On a national retirement savings scheme with annuitisation and cross-subsidies: a two-tiered economic model

Benjamin Avanzi1 and Sachi Purcal1

1University of New South Wales
Actuarial Studies, Australian School of Business
b.avanzi@unsw.edu.au, s.purcal@unsw.edu.au

17th Colloquium of
Superannuation Researchers
7 July 2009
Plan

Introduction

Outline of the model

Discussion

References
Introduction

Annuity puzzle

- economic theory suggests that annuitisation is optimal (Yaari, 1965)
- surprisingly small demand for voluntary lifetime annuities throughout the world (Purcal and Piggott, 2008)
- the U.K. is a big annuities market, but they are mandatory
- most of the "annuity" savings of the U.S. are withdrawn as lump sums
Switzerland

Switzerland is a remarkable exception:

- **Substantial savings**
 - $> \text{annual GDP—more than CHF 600 bio in 2007}$
 - (Gerber and Weber, 2007; OFAS, 2009)
 - tax exonerated, guaranteed (strictly nondecreasing)
 - market risk not transferred to individuals

- **More than half of the Swiss choose to annuitise**
 - $\approx \frac{3}{4}$ annuitise all or part of their capital (Bütler, 2003)
 - 2003: 78% retirees’ income came from annuities (OFS, 2009)

What is the structure of this model?
Setting

Macroeconomic landscape

- organised system of retirement savings
- agents:
 - may contribute during n years of their life
 - have salary w_k in year k, $1 \leq k \leq n$
 - proportion α_k of the active population in year k, $\sum_{k=1}^{n} \alpha_k = 1$
- market rate is r^* (a constant)

Retirement savings

- we model retirement savings at the macroeconomic level
- government creates an organised system with two components
Two retirement savings components

Mandated component

- contributions rates β_k on w_k
- interest rate on savings is r
- at retirement, capital is converted into an annuity with ξ
- Δ is the excess over the actuarially fair conversion rate
- since $\Delta > 0$, everyone behaves rationally and annuitise (see also Bütler and Teppa (2007) and Avanzi (2009))
- aggregated savings are

$$M = \sum_{k=1}^{n} \alpha_k \sum_{l=1}^{k} \beta_l w_l (1 + r)^{k-l}$$

- β_k, r and ξ are chosen by the government
Two retirement savings components

Non-mandated component

- contribution rate γ on w_k
- interest rate on savings is r'
- aggregated savings are

$$NM = \sum_{k=1}^{n} \alpha_k \sum_{l=1}^{k} \gamma w_l (1 + r')^{k-l}$$

- γ and r' are endogenous and inter-related
We have a closed, autarkic system:

\[r^* (M + NM) = rM + \Delta \rho M + r' NM, \]

where \(\rho M \) are the mandated savings that are converted into a lifetime annuity each year.

We get

\[
\begin{align*}
 r' &= r^* + \frac{1}{\gamma} (r^* - r - \rho \Delta) \cdot f(r') \\
 &= r^* + \frac{\pi}{\gamma} \cdot f(r') \\
 &= r^* + \frac{\pi M}{NM}, \quad \left(f(r') = \gamma \frac{M}{NM} \right)
\end{align*}
\]

where

\[\pi = r^* - r - \rho \Delta < 0 \quad \Leftrightarrow \quad r' < r^*. \]
On a national retirement savings scheme with annuitisation and cross-subsidies: a two-tiered economic model

Discussion

The level of retirement savings

The propensity to save in NM

- is modelled by γ
- is highly influenced by π

π is controlled by the government

- $\pi > 0$ or $\pi = 0$ are not an option
- needs to be negative $\implies r$ and/or Δ must be high enough
- r is a short term decision variable
- Δ and β_k are long term decision variables
- the β_k define who has mandated savings, and thus who profits from the internal transfers
- we have $d\gamma/d\pi > 0 \implies$ trade-off
Advantages of the model

▶ controlled by the government
 ▶ can be finely monitored by the government (*who* is subsidised and *at what level*)
 ▶ costs nothing and is completely outsourced!
▶ liquid market for annuities
 ▶ critical mass is reached with annuitisation of *M*
 ▶ interesting then for insurers to propose annuitisation of *NM*, as it further mitigates their risk
▶ security and stability
 ▶ accumulation and decumulation of *M* largely predictable
 ▶ guarantee on both *M* and *NM*: no need to worry about market alterations (as in today’s financial crisis)
▶ this is not a purely theoretical model, it is implemented and works in reality..!
References

