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Abstract. We consider the problem of optimally designing longevity risk transfers

under asymmetric information. We focus on holders of longevity exposures that have

superior knowledge of the underlying demographic risks, but are willing to take them

off their balance sheets because of capital requirements. In equilibrium, they transfer

longevity risk to uninformed agents at a cost, where the cost is represented by reten-

tion of part of the exposure and/or by a risk premium. We use a signalling model

to quantify the effects of asymmetric information and emphasize how they compound

with parameter uncertainty. We show how the cost of private information can be

minimized by suitably tranching securitized cashflows, or, equivalently, by securitizing

the exposure in exchange for an option on mortality rates. We also investigate the

benefits of pooling several longevity exposures and the impact on tranching levels.

Keywords: longevity risk, asymmetric information, security design, pooling, tranch-

ing.

1. Introduction

Over the last decade, longevity risk has become increasingly capital intensive for pension

funds and annuity providers to manage. The reason is that mortality improvements

have been systematically underestimated, making balance sheets vulnerable to unexpected

increases in liabilities. Blake and Burrows (2001) were the first to advocate the use of

mortality-linked securities to transfer longevity risk to capital markets. Their proposal
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has generated considerable attention in the last few years, and major investment banks

and reinsurers are now actively innovating in this field (see Blake et al., 2006a, 2008, for

an overview).

Nevertheless, despite growing enthusiasm, longevity risk transfers have been materi-

alizing only slowly. One of the reasons is the huge imbalance in scale between existing

exposures and willing hedge suppliers. The bulk of longevity exposures is represented by

liabilities of defined benefit pension funds and annuity providers. In 2007, these institu-

tions’ exposure to improvements in life expectancy amounted to a staggering 400 billion

USD in the UK and the US alone (see Loeys et al., 2007). In the UK, a pension plan

buyout market started in 2006 to transfer corporate pension plan assets and liabilities to

insurance companies. This market has grown very rapidly with estimates of 11 billion

USD of transfers during 2008. However, there are already signs of capacity constraints -

some of the insurers have been unable to attract additional shareholders’ funds to expand

their businesses - and the buyout market transfers all risks (including interest rate and

inflation risks) and not just longevity risk. It is therefore important to consider other

vehicles for transferring longevity risk. One such vehicle is securitization, the packaging

of illiquid assets and liabilities into securities that are sold into the capital markets. Five

types of securitization have taken place involving longevity-related assets or liabilities:

blocks of business, regulatory reserving (triple-X securitization), life settlements, annuity

books and reverse mortgages. The new securities created are known as insurance-linked

securities (ILSs) (for more details, see Krutov, 2006; Blake et al., 2008).

Considerable progress has been made in understanding mortality dynamics (e.g., Cairns

et al., 2007, 2008; Dowd et al., 2008a,b; Gourieroux and Monfort, 2008) and in designing

mortality-linked securities (e.g., Dowd et al., 2005; Blake et al., 2006a,b; Dawson et al.,

2007; Denuit, 2007; Loeys et al., 2007). Yet, the optimal pricing of the embedded risks

remains elusive. The pricing exercises used so far by practitioners are typically based on

partial equilibrium arguments and shed little light on how supply and demand might equi-

librate when longevity exposures are exchanged. We address this problem by adopting a

simple general equilibrium model that shows how longevity risk premia are determined

by the joint effect of regulatory costs and uncertainty in longevity trends. The literature
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on optimal security design is vast (see Duffie and Rahi, 1995, for an overview pertain-

ing to financial innovation) and spans research on corporate finance (see Tirole, 2006),

deductibles in insurance policies (see: Eeckhoudt et al., 2005; Dana and Scarsini, 2007)

and minimization of risk measures (see Barrieu and El Karoui, 2005). We abstract from

heterogeneity in risk preferences and spanning issues and focus on the role played by asym-

metric information on longevity trends in optimal security design. We consider holders

of longevity exposures that have superior knowledge of the underlying demographic risks,

in the sense that they have access to better experience data or forecasting technologies

developed by monitoring the exposures. This assumption is realistic for life insurers, rein-

surers and other intermediaries (e.g., pension buyout firms and investment banks) that

have developed considerable expertise in managing longevity-linked cashflows. Moreover,

investors currently still seem to be uncomfortable enough with longevity risk to make

this assumption a reasonable one, even for securities written on publicly available demo-

graphic indices. The incentive to enter a transaction is given by an exogenously specified

retention cost resulting from capital requirements or alternative investment opportunities.

Knowledge of this cost is available to all agents, as it can be quantified from international

regulatory rules and accounting standards.

Our starting point is the securitization of a book of annuity-like cashflows and their

backing assets. The presence of asymmetric information means that the holder or orig-

inator of the longevity exposure (also denoted as issuer or seller below) faces a ‘lemons’

problem (as in Akerlof, 1970), in the sense that investors’ demand for the new security

may be downward sloping and expose the issuer to a liquidity problem. As is common in

annuity reinsurance and the securitization of insurance assets and liabilities (e.g., Cowley

and Cummins, 2005), retention of part of the exposure can be used to ‘prove’ the qual-

ity of the cashflows to the market and alleviate the impact of asymmetric information.

We use a signalling model of Walrasian market equilibrium, as in Gale (1992) and De-

Marzo and Duffie (1999), to determine optimal retention levels and securitization payoffs.

The resulting separating equilibrium allows us to determine the issuer’s retention costs

and to examine how risk premia would emerge if there were departures from the optimal

securitization level. As a particular example, we consider the situation where the respon-

sibility for meeting payments linked to the realized death rate in a reference population
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is transferred to a counterparty, exactly as happens with mortality swaps and forwards

(see: Coughlan et al., 2007; Loeys et al., 2007).

We then allow the holder of the book of liabilities and backing assets to issue a security

that is contingent on the net exposure to longevity (i.e., the surplus on the assets in

excess of the longevity exposure) and examine conditions under which the optimal contract

results in tranching of the net exposure. By tranching, we mean slicing the net exposure

so that, in exchange for a lump sum paid to the originator, investors who buy the tranche

are entitled to a specific portion of the net exposure’s cashflows. The optimal tranching

level minimizes the sensitivity of these cashflows to both asymmetric information and the

impact of unsystematic risk, which is material to risk-neutral agents when payoffs are

nonlinear. Since we wish to minimize the cost to the originator of issuing the tranche, the

optimal tranche is the one that is least risky from the investors’ viewpoint. In other words,

the optimal tranche is equivalent to the senior debt tranche in a debt financing operation.

Although we focus on the design of a single tranche, our analysis could be extended to

multiple tranches, as in Plantin (2004) and DeMarzo (2005), for example. It could also be

extended beyond the securitization of a specific book of business to encompass securities

written on publicly available mortality indices (such as the LifeMetrics indices1). For

example, we can obtain insights into how the strike levels of options on mortality indices

could be chosen by originators willing to repackage and sell their longevity exposures.

We also address the issue of securitizing pools of exposures. As in DeMarzo (2005),

diversification benefits can be traded off against the detrimental effect of information loss

from pooling together low-longevity- and high-longevity-risk cashflows. We obtain the

result that pooling and then tranching can reduce the negative impact of unsystematic

risk at high ages and in small portfolios. Also, the benefits from pooling and tranching are

magnified when private information is highly correlated across exposures, while residual

risk is not. This occurs, for example, when issuers of securities pool different cohorts of

individuals belonging to the same geographic area or social class, or pool several small

portfolios with comparable demographic characteristics. When considering securities writ-

ten on publicly available demographic indices, the model shows that ‘age-bucketing’ (i.e.,

1See http://www.lifemetrics.com.
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writing derivatives on the mortality experience of an entire age range in a given popula-

tion) can reduce asymmetric information costs, in addition to mitigating basis risk (see

Coughlan et al., 2007).

