit which is

received between t and s conditional on the survival of the considered pool member i is given

by

EMCi(l, t, s) = E

∆N(t,s)∏
j=1

(
1 +

1

Lt − i

)
|Lt = l, Ni,s = 0

 . (39)

The result of the product
∏∆N(t,s)

i=1

(
1 + 1

Lt−i

)
is Lt/(Lt − ∆N(t, s)). Thus the expected

mortality crdit can be rewritten as

EMCi(l, t, s) =
l−1∑
k=0

P (∆N(t, s) = k|Lt = l, Ni,s = 0)
l

l − k
, (40)

where P (∆N(t, s) = k|Lt = l, Ni,s = 0) denotes the probability that N jumps k times between

t and s given that Ni,s = 0 or in other words that k of the other Lt − 1 pool members j 6= i

die between t and s. According to equation (2) the individual survival probability for each

pool member is given by p(t, s). Thus, the total number of perished members ∆N(t, s) is

binomially distributed according to:

P (∆N(t, s) = k|Lt = l, {Ni,u = 0}s
u=0) =

(
l − 1

k

)
(1− p(t, s))k p(t, s)l−1−k. (41)

Plugging (41) in (19) yields

EMCi(l, t, s) =

∑l−1
k=0

(
l
k

)
(1− p(t, s))k p(t, s)l−k

p(t, s)
(42)

=
P (∆N(t, s) ≤ l − 1)

p(t, s)
. (43)

P (∆N(t, s) ≤ l − 1) can be rewritten as the probability that at least one pool member

survives until s and 1/(p(t, s)) = exp
∫ s

t
λu du is exactly the (deterministic) mortality credit
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of a perfect pool MC(t, s). So, the expected mortality credit of a finite pool EMC(l, t, s) is

a fraction of MC(t, s):

EMCi(l, t, s) = P (Ls ≥ 1|Lt = l) MC(t, s). (44)
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