Informed intermediation of longevity exposures

Enrico Biffis
Finance and Accounting Group
Imperial College Business School

David Blake
Pensions Institute
Cass Business School

17th Colloquium of Superannuation Researchers
Sydney, July 7, 2009
Agenda

1 Motivation
2 Buyout market
3 ILS market
4 Conclusion

Imperial College
London
Business School
Motivation: longevity hedging demand/supply

Insurance markets have very limited capacity
 - DB schemes / annuity providers have longevity risk exposures roughly 30x larger than insurance industry’s exposure to mortality deterioration

Longevity space attractive to investors
 - ILS funds, endowments, investment banks, (re)insurers, etc.

Information market is developing
 - bespoke mortality tables, postcode analysis, credit history, granular underwriting data (life settlements)
Imperial College
London
Business School

Agenda

1. Motivation
2. Buyout market
3. ILS market
4. Conclusion
The pensions buyout market

- less informed
 - pension funds

- more & less informed
 - higher capital requirements
 - buyout firms (re)insurers, banks

- (re)insurers

- capital markets (ILS funds etc.)
Capital/information differentials

Motivation
Buyout market
ILS market
Conclusion
Transferring a survival rate,
\[S = \frac{1}{m} \sum_{i=1}^{m} 1_{\tau_i > T} \]
Transferring a survival rate, \(S = \frac{1}{m} \sum_{i=1}^{m} 1_{\tau^i > T} \)
Transferring a survival rate,

\[S = \frac{1}{m} \sum_{i=1}^{m} 1_{\tau^i > T} \]
Bulk buyout / pool and transfer

Motivation

Buyout market

ILS market

Conclusion
Agenda

1 Motivation
2 Buyout market
3 ILS market
4 Conclusion
The ILS market

- more informed
- high capital requirements

- less informed

• pension funds
• (re)insurers
• capital markets (ILS funds, etc.)
• buyout firms (re)insurers, banks

Motivation
Buyout market
ILS market
Conclusion
Optimal security design

Transferring S to the capital markets

- intermediary retains part of the exposure to ‘signal’ the quality of the cashflows to the investor
- risk-sharing in securitization, quota-share reinsurance

Write a contract on the exposure S

- assume full collateralization: write $C = \phi(1 - S)$, with $\phi(\cdot)$ non decreasing
- optimal contract design

\[
C^* = \min(q^*, 1 - S) = q^* - \max(0, S - p^*)
\]

- higher $q^* = 1 - p^*$, higher longevity risk protection
Pool size

Motivation

Buyout market

ILLS market

Conclusion
Capital requirements

Motivation
Buyout market
ILS market
Conclusion
Agenda

1. Motivation
2. Buyout market
3. ILS market
4. Conclusion
Conclusion

We have examined some aspects of optimal longevity risk transfers

- differentials in information / capital requirements
- ‘pool and transfer’ vs. ‘pool and tranche’
- see Sherris and Wills (2008) for proper numerical analysis

Understanding of underlying exposures is crucial

- LifeMetrics, Xpect, etc., but mortality forecasting very challenging

Market participants’ needs are equally important

- so far mainly cashflow hedges (insurance paradigm)
- informed intermediaries can bridge the gap with value hedge suppliers
THANKS FOR YOUR ATTENTION