We note that although we concentrate on longevity risk, our analysis carries over to

cashflows exposed to the risk of systematic mortality increases (i.e., brevity risk). See

Cowley and Cummins (2005) and Bauer and Kramer (2007) for an overview of recent

transactions involving mortality catastrophe bonds.

The paper is organized as follows. In Section 2, we provide a stylized description of

longevity exposures, identifying a systematic and an unsystematic longevity risk com-

ponent. In Section 3, we introduce asymmetry in the information available to agents

concerning the systematic risk component. In Section 4, we provide an equilibrium model

of the securitization of longevity-linked cashflows. In Section 5, we study the optimal

design of a derivative written on a longevity exposure. In Section 6, we extend our anal-

ysis to pools of longevity exposures. In Section 7, we give a simple example of how the

setup can be used with stochastic intensities of mortality. Finally, Section 8 offers some

concluding remarks.

2. Longevity exposures

Denote the current time by 0 and let τ1, . . . , τm be the residual lifetimes of the individuals

in a given population at time z ≥ 0, such as insureds in a book of annuity policies or

members of a pension plan. For fixed time horizon T > z, denote by S the proportion of

individuals surviving up to time T and by D the proportion of individuals dying by time

T , i.e.

S =
1

m

m∑

j=1

1τj>T−z = 1 −D, (2.1)

where 1A denotes the indicator function of the event A. Expression (2.1) is a simple

representation of the longevity exposures faced by annuity providers and pension funds.

In a book of annuities, for example, the annuity payments over [z, T ] can be assumed

to be proportional to the random variable S, while the reserves released over the same

period can be assumed to be proportional to D. In practice, reversionary or indexed

benefits might be provided, but we abstract from additional sources of uncertainty such

as financial risk factors and minimum guarantees.
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A longevity exposure is affected by two main sources of risk: the risk of unsystematic

fluctuations around expected levels of mortality, and the risk of systematic departures

from expected levels. To fix ideas, consider first the random variable D and the case of

i.i.d. death times. Consider, for example, individuals of the same gender, the same age,

and with similar health characteristics at time z. Then τ1, . . . , τm may be assumed to

be independent and to obey the same law. If the population is large enough, the Law of

Large Numbers yields

lim
m→∞

D(m) = E [D] = q, (2.2)

almost surely, where the notationD(m) emphasizes the dependence ofD on the population

size, and q denotes the probability of dying by time T (we use the notation p := 1 − q

for the corresponding survival probability). Expression (2.2) lies at the heart of any life

insurance business, based on pooling together a large number of risks to make outflows

more predictable. From (2.2), we could use the representation

D = q + η, (2.3)

with η a zero mean error term capturing unsystematic fluctuations around the estimate

q.

When dealing with longevity exposures, however, the most challenging uncertainty is

the one surrounding the trend in longevity improvements, i.e., systematic longevity risk.

One way of formalizing this situation is to rewrite expression (2.3) as

D = q(Y ) + ε, (2.4)

with ε another error term. The estimate q in (2.2) is replaced by a random variable depen-

dent on a vector Y = (Y1, . . . , Yl)
′ of relevant risk factors. The law for τ1, . . . , τm depends

now on the common factor Y influencing systematic longevity risk, and the predictability

of the exposure is considerably reduced. For instance, when the individuals’ death times

are conditionally independent, given Y , the limit in (2.2) holds only conditionally on each

outcome y of Y (e.g., Schervish, 1995, Lemma 1.61), reducing the scope for risk reduction

by pooling together a large number of individuals.
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3. Asymmetric information

We consider two types of agent interested in exposure (2.1): the holder of the exposure

(e.g., an annuity provider, a pension buyout firm or an investment bank) and a multitude

of agents that might seek an investment exposure to longevity risk (e.g., other institutional

investors, endowments or hedge funds). We build on representation (2.4), and focus on

exposures with the following structure:

D = q(Y ) + ε. (3.1)

Much of our analysis actually applies to the alternative representation

D = q(Y ) exp(ǫ). (3.2)

Equivalent expressions can be formulated for S, with the trend component denoted by

p(Y ).

We assume that the holder has access to the entire information carried by Y , while

investors have access to a limited number of signals on the trend component of (3.1) or

(3.2). We can think of the holder possessing valuable experience data or having developed

a superior forecasting technology by monitoring the book of liabilities over time. We

denote the private components of Y by X = (X1, . . . ,Xd), for some d ≤ l, and we will

look at some specific examples.

A typical situation is when the private signal allows the holder to represent q(Y ) in

terms of a mortality estimate relative to a different group of individuals (e.g., aggregate

population or industry-wide experience), denoted by q̃, which is publicly available. We

can then set Y = (q̃, X) and write

q(Y ) = q̃ + a(X), (3.3)

for some adjustment factor a(X) ensuring that q(Y ) takes values in [0, 1]. In other words,

the private information allows the holder to express D in terms of a reference exposure D̃

publicly monitored. Similarly, we could set

q(Y ) = q̃ m(X), (3.4)
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with m(X) a privately computable scaling factor.

Both examples (3.3) and (3.4) cover common ways of producing mortality estimates

based on adjusting reference forecasts provided by industry bodies and government sta-

tistics offices. Approach (3.4) is common in the life settlements market,2 where mortality

estimates are made by adjusting a baseline mortality table with suitable impairment fac-

tors (see Modu, 2008).

In the following, we will be interested in the role played by the private signal X, rather

than in the optimal structure of Y to produce estimates for D or S. We therefore focus

on the special case in which the signal is entirely private, i.e. X = Y , and assume that

q(X) is an unbiased conditional estimate of D, given X, i.e.

q(X) = E [D|X] .

This means that q(X) is all that matters for the private valuation of exposure D.

So far, we have made no restrictions on the distribution of X. We now require the

following:

Assumption 3.1. The distribution of X has compact support and the conditional distri-

bution of D, given X, is continuous.

Under the above assumptions, it is easy to show that the support of the distribution

of q(X) is a compact interval, which we denote by [qmin, qmax] ⊆ [0, 1]. For example, we

set qmin := minxE [D|X = x]. The corresponding support for the distribution of p(X)

is denoted by [pmin, pmax], with pmin = 1 − qmax and pmax = 1 − qmin. The width of

these intervals gives a simple characterization of the systematic uncertainty associated

with the exposure. Since we focus on longevity risk, the bounds qmin and pmax will play a

crucial role in determining how the effects of asymmetric information influence the design

of longevity-linked securities.

As a practical example of the risks we are analyzing, Figure 1 plots one-year death

rate estimates for ages 65, 70 and 75 from year 2008 to 2030, based on the projections

of the Continuous Mortality Investigation (CMI).3 These projections provide a standard

2An index based on the mortality experience in this market was developed by Goldman Sachs in 2007:
see http://www.qxx-index.com.
3Projections based on CMI improvement factors applied to the PMA92 mortality table: see

http://www.actuaries.org.uk/knowledge/cmi.
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benchmark for annuity and pension liabilities in the UK. Each death probability has three

levels corresponding to so-called short-cohort, medium-cohort and long-cohort projections.

The terms ‘short’, ‘medium’ and ‘long’ refer to the degree of persistence in mortality

improvements assumed in the forecasting model.

Figure 1 gives an idea of the magnitude of trend uncertainty, particularly at higher ages.

