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Abstract

In this paper Bayesian methods are applied to a stochastic volatility model using
both the prices of the asset and the prices of options written on the asset. Poste-
rior densities for all model parameters, latent volatilities and the market price of
volatility risk are produced via a hybrid Markov Chain Monte Carlo sampling al-
gorithm. Candidate draws for the unobserved volatilities are obtained by applying
the Kalman filter and smoother to a linearization of a state-space representation of
the model. The method is illustrated using the Heston (1993) stochastic volatility
model applied to Australian News Corporation spot and option price data. Alter-
native models nested in the Heston framework are ranked via Bayes Factors and via
fit, predictive and hedging performance.
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1 Introduction

In this paper we propose a Bayesian method for estimating a stochastic volatility model

using both option prices and spot prices on the underlying asset. Posterior densities are

produced for the parameters of the volatility model, for the latent volatilities and for the

market price of volatility risk. The method involves augmenting the probability density

function for a panel of option prices with the density function describing the bivariate

process for the spot price and the volatility. Posterior results are produced via a hybrid

Markov Chain Monte Carlo (MCMC) sampling algorithm. As part of this algorithm,

candidate draws of the volatilities are obtained via the application of the Kalman filter

and smoother to a linearization of a non-linear state-space representation of the model.

Information from both the spot and option prices affects the draws via the specification

of a bivariate measurement equation. In particular, a time series of implied volatilities

produced via the Black and Scholes (1973) model is taken as a noisy measurement of the

evolution of the assumed stochastic volatility process.

The method is illustrated using the Heston (1993) stochastic volatility model. In

addition to demonstrating the production of marginal posteriors for the unknown elements

of the Heston model, methods for comparing the Heston model with alternative models

nested in the Heston framework are presented. These methods involve the construction

of Bayes Factors as well as fit, predictive and hedging error densities. The methodology is

applied to spot and option price data for News Corporation as observed over the period

1998 to 2001.

The outline of the paper is as follows. In Section 2, we briefly describe the Heston

(1993) stochastic volatility model, making reference to other work in the literature that

attempts to conduct inference on this model using observed option and spot prices. In

Section 3, we describe our Bayesian inferential method, including the hybrid MCMC

scheme that we adopt. We also outline the criteria used to rank nested versions of the

Heston model, including the constant volatility Black-Scholes (BS) model. These criteria

include posterior model probabilities, based in turn on Bayes Factors. The Bayes Factors

are computed in a simple way, using the Savage-Dickey density ratio; see Koop and Potter

(1999). Fit, predictive and hedging criteria to be used in model ranking are also detailed.

This section also demonstrates howmodel averaging can be invoked to produce potentially
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more accurate predictions of future option prices in the case where market participants

in fact price options via more than one distributional assumption. Section 4 includes a

description of the News Corporation data to be used in the empirical demonstration of

the method, followed by an outline of the numerical results. We provide some concluding

comments in Section 5.

2 The Heston (1993) Stochastic Volatility Model

We begin by adopting the mean-reverting square root volatility process of Heston (1993).

According to the Heston model, the risk-neutralized dynamics of the spot price and vari-

ance process respectively are:

dS(t) = rS(t)dt+
q
v(t)S(t)dε2(t) (1)

and

dv(t) = κ[θ − v(t)]dt+ σv
q
v(t)dε1(t), (2)

where ε1(t) and ε2(t) are correlated Weiner processes with correlation parameter ρ, r

denotes the risk-free rate of interest and θ is the long-run mean of v(t), to which v(t)

reverts at rate κ > 0. The actual, or objective, spot price and variance processes are given

by:

dS(t) = µS(t)dt+
q
v(t)S(t)dε2(t) (3)

and

dv(t) = κa[θa − v(t)]dt+ σv
q
v(t)dε1(t), (4)

where µ is the mean rate of return on the underlying asset. The parameters in (2) and

(4) are related as follows:

θ =
κaθa

κa + λ
, (5)
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κ = κa + λ. (6)

The volatility risk premium, λ(S(t), v(t)), is assumed to be proportional to v(t), that is,

λ(S(t), v(t)) = λv(t). (7)

A negative value for λ and, hence, for the risk premium, is often observed empirically.

With λ < 0, (2) implies slower reversion to a higher long-run mean than is implied by the

actual variance process in (4).

Heston adopts standard arbitrage arguments to produce a closed form solution for the

price of an option written on the underlying asset as:

qH = S(t)P1 −Ke−rτP2, (8)

where qH denotes the theoretical Heston option price, S(t) denotes the current asset price,

K denotes the strike, or exercise, price and τ = T − t denotes the time to maturity. The

terms P1 and P2 are functions of the unknown parameters that characterize the risk-

neutral volatility process, namely κ, θ, σv and the correlation parameter ρ, as well as

being functions of the current latent variance, v(t).1Alternatively, given (5) and (6), P1
and P2 can be viewed as functions of the parameters that characterize the actual volatility

process, κa, θa, σv and ρ, the current latent variance, v(t), and the risk premium parameter

λ, as long as additional identifying information on the actual process is incorporated in the

inferential procedure. We achieve this identification by augmenting the density function

associated with the assumed generating process for the option prices with the density

function that describes the dynamics of the spot prices and volatilities.