The differences between the long-cohort and short-cohort estimates for the three ages in

2013 are 0.013%, 0.083% and 0.343%. Bearing in mind that the historical annualized

volatilities for death rates at ages 65, 70 and 75 are4 0.95%, 1.22% and 1.59%, we see

that we need to deal with the uncertainty associated with both longevity trends and

unsystematic longevity risk.

< Figure 1 about here. >

4. Securitizing longevity exposures

We now consider the problem of transferring longevity exposures to the capital markets.

We assume that there is a single riskless asset yielding an interest rate normalized to zero

and that there is a market populated by a large number of risk-neutral investors that

have no access to the information carried by X. The holder of the longevity exposure

is also risk-neutral, but discounts future cashflows at a positive rate, because of solvency

requirements or to reflect the opportunity cost of alternative investment opportunities.

This provides an incentive to securitize the exposure in exchange for cash.

Suppose that an infinitely divisible riskless asset α ≥ 0 backs a promised payment that

depends on the proportion of survivors in a given population at some future date T . The

final cashflow is given by the difference between the value of the asset and the value of

the exposure (which we denote below as the net exposure),

α− S = (α− 1) +D. (4.1)

Denoting by δ ∈ (0, 1) the issuer’s discount factor over [0, T ], her valuation of cashflow

(4.1) yields δE [α− S], which is lower than the value E [α− S] she would place on (4.1)

in the absence of holding costs. On the other hand, the access to extra information allows

4Estimates for England and Wales, based on annual death probabilities over the period 1841-2002 from

the Human Mortality Database: see http://www.mortality.org.
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the issuer to formulate a private valuation of the net exposure equal to

δE [α− S|X] = δ(α− p(X)) = δ(α− 1 + q(X)). (4.2)

The incentive to securitize the net exposure by issuing a security with a terminal payoff

proportional to α − S can then be quantified by the privately assessed holding cost (1 −

δ)(α− p(X)). We assume α ≥ pmax, so that we think of (4.2) as an expected surplus (the

extension to the case of a deficit or a pure liability transfer is discussed after Proposition 4.2

below).

A securitization transaction involves the following steps: (i) once the private signal X

is observed, the issuer computes (4.2); (ii) anticipating an arbitrary market demand P for

the security, the issuer chooses a fraction γ ∈ [0, 1] of the net exposure to supply to the

market; (iii) at a later time T , the realized cashflows from (4.1) are revealed to both the

issuer and investors.

By an arbitrary market demand, we mean a bounded measurable function P from [0, 1]

to R+. For a fixed securitization fraction γ ∈ [0, 1], P (γ) represents the market price of

α − S perceived by investors when the issuer retains (1 − γ) of the net exposure. For

given outcome x of X and demand schedule P , the issuer chooses the optimal fraction

to securitize by maximizing her private valuation of the final cashflows originating from

the transaction. These are given by the discounted value of the net exposure plus any

securitization payoff:

E
[
δ(1 − γ)(α− S) + γP (γ)|X = x

]
= δ(α− p(x)) + γ [P (γ) − δ(α− p(x))] . (4.3)

The optimal fraction can then be found by maximizing the securitization payoff,

Π(e) = sup
γ∈[0,1]

γ [P (γ) − δe] , (4.4)

with e = α − p(x), so that the ex-ante expected payoff resulting from the securitization

transaction is given by E [Π(α− p(X))].

The domain of the payoff, Π, is represented by the outcomes of the issuer’s private

valuation, e. We would like to express the optimal securitization fraction supplied to the

market as a function of the private valuation, denoted by Γ : [α− pmax, α− pmin] → [0, 1].
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The following standard proposition characterizes both Π and Γ for an arbitrary demand

schedule P :

Proposition 4.1. For any demand function P , assume that the issuer determines the

optimal fraction of the net exposure to securitize by solving problem (4.4). If Γ(α− p(x))

solves (4.4) uniquely for each outcome x of X, then

(i) the issuer’s payoff, Π, is nonincreasing and convex in the private valuation of the

net exposure;

(ii) the securitization fraction, Γ, is nonincreasing in the private valuation of the net

exposure.

The greater the severity of longevity risk indicated by the issuer’s private valuation,

the greater the fraction of the longevity exposure the issuer will wish to securitize. This is

illustrated in Figure 2, where the slope of Π is increasing in the private valuation of the net

exposure, α− p(X). From (4.4), we see that, if Π is differentiable, its differential is −δΓ,

so that the securitization fraction must rise when there is a lower private valuation of the

net exposure to ensure that Π is convex. The intuition is that a lower private valuation of

cashflow (4.1) makes retention relatively less valuable and hence securitization relatively

more valuable.

< Figure 2 about here. >

Although P has been taken to be arbitrarily given, one would expect the demand

schedule to be downward sloping, because investors cannot observe X and face a ‘lemons’

problem. If investors rationally anticipate that the amount of longevity exposure put

up for sale is increasing in the private valuation of longevity risk, their demand for the

security would decrease in response to an increase in the securitization fraction. This is

illustrated in Figure 3.

< Figure 3 about here. >

While the above considerations are intuitive, Proposition 4.1 does not provide insights

into how P and Γ might arise endogenously in equilibrium. To explore this issue, we use

a signalling model of Walrasian market equilibrium, as in Gale (1992) and DeMarzo and
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Duffie (1999). Because the retention costs faced by the issuer are assumed to be publicly

known, retention can be used as a credible signal to ‘prove’ the quality of cashflow (4.1) to

the market. Conditional on X, the issuer computes p(X) and puts up for sale a fraction

Γ(α−p(X)) of the net exposure. The uninformed agents then bid for the security using Γ

to infer the level of longevity risk associated with the exposure. In a rational expectations

equilibrium, their demand function satisfies

P (Γ(α− p(X))) = E [α− p(X)|Γ(α− p(X))] , (4.5)

and the signalling game results in a unique equilibrium (P ∗,Γ∗) characterized in the

following proposition.

Proposition 4.2. Consider the net exposure (4.1), with α > pmax. The outcome of the

signalling game is a unique separating equilibrium (P ∗,Γ∗), satisfying

P ∗(Γ∗(α− p(X))) = α− p(X), (4.6)

and admitting the explicit representation

Γ∗(α− p(X)) =

(
α− p(X)

α− pmax

) 1

δ−1

P ∗(γ) = γδ−1 (α− pmax) , 0 ≤ γ ≤ 1.

(4.7)

The equilibrium securitization payoff to the issuer is then given by

Π(α− p(X)) = (1 − δ) (α− pmax) Γ∗(α− p(X))δ. (4.8)

By letting pmax increase towards α, we can cover the case in which the private valuation

implies that the issuer expects the asset α in (4.1) to be fully utilized in meeting the

longevity exposure. The limiting optimal securitization fraction is 1 for p(x) = α and 0

for any p(x) ∈ [pmin, α).

The above proposition provides a useful benchmark for understanding the effects of

asymmetric information on the demand for and liquidity of longevity exposures. From

(4.7), we see that a fundamental driver of investors’ demand is the worst-case private

valuation α− pmax, irrespective of the distribution of X. If p(X) = pmax, it is optimal for



SECURITIZING AND TRANCHING LONGEVITY EXPOSURES 13

the issuer to securitize the entire net exposure in order to obtain

Π(α− pmax) = (1 − δ)(α− pmax), (4.9)

since Γ∗(α − pmax) = 1 in this case. Whenever the realized private valuation p(x) is

below the worst-case valuation, the issuer retains a fraction of the exposure to signal her

private assessment of longevity risk, and the payoff from securitization is lower than the

full holding cost which equals (4.9). The issuer could always obtain (1 − δ)E [α− S] in

the case of symmetric information, but in the presence of asymmetric information, the

issuer will have to incur a securitization cost that in expectation is at least as high as

(1 − δ)E [(α− S) − (α− pmax)] = (1 − δ) (pmax − E[p(X)]) . (4.10)

Another way of viewing asymmetric information costs, is to examine off-equilibrium

paths.5 As a result of the existence of a separating equilibrium, we know that the optimal

transaction always involves a partial exchange of the exposure at a fair price, irrespective

of the realized private valuation p(x). When p(x) < pmax, the holder of the exposure

incurs the cost associated with retaining a fraction (1 − γ∗) of the exposure. If she were

to transfer a fraction γ higher than γ∗, investors would infer that the severity of longevity

risk is higher, no matter what the issuer’s private valuation is. As a result, they would

demand a premium to take on the exposure given by P ∗(γ∗) − P ∗(γ).

We note that in Γ∗ the following ratio plays a fundamental role:

α− p(X)

α− pmax
. (4.11)

Expression (4.11) provides a simple measure of the degree of uncertainty associated with

the trend component in (3.1). When the fact that X is private is taken into account, the

ratio also represents the sensitivity of the exposure to private information (see DeMarzo

and Duffie, 1999, Proposition 4), since it compares the random outcome of the private

valuation to the worst possible valuation. Hence, Proposition 4.2 shows how trend un-

certainty combines with asymmetric information in determining either the equilibrium

retention levels or the risk premia demanded by investors in a longevity risk transfer.

5We have not discussed the issue of out-of-equilibrium beliefs, which lead to multiple equilibria in signalling
models. We note that Proposition 4.2 gives the unique equilibrium satisfying standard restrictions on off-

equilibrium beliefs, as discussed in DeMarzo and Duffie (1999).
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The above model can be extended to the situation in which α < pmax, i.e. the worst-

case private valuation results in an expected deficit. To illustrate how this can be done,

consider for example the case of α = 0 in (4.1), implying that we are transferring only

the liability S to the capital markets, not the assets. Retention costs are now captured

by a discount factor δ > 1, i.e. the issuer discounts liabilities at a rate lower than the

risk-free rate (which is zero in our setting). We then allow the demand schedule P to take

negative values, to reflect the fact that investors would be willing to take over a fraction γ

of the liability in exchange for receiving a premium (instead of making a payment) equal

to γP (γ) from the holder of the liability. Once these changes are enforced, expressions

(4.7) and (4.8) in Proposition 4.2 can be directly applied to pure longevity risk transfers.

The more general case when (4.2) could result in an expected deficit or expected surplus,

depending on the private valuation, can be covered by introducing a discount factor that

is function of α− p(X).

To give an idea of the practical implications of Proposition 4.2, we consider the special

case of α = 1, so that we are actually transferring the random death rate D to the

capital markets, exactly as in mortality forwards and swaps6 recently marketed by major

investment banks (e.g., the q-forward contracts considered in Coughlan et al., 2007). In

this case, the ratio (4.11) reduces to q(X)/qmin.

In Figure 4, we plot Γ∗ for different values of the ratio and for δ equal to 90% and 95%.

As expected, the securitization fraction is lower when δ is higher, since retention involves a

higher cost and hence is a more credible signal. We consider one-year death rates for ages

65, 70 and 75 in 2013 (five years from the assumed transaction year 2008, i.e. z = 4 and

T = 5 in the notation of Section 2). The values δ = 0.90 and δ = 0.95 correspond in this

case to annualized holding costs of approximately 2% and 1%, respectively. For the three

ages, we assume that X makes the worst-case private valuation qmin coincide with the

midpoint between the medium-cohort and the long-cohort forecast. In Figure 4, we plot

the ratios q(x)/qmin corresponding to the event {X = x} such that the private valuation

coincides with the medium-cohort forecast (the values of the ratio are 101.02% for age 65,

102.96% for age 70, and 105.26% for age 75). We see that the higher parameter uncertainty

associated with higher ages increases the potential cost of asymmetric information, simply

6Strictly speaking, our setup applies to fully-funded or fully-collateralized transactions in these instru-

ments.
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because the support of the distribution of the private valuations widens. The effective cost,

however, depends on the discount factor δ, which is likely to vary depending on the relative

contribution of the different ages to the capital provisions required by exposure (4.1).

To emphasize the role of the risk-free cashflows in the longevity risk transfer (i.e., those

generated by the backing assets), we examine the equilibrium retention levels for ages 65

and 70 when the backing assets are increased by 2.04%. The case α = 1.0204 corresponds

to a level at which the retention for age 70 is equal to that for age 65 when α = 1.

Figure 5 plots the results, from which it is apparent that the increase in the backing

assets generates a substantial increase in the optimal securitization fraction for both ages.

The reason is that the ratio (4.11) affecting liquidity decreases quite rapidly as α increases.

This means that the effect of asymmetric information is diluted when longevity exposures

are bundled with other risks, as happens when entire books of liabilities and their backing

assets are securitized. Recent evidence from the UK confirms this: bulk annuity buyouts

(i.e., transfers of books of longevity-linked pension liabilities together with the pension

fund assets) have been much more significant than pure longevity risk transfers, because

of the huge risk premia demanded by investors in exchange for accepting these transfers.7

< Figure 4 about here. >

< Figure 5 about here. >

5. Tranching longevity exposures

While Proposition 4.2 is useful for understanding the effects of asymmetric information

on the liquidity of longevity exposures, it does little to help improve the current design of

longevity-linked securities. We now consider the possibility of manufacturing a derivative

contract written on cashflow (4.1), rather than transferring the exposure directly to capital

markets as in a securitization. Under the assumption of risk-neutrality, the residual risks

ε and ǫ in (3.1) and (3.2) have so far played no role in our analysis, but will become crucial

7The general sentiment is that longevity solutions are currently “very expensive”, if not “outrageously

expensive”. Mark Wood, CEO of Paternoster, the first of the new pension buyout firms established in
the UK in 2006, says “We quote for mortality only buy-outs [insurance against people living longer than
expected], but we tend to find that when people want a quote for a mortality buy-out, they end up
comparing it to a bulk buy-out [a complete buyout of all pension liabilities] and go for that instead”

(‘Paying for a longer life’, Financial Times, June 1, 2008).
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in the present context. Throughout this section, we focus on the case α = 1 and securities

written on D. Equivalent results can be obtained for the more general setup of Section 3.

We consider limited liability contracts with monotone payoffs. A contract design is a

nondecreasing function φ acting on the range of D such that φ(d) ≤ d for every d ∈ [0, 1].

The following steps are involved: (i) before observing the outcome of X, the holder of

the exposure designs the contract; (ii) after X is observed, the contract is put up for

sale and passed on to investors according to the signalling game described in Section 4;

(iii) at maturity T , the final payoff is revealed to both the seller and the investors. By

steps (i)-(ii), investors cannot make inference on the severity of longevity risk based on

the design of the contract.

Setting C := φ(D), we wish to maximize the expected payoff to the seller over all

possible contracts C. As in the previous section, given an arbitrary demand PC for

contract C, the private valuation of the final cashflows involves any proceeds from selling

a fraction γ of contract C, plus the expected present value of the residual exposure D−C

and of the cashflows from the unsold fraction of C:

E
[
γPC(γ) + δ(D − C) + δ(1 − γ)C|X

]

= δq(X) + γ
[
PC(γ) − δc(X)

]
.

(5.1)

Hence, the results of the previous section apply and the equilibrium payoff ΠC takes the

same form as (4.8). To simplify notation, we drop superscript C from Π and P .

Since X is not known at the time when φ is chosen, we need to solve

V (D) = max
C

E [Π(c(X))] , (5.2)

where c(x) := E[C|X = x] represents the conditional private valuation of contract C.

What does it mean to optimize over all possible contract designs? From Proposition 4.2,

the equilibrium price of the contract depends on φ only through the worst-case private

valuation cmin := minx c(x), while the fraction of the longevity exposure hedged depends

on the sensitivity of φ to the private information, as measured by the ratio c(X)/cmin

(since δ ∈ (0, 1)). Hence, for each fixed cmin, problem (5.2) identifies the contract that

minimizes the sensitivity ratio among all those yielding a worst-case cmin. If all possible
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contract designs were to achieve their worst-case at a common x0 ∈ R
l, the solution would

drastically simplify. This is shown in the following proposition.

Proposition 5.1. Assume that q(X) is continuous and that ε (or ǫ) is log-concave. Then,

for every contract C, we have cmin = c(x0), for some x0 ∈ R
l, and the optimal contract

design is given by

C∗ = min(q∗,D) = q∗ − max(0, q∗ −D), (5.3)

for suitable tranching level q∗.

At maturity, the contract pays the amount q∗ to the investor when the realized death

rate exceeds the tranching level. However, the amount is reduced when the realized death

rate falls below the tranching level, thereby capping the exposure of the contract seller to

a survival rate of p∗ = 1− q∗. The seller therefore has an effective hedge against longevity

risk. In turn, one can think of the investor as holding a riskless bond issued by the seller

and paying q∗ at maturity, but also short a put option which is held by the seller and

which will expire with a maturity value of q∗−D if the realized death rate falls below the

tranching level.

The log-concavity assumption requires that the cumulative distribution function of ε

(or ǫ) is log-concave, a property satisfied in a number of interesting cases8 (see Karlin,

1968, for an overview). Continuity of q(X) and log-concavity of ε (or ǫ) ensure that we

can find an outcome x0 of X that is a uniform worst case for D, and hence for C (see the

appendix for details). The optimal design problem then simplifies because we can replace

problem (5.2) with the simpler problem of optimizing over all possible tranching levels.

At the optimum, given by

{q∗} = arg max
k

E [Π (E [min(k,D)|X])] ,

the marginal benefit to the seller from making the contract more attractive to the investor

by adding further positive cashflows (i.e., offering a higher q∗) is at most zero. When

q∗ < qmax, it is possible to tranche the exposure to create a derivative contract written on

D. Otherwise, the optimal contract transfers the entire exposure to the capital markets,

and the signalling game results in the kind of arrangement that is common in annuity

8The property is satisfied, for example, by the Uniform, Normal, Exponential, and Extreme Value distri-

butions and is preserved under truncation and convolution.
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reinsurance, namely a ‘quota share’ (i.e., a contract whereby the liabilities arising from a

portfolio are shared in fixed proportions between the annuity provider and the reinsurer).

Another way of understanding Proposition 5.1 is to rewrite expression (5.3) as

C∗ = D − max(0,D − q∗) = q∗ − max(0, S − p∗).

The first equality shows that the seller is transferring the random death rate D to investors

in exchange for receiving a call option on the realized death rate, with strike level q∗, so

that the call will expire in the money if at maturity D > q∗. The seller recognises that

the exposure could turn out to be less risky in the end than originally anticipated (for

example, if the outcome of D is some d > E[D]) and does not want to pay investors more

than q∗ to hedge her longevity risk. The second equality shows that the seller promises to

pay investors q∗ in exchange for a call option on survivorship, with strike price p∗ := 1−q∗.

The intuition is that p∗ measures the optimal level of protection against longevity risk that

the seller is willing to obtain from the market, given the costs of capital requirements and

asymmetric information. Hence, Proposition 5.1 provides a framework for determining

the optimal strike levels for mortality options in the presence of differential information

about longevity trends by holders and investors.

We note that an optimal ‘debt contract’ such as (5.3) was obtained by Innes (1990) in a

‘hidden effort’ (or moral hazard) model under the monotone likelihood ratio property9 and

by DeMarzo and Duffie (1999) in a ‘hidden information’ (or adverse selection) model under

the more general condition of existence of a uniform worst case. Related issues are studied

in the risk sharing literature (e.g. Eeckhoudt et al., 2005; Dana and Scarsini, 2007), where

the tranching level could be interpreted as a deductible. While we have concentrated

on identifying a single tranche, multiple tranches could be obtained in equilibrium by

allowing for heterogeneous investors (e.g., Plantin, 2004), or by considering the possibility

of designing multiple tranches before X is revealed (DeMarzo, 2005, explores this situation

under the monotone likelihood ratio property).

In analogy with expression (4.9) above, the maximum payoff the seller can expect to

obtain from selling a contract C is (1 − δ)cmin, i.e. the cost from holding the contract in

9In our setting, this means imposing the extra restriction that q(x) is monotone in x. This is usually a

strong restriction for multifactor stochastic mortality models.
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the worst case. Since φ(d) ≤ d for all d ∈ [0, 1], we have

c(X) = E [φ(D)|X] ≤ E [D|X] = q(X),

which yields cmin ≤ qmin. Using the fact that Π is decreasing in the private valuation, we

can write

Π(c(X)) ≤ Π(cmin) = (1 − δ)cmin ≤ (1 − δ)qmin, (5.4)

showing that the maximum payoff that can be achieved is lower than the one given in

(4.9). The reason is that by issuing contract C, we allow the residual risk to enter into

the picture, and hence an additional risk premium payable to investors materializes in the

transaction. Despite agents being risk neutral, a positive risk premium arises endogenously

through the contract design on account of the nonlinear payoffs of the optimal contract.

If the seller observes c(x) > cmin, she will retain a fraction of the contract, in order to

signal the lower severity of longevity risk, and hence reduce her payoff from the transaction.

Still, the ex-ante expected payoff associated with C might be higher than the one delivered

by securitizing the exposure D directly. Contract (5.3) therefore optimally resolves (ex-

ante) the trade-off between the costs associated with residual risk, asymmetric information

and capital requirements.

As in the previous section, a useful benchmark is the case in which there is no asym-

metric information and the seller can expect a transaction payoff equal to (1 − δ)E[C].

By analogy with expression (4.10), we can use (5.4) to compute

(1 − δ)E
[
C − cmin

]
= (1 − δ)

(
E[c(X)] − cmin

)
, (5.5)

the minimum cost the seller can expect to incur when selling C if only residual risk is

taken into account.

To emphasize these two dimensions affecting the contract design, we depict in Figure 6

the densities for the one-year death rate D = q(X) + ε of a 75-year-old individual in year

2009 and year 2013, as seen from year 2008. Clearly, the longer the time horizon, the

greater the variance of the death rate. The solid lines on the plane (x, y) represent the

CMI short-cohort and long-cohort forecasts over the period 2008 − 2013. The worst-case

private valuation qmin, in this case, is assumed to coincide with the long-cohort forecast.

In the setup in the previous section, the density curves were of no interest to either side of
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the transaction, and had no impact on the equilibrium results. When nonlinear contracts

are written instead, the situation changes dramatically and the entire distribution of D

(jointly determined by q(X) and ε) enters the picture. This can be seen by comparing

the two lines representing the strike levels for a suboptimal contract (strike q) and for the

optimal contract (strike q∗). The optimal contract maximizes the payoff to the seller and

optimally trades off the level of protection against longevity risk and the cost of doing so,

as can be seen from Figure 7. The suboptimal contract (strike q) is cheaper, but provides

too high a cap on survival rates (too low a floor on death rates).

< Figure 6 about here. >

< Figure 7 about here. >

To assess the practical implications of Proposition 5.1, we consider the case of an

exposure D = q(X) + ε, where the one-year death rate refers to individuals aged 70 in

2013 (5 years from the assumed transaction year 2008), with X such that qmin corresponds

to the long-cohort CMI estimate and q(X) is uniformly distributed with lower bound qmin

and mean coinciding with the medium-cohort CMI forecast. The residual risk component

is distributed as a truncated Normal with mean 0, variance σ2, and with the truncation

ensuring that D takes values in [0, 1].

Figure 8 reports the expected payoff for different strike levels and different volatility

parameters σ. For low values of σ (cases a, b, and c), the relative weight of residual risk

with respect to the cost of asymmetric information means that it is optimal for the seller to

get protection against longevity risk at an optimal level q∗ < qmin. The lower the residual

risk, the more q∗ approaches qmin, since it becomes easier to design a contract with the

conditional private valuation close to the level yielding the maximum payoff computed in

(5.4). In the case of no residual risk (ε = 0), the strike level coincides with qmin. For high

enough residual risk, the contract issued is so risky to investors (i.e., they are willing to

accept only a very low tranching level q∗ to assume the risk, one which is suboptimally

low for the seller), that the seller’s expected payoff might be higher by securitizing the

entire net exposure rather than tranching it (case d).

< Figure 8 about here. >
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6. Pooling multiple exposures

Extending the analysis of the previous sections to multiple exposures is relevant for two

main reasons. First, if a market for longevity-linked securities were to take off, an im-

portant role would be played by institutions willing to take on (i.e., aggregate) longevity

exposures for later repackaging and selling on to investors. Second, while a book of

liabilities is typically regarded as a single liability, despite including several cohorts of

policyholders, the holder might be better off securitizing only those exposures incurring

high retention costs or likely to yield a higher securitization payoff. Similarly, some hedge

suppliers find that aggregation of mortality rates by age ranges (‘age bucketing’) make

mortality derivatives more attractive by reducing basis risk and enhancing the hedging

potential of the instrument (see, e.g., Coughlan et al., 2008). Here we show that age

bucketing can also reduce the costs associated with asymmetric information.

We assume that the seller has n longevity exposures such as the one formalized in

(3.1),10 i.e.

Di = qi(X) + εi, (i = 1, . . . , n) (6.1)

where qi(X) = E
[
Di|X

]
represents a conditional unbiased estimate of the trend compo-

nent of Di, given the private signal X. We further require the following:

Assumption 6.1. For each i = 1, . . . , n, the conditional distribution of qi(X), given

the private valuations (q1(X), . . . , qi−1(X), qi+1(X), . . . , qn(X)), is continuous and has

support [qi,min, qi,max] ⊆ [0, 1].

The above implies that there remains uncertainty with respect to (say) qi(X), i.e., qi,min <

qi,max, no matter what information is available about any other qj(X), with j 6= i. Also,

each lower bound qi,min is independent of the available information on the other exposures.

If the holder were to securitize the exposures separately, she could use Proposition 4.2

to determine the equilibrium payoff (4.8) for each individual exposure, after observing

the outcome of X. Note that Π depends on the distribution of the private valuation

qi(X) only through the worst case qi,min. This means that even if investors were to learn

something about the distribution of qi(X) from prior sales of Dj (j 6= i), the equilibrium

would be unchanged. Similarly, any information on X acquired by the seller before selling

10The results of this section do not apply to the alternative representation (3.2).
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Di would have no impact on the worst-case qi,min, which is constant by Assumption 6.1.

In other words, we do not allow for learning.

Moving on to the aggregation of the exposures, the seller could determine the equilib-

rium payoff by treating
∑n

i=1D
i as a single exposure. Convexity of Π immediately reveals

that selling the pool is suboptimal, since

n∑

i=1

Π(qi(X)) ≥ Π

(
n∑

i=1

qi(X)

)
.

The intuition is that the seller holds an option to choose the retention levels for the

individual exposures, which means that her payoff is convex in the privately assessed

severity of longevity risk (see Figure 2 for example). Hence combining low-longevity- and

high-longevity-risk cashflows destroys the private information on the trend component.

On the other hand, we know that aggregation of exposures should allow the seller to

benefit from risk pooling. We therefore examine whether the above result can be weakened

by writing a contract on the pooled cashflows, as we did in the previous section, rather

than passing them on directly to capital markets as in securitization. We denote the

average exposure by

Dn =
1

n

n∑

i=1

Di, (6.2)

and by qmin
n := 1

n

∑n
i=1 q

i,min the average worst case. We do not consider the possibility

of assigning different weights to the individual exposures, although the analysis could

be extended to that case at the price of analytical tractability. For some nondecreasing

function ψ, we define a contract on Dn by setting Cn := ψ(Dn). As before, we denote its

private valuation by cn(X) := E[Cn|X]. The idea is to find conditions under which the

expected payoff per exposure to the issuer is higher under pooling than under individual

sale. Using the fact that Π is homogeneous of degree one, this happens when

1

n
V

(
∑

i

Di

)
= V (Dn) ≥

1

n

n∑

i=1

V (Di). (6.3)

As in DeMarzo (2005), the trade-off between diversification benefits and the loss of

private information from pooling can be optimally resolved as follows:

Proposition 6.2. For i = 1, . . . , n assume that each exposure Di has worst case qi,min >

0, and that the (εi) are log-concave i.i.d. and independent of (qi(X)). Then, it is optimal
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to pool and tranche the exposures, and the optimal contract is given by

C∗ = min(q∗n,Dn) = q∗n − max(0, q∗n −Dn).

Consider now a sequence of exposures D1,D2, . . . satisfying the above assumptions and

having bounded second moments. Assume that limn→∞ qmin
n = qmin exists. Then, the

limiting ex-ante securitization payoff is given by

lim
n→∞

V (Dn) = (1 − δ)qmin, (6.4)

with limiting tranching level limn→∞ q∗n = qmin.

Interpretation of the optimal strike level q∗n is as in the previous section. As expected,

the benefit from pooling is increasing in the size of the pool. In the limit, the optimal

contract is the one which is least insensitive to both private information and residual risk,

as we now show. By following the same steps as in (5.4), we can write

V (Dn) = E [Π(c∗n(X))] ≤ (1 − δ)c∗,min
n ≤ (1 − δ)qmin

n , (6.5)

where c∗,min
n := minx c

∗

n(x). The term on the right-hand side represents the average

holding cost of the n exposures. By taking limits on both sides of (6.5) and using (6.4),

we then see that limn→∞ c∗,min
n = qmin. This shows that pooling and tranching drives the

securitization cost to the level computed in (4.10), the lowest possible cost associated with

asymmetric information. Hence the additional cost associated with residual risk vanishes

in a large enough pool, provided the assumptions of Proposition 6.2 are satisfied.

In the previous section, we saw (e.g., Figure 8) that tranching might be suboptimal

when the residual risk is very high. The diversification benefits arising from pooling

different exposures can be used to make tranching optimal. This is important when the

seller writes contracts on volatile exposures, such as mortality rates relating to high ages

or to small annuity books. For the opposite case when residual risk is undiversifiable, the

information loss effect prevails and the following result holds:

Proposition 6.3. If εi = ε for all i, then it is optimal to securitize the exposures indi-

vidually.
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The above proposition applies to cases where ε relates to events that affect all members

of the pool equally, such as a catastrophic mortality event (e.g., an avian flu pandemic)

or the development of a cure for cancer.

In Assumption 6.1 and Proposition 6.2, we have imposed no restriction on the depen-

dence structure of the qi(X)’s, apart from not being perfectly correlated (for otherwise

the conditional support of qi(X), given the other private valuations, would collapse to a

singleton). The following proposition helps us understand the role played by dependence

in shaping the optimal contract (6.2):

Proposition 6.4. Set D′

n = q′(X) + 1
n

∑n
i=1 ε

i, with q′(X) := 1
n

∑n
i=1 q

i′(X). If q′(X)

is a mean preserving spread of q(X) := 1
n

∑n
i=1 q

i(X), then V (D′

n) ≥ V (Dn).

Hence, pooling and tranching are more valuable when the private information on the

severity of longevity risk affects the entire pool rather than being specific to each individual

exposure. This is the case of death rates relating to individuals of different ages, but

belonging to the same population, or relating to different cohorts of policyholders, but

with similar underwriting characteristics. The above result may also justify the higher

liquidity of mortality derivatives based on age bucketing.

As a practical example, consider several exposures Di = qi(X) + εi (i = 1, . . . , n)

modelled as in the example at the end of the previous section. For simplicity, we assume

that each qi(X) has the same lower bound qi,min = qmin. Figure 9 plots the expected

payoff per exposure that can be obtained by writing contracts on pools of different sizes.

As n increases, the payoff per exposure increases toward (1−δ)qmin and the optimal strike

level q∗n becomes closer to qmin.

To emphasize the role played by residual risk, we compare in Figure 10 the expected

payoffs in the case of i.i.d. residual risks with those relative to the case of undiversifiable

residual risk (εi = ε for all i). If residual risk is diversifiable, the holder achieves not only

a higher securitization payoff by pooling and tranching, but also a higher protection level

against longevity risk. When exposures are tranched separately instead, the resulting

payoff is unaffected by whether the residual risk is diversifiable or undiversifiable.

Finally, in Figure 11, we provide an illustration of Proposition 6.4, by considering a

mean-preserving spread for the average trend component. When the private information

on individual exposures is positively correlated, the payoff from pooling and tranching
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increases and the optimal contract results in a higher degree of protection against longevity

risk for the seller.

< Figure 9 about here. >

< Figure 10 about here. >

< Figure 11 about here. >

7. Intensities of mortality

The framework of Section 3 can be easily recast in the familiar setting of stochastic inten-

sities of mortality. Consider, for example, the survival rate S defined in (2.1). Set z = 0

and denote by p(Y ) the trend component of S. Assume that the random times τ1, . . . , τn

are conditionally Poisson over [0, T ], given the information generated by (µt)t∈[0,T ], a pro-

cess representing the common intensity of mortality of the individuals in the population.

We can then write (e.g., Brémaud, 1981)

E [S] = E
[
e−

∫
T

0
µsds

]
. (7.1)

Consider now the case where µ can be expressed as µ = µ̃ + Z, where (µ̃t)t∈[0,T ] is

the intensity of a reference population, while (Zt)t∈[0,T ] is an independent adjustment

process. If the dynamics of µ̃ can be publicly estimated, while those of Z are available to

the informed agent only, we can set X = Z0, Y = (µ̃0, Z0) and obtain an expression for

the private valuation of S similar to (3.4):

p(Y ) = E[S|Y ] = E
[
e−

∫
T

0
(µ̃s+Zs)ds

∣∣∣Y
]

= E
[
e−

∫
T

0
µ̃sds

∣∣∣µ̃0

]
E
[
e−

∫
T

0
Zsds

∣∣∣Z0

]
= p̃(µ̃0)m(Z0).

(7.2)

In Section 4, we allowed the holder of the longevity exposure to transfer it to the

capital markets. The following steps are involved: (i) immediately before time 0, the

seller chooses the contract design; (ii) at time 0, the seller observes Z0 and sells a fraction

of the contract to the investors based on her private valuation of the exposure; (iii) at

date T , the final payoff is revealed to both the seller and the investors. If an investor were

to take over the exposure at time 0, she would be able to back out the dynamics of the
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signal Z by monitoring the exposure over (0, T ]. Still, information on Z0 is only available

to the holder of the exposure before sale.

Proposition 5.1 can be used with representation S = p(Y )+ε (or S = p(Y ) exp(ǫ)) and

p(Y ) given by (7.2), provided S admits a uniform worst case. This occurs, for example,

when ε (or ǫ) and p̃(µ̃0) are log-concave and m(Z0) is continuous. A special case is when

µ̃ is deterministic, which means that the signal is entirely private.

8. Conclusions

In this paper, we examined the impact of asymmetric information and parameter uncer-

tainty on the securitization and tranching of longevity exposures when agents are risk

neutral. We first considered the securitization of annuity-like liabilities and their backing

assets. The use of a signalling model has allowed us to understand the optimal retention

levels or risk premia that would materialize in a transaction where investors have partial

information on longevity risk and the holder faces regulatory retention costs. We then

considered the optimal design of a derivative contract written on longevity-linked cash-

flows, emphasizing the joint role played by both systematic and unsystematic longevity

risk. In several interesting cases, it is optimal to tranche the exposure or, equivalently,

to transfer the liabilities in exchange for a call option on mortality rates (or a put option

on survival rates). We used the equilibrium model to understand how the strike levels

on such options can be set to minimize the impact of asymmetric information and max-

imize the option seller’s payoff. Finally, we examined the benefits arising from pooling

and tranching several longevity exposures. The results shed light into the way regulatory

costs and asymmetric information can shape the longevity risk premia originating from

transactions in longevity-linked securities. Our analysis provides a useful theoretical basis

for designing strategies for securitizing, tranching and pooling of longevity exposures as

well as designing option contracts on these exposures.
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Appendix A. Proofs

Proof of Proposition 4.1. (i) For fixed δ and γ, the function π(p) = γ(P (γ)−δ(α−p))

is increasing affine. Hence Π is the upper envelope of a family of affine functions decreasing

in the private valuation of (4.1). As a result, Π is nonincreasing and convex in the private

valuation. (ii) The subdifferential of Π contains −δΓ. Hence, Γ is nonincreasing in the

private valuation of the net exposure. �

Proof of Proposition 4.2. We can first verify that the separation property (4.6) holds

for Γ∗ defined by (4.7). Since the latter is decreasing in the private valuation, by (4.5) we

have:

P ∗(Γ∗(α− p(X))) = E [α− p(X)|Γ∗(α− p(X))] = α− E [p(X)|p(X)] = α− p(X).

Denote by U(e, P (γ), γ) := γ(P (γ) − δe) the securitization payoff to the holder when the

private valuation of the net exposure is e = α − p(x). It can be verified that U satisfies

the conditions of Mailath (1987, Theorem 3). In particular, the single crossing property

is satisfied, in that the map U3(·, P (γ), γ)/U2(·, P (γ), γ) is strictly monotone (with Uh

denoting partial derivative with respect to the h-th argument). Hence there exists a

unique separating equilibrium (P ∗,Γ∗), with P ∗ differentiable. The latter can be found

by using the first-order conditions for problem (4.4), yielding the differential equation




γP ′(γ) + P (γ) − δe = 0

P (1) = α− pmax.

By the separation property, we can replace e with P (γ) and solve the above to obtain

P ∗(γ) = γδ−1(α− pmax). Finally, the optimal Γ∗ can be found by inverting P ∗ and using

once again the separation property:

Γ∗(α− p(X)) =

(
P ∗(γ)

α− pmax

) 1

δ−1

=

(
α− p(X)

α− pmax

) 1

δ−1

.

�

Proof of Proposition 5.1. We begin by giving a definition of the uniform worst case

property, introduced by DeMarzo and Duffie (1999) and related to the concept of uniform

conditional stochastic order (Whitt, 1980, 1982). Letting λx denote the conditional law

of D, given an outcome x of X, we define:
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Definition A.1. An outcome x0 ∈ R
l of X is a ‘uniform worst case’ for D if, for every

subinterval B of [0, 1] and every other outcome x of X, we have that λx(B) > 0 implies
λx0

(B) > 0 and that, conditionally on B, λx stochastically dominates λx0
.

Since q(X) is continuous, and ε (or ǫ) is log-concave, x0 is a uniform worst case for

C (e.g., Keilson and Sumita, 1982). Denoting by lx,x0
the Radon-Nykodim derivative of

λx with respect to λx0
, by the definition of uniform worst case we have that lx,x0

exists

and can be chosen to be increasing. As a result, for any contract C = φ(D) (with φ

nondecreasing and satisfying φ(d) ≤ d on [0, 1]), the following holds:

min
x
E [C|X = x] = min

x

∫ 1

0

φ(u) λx(du) = min
x

∫ 1

0

φ(u) lx,x0
(u) λx0

(du)

=

∫ 1

0

φ(u) λx0
(du) = E [C|X = x0] =: cmin.

From here the proof is essentially as in DeMarzo and Duffie (1999, Proposition 10). We

cover it for completeness. Consider the contract C = min(k,D). Since both c(x) =

E [C|X = x] and cmin are continuous in k, we can choose k = k∗ such that cmin = c(x).

For some nondecreasing function ψ satisfying ψ(d) ≤ d on [0, 1], consider another contract

Ĉ = ψ(D) and set ĉ(x) = E[Ĉ|X = x]. Define now C̃ := Ĉ − C. Since x0 is a uniform

worst case for D, we have ĉmin = cmin and hence c̃min = 0. For each outcome x of X, we

can write

c̃(x) = E[C̃|X = x] =

∫ 1

0

(ψ(u) − φ(u)) lx,x0
(u) λx0

(du).

Since φ and ψ are both nondecreasing and bounded by d for all d ∈ [0, 1], we have that

C̃ ≥ 0 if and only if D ≥ d∗ for some d∗. From the above, we then have

c̃(x) ≥

∫ 1

0

(ψ(u) − φ(u)) lx,x0
(d∗) λx0

(du)

= lx,x0
(d∗)

∫ 1

0

(ψ(u) − φ(u)) λx0
(du) = lx,x0

(d∗) c̃min = 0.

As a consequence, ĉ(X) ≥ c(X) for any contract Ĉ. Since Π is decreasing in the private

valuation by Proposition 5.1(ii), we have that Π(ĉ(X)) ≤ Π(c(X)) and hence

E [Π(ĉ(X))] ≤ max
C

E [Π(c(X))] = V (D).

The optimal contract is then some C∗ = min(k∗,D), with the optimal strike level k∗ given

by

{k∗} = arg max
k

E [Π(E [min(k,D)|X])] .

�
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Proof of Proposition 6.2. See DeMarzo (2005, Theorem 2). �

Proof of Proposition 6.3. For fixed n, by Proposition 5.1, the optimal contract

written on Dn is C∗

n = min(q∗n,Dn). Since the private valuation c∗n(x) = E [C∗

n|X = x] =

E [min(q∗n, q(x) + ε)] is concave in q(x) = 1
n

∑
i q

i(x), we have c∗n(x) ≥ 1
n

∑
i c

i,∗(x) for

every outcome x of X. Using the fact that the equilibrium payoff (4.8) is decreasing and

convex, we then have

Π(c∗n(X)) ≤ Π

(
1

n

∑

i

ci,∗(X)

)
≤

1

n

∑

i

Π
(
ci,∗(X)

)
.

Taking the expectation, we finally obtain V (Dn) ≤ 1
n

∑
i V (Di). �

Proof of Proposition 6.4. For each outcome x ofX, we have that c∗n(x) = E[min(q∗n, q(x)+

1
n

∑n
i=1 ε

i)] is nondecreasing and concave in q(x). Similarly, c′∗n (x) = E
[
min(q′n

∗, q′(x) + 1
n

∑n
i=1 ε

i)
]

is nondecreasing and concave in q′(x). Since Π is decreasing and convex, and q′(x) is a

mean preserving spread of q(x), we have E[Π(c′∗(X))] ≥ E[Π(c∗(X))] (Rothschild and

Stiglitz, 1970). �
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Figure 1: CMI forecasts for death probabilities at ages 65, 70 and 75 over 2008 − 2030: short-

cohort (dotted), medium-cohort (solid) and long-cohort (dashed) forecast. The interval
[qmin, qmax] provides an example for the support of the private valuation of the death rate
relative to age 75 in 2013.
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Figure 2: Securitization payoff (4.4) and securitization fraction as a function of the private valuation
of the net exposure. The subdifferential of Π is −δΓ. The plot is based on the parameter
values α = 1 and δ = 0.9, so that α − p(X) = q(X) represents the one-year death rate for
age 75 in year 2009, with qmin coinciding with the CMI long-cohort forecast.
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Figure 3: Investor demand for longevity exposure: If investors infer the severity of longevity risk
from Γ, an increase from γ1 = Γ(α− p(x1)) to γ2 = Γ(α− p(x2)) induces a decrease in the
market price for the net exposure from P1 = P (γ1) to P2 = P (γ2).
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Figure 4: Securitization fraction Γ∗ for δ = 0.90 (solid line) and δ = 0.95 (dashed line) as a function

of q(x)/qmin, and values of the ratio for ages 65, 70 and 75 (dotted lines).
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Figure 5: Securitization fraction Γ∗ as a function of δ for ages 65 (dashed) and 70 (solid), when
α = 1 and α = 1.021 (circles).
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Figure 6: Densities of the death rate of a 75-year old in 2009 and 2013 viewed from 2008. The solid

lines qmax and qmin represent, respectively, the CMI short-cohort and long-cohort forecasts
for age 75 over 2008 − 2013. The lines indicated by q∗ and q represent, respectively, the
optimal tranching level and a suboptimal tranching level over 2008 − 2013.
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Figure 7: Optimality of the tranching/strike level q∗ in Figure 6.
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Figure 8: Ex-ante securitization payoff for δ = 0.90 and different values for the standard deviation of
ε: σ = 0.0001 (0.885% of E[D]) in case a, σ = 0.0010 (8.85% of E[D]) in case b, σ = 0.0020
(17.71% of E[D]) in case c, σ = 0.0050 (44.27% of E[D]) in case d.
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Figure 9: Expected payoff as a function of the tranching level for different pool sizes: n = 1 in case
a, n = 5 in case b, n = 10 in case c and n = 20 in case d. As n grows larger, the optimal
tranching level approaches qmin (dashed).
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Figure 10: Expected payoff V (D20) (solid lines) and 1

20

∑
20

i=1
V (Di) (dashed line) for net exposures

of type qi(X)+εi (case a) and qi(X)+ε (case b), with qi(X) i.i.d. uniformly distributed
as in Section 5, and εi and ε i.i.d. truncated Normal with mean zero and standard
deviation 0.001.
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Figure 11: Expected payoff V (D1) (dashed) and V (D5) (solid) with qi′(X)+εi (case a) and qi(X)+εi

(case b), with the (qi(X)) independent and the (qi′(X)) having 0.5 correlation. The (εi)

are i.i.d. truncated Normal with mean zero and standard deviation 0.001.