Guo (1998) and Chernov and Ghysels (2000) use classical methods to estimate the

parameters of (2) using observed option price data. Guo uses time series data on returns

to produce an estimate of θa directly, thereby enabling an estimate of λ to be backed out

of the option prices, via the estimation of κ and θ. Parameter estimates are produced

by minimizing the sum of squared differences between observed and theoretical option

prices, with the minimization taken with respect to κ, θ, σv, ρ and the vector of latent

variances, v = {v(t)}. Chernov and Ghysels use efficient method of moments to estimate
the parameters of both the risk neutral and objective volatility processes. The data set
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constitutes both observations on the spot price S(t) and a series of implied volatilities

backed out, via the Black-Scholes (BS) model, from observed option prices. The form for

the risk premium as given in (7) is generalized by the addition of a constant. Bates (1996

and 2002), Bakshi, Cao and Chen (1997) and Pan (2002) apply classical methods to an

extension of the Heston model that accommodates random jumps in the asset price. Of

these latter four works, only Pan uses both spot and options data and, hence, is able to

produce inferences on both the underlying volatility process and the price of volatility

risk.2

In this paper, a Bayesian approach to inference is adopted. As in Bates (1996 and

2000), we augment the density function for the option prices with the probability density

function describing the actual volatility dynamics. However, in contrast to Bates, we

also include the density function that describes the evolution of the spot price process,

conditional on the volatility process. That is, we incorporate the bivariate spot price and

volatility process as given in (3) and (4). This further augmentation of the data generating

process enables identification of the parameters of both the actual volatility process and

the risk-neutral process. Alternatively, it allows for the identification of the parameters of

the actual process and the market price of volatility risk. We apply an MCMC sampling

algorithm to produce marginal posterior densities for µ, κa, θa, σv, λ, ρ and the elements

of v. The sampling algorithm is based on a hybrid of the Gibbs and Metropolis Hastings

(MH) algorithms, with the MH subchains reweighting candidate draws according to the

compatibility of the draws with the appropriate data set and associated data generating

process. Specifically, both the option and spot price data provide information on v, κa, θa,

σv and ρ. Since only the option price data reflects the market’s attitude towards volatility

risk, only that component of the data set provides information on λ. In contrast, since

the options are priced assuming the risk-free rate of growth in the spot price, only the

observed spot prices are relevant to inference on the actual mean rate of growth, µ.

There is some similarity between our proposed algorithm and the MCMC algorithm

proposed independently by Eraker (2003), who estimates a modification of the Heston

model using Bayesian methods.3However, in contrast to his work, we deal with the latent

variances as (blocks of) the vector, v, rather than performing iterative simulation of each

individual variance, v(t), conditional on the remaining the variances. Also, in our method

both the spot and option prices clearly impact on the simulation of the latent variances,
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via the bi-variate Kalman filter and smoother.4Further, we make explicit use of the ap-

proximate normality of the posterior of the risk premium parameter, λ, conditional on

the vector of simulated variances, v, and on the values for the other parameters in the

model. This approximate normality is exploited in the specification of the normal candi-

date density in the MH algorithm for λ. A similar approach is used in the specification of

the (truncated) normal candidate density for ρ.Most importantly, the overall focus of our

work is quite different from that of Eraker. Our aim is to demonstrate the application of

a fully-fledged Bayesian approach to producing option-based inferences about stochastic

volatility. That is, in addition to producing posterior point and interval estimates for the

parameters of a particular stochastic volatility model, we demonstrate how to rank a set

of alternative option pricing models, using Bayesian methods, as well as highlighting the

relevance of Bayesian model averaging in an option pricing context. As the main aim

of the paper is methodological, we choose to focus on the Heston model and three close

variants, rather than expanding the model to accommodate the jump processes that may

be needed in some empirical settings.5

3 The Bayesian Inferential Method

3.1 Specification of the Joint Posterior Density Function

Bayesian inferences about all unknown elements of the stochastic volatility model are

to be produced in part from observed market option prices. For this to occur, option

prices need to be assigned a particular distributional model. Letting Ci represent the ith

observed market price of the call option and ri, Ki, τ i and Si represent the observable

factors that affect the ith option price, the option pricing model is specified as

Ci = β0 + β1qH(ri, Ki, τ i, Si, φ) + ui, i = 1, 2, . . . , N, (9)

where ui is an unobservable pricing error, assumed to have a normal distribution with zero

mean and variance, σ2u, N is the number of observed option prices and qH(ri,Ki, τ i, Si, φ) is

the ith theoretical option price as defined in (8). The vector φ = {v, ωa, λ, ρ} comprises all
unobservable elements that characterize qH , with the parameters of the objective volatility

process in (4) grouped together in the vector ωa = (κa, θa, σv)
0. The index i indicates both

variation over time and variation across option contracts at a given point in time.6
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The vector of variances, v, has dimension equal to the number of distinct time periods,

n say, in the pooled sample of option price data. Hence, n < N. In this paper, the dimen-

sion of v corresponds to the number of days over which the option price data are observed,

with one variance per day, denoted by vt, being estimated. Hence v = (v1, v2, . . . , vn)
0.

Each option price in the data set is assumed to be observed synchronously with a spot

price Si.7Hence, there are N observations (not necessarily distinct) on Si. However, in

specifying the joint density function for the spot prices and volatilities, as associated with

a discretized version of (3) and (4), we use only the last spot price recorded on each day.

Hence, the spot price process is assumed to describe movement in the volatilities and spot

prices from day to day. We also use a single interest rate observation for each day, rt,

t = 1, 2, . . . , n, where rt denotes the 3 month bond rate on day t. It is notationally con-

venient, however, to continue to index all observable factors that influence the ith option

price with i, and to group these factors together in a vector zi = (ri, Ki, τ i, Si), in which

case, (9) becomes

Ci = β0 + β1qH(zi, φ) + ui, i = 1, 2, . . . , N. (10)

The presence of ui in (10) reflects the fact that the theoretical option model, qH(zi, φ),

is only an approximation of the process that has lead to the determination of an observed

option price. That is, ui encompasses ‘model error’. It may also encompass ‘market error’,

in which an observed option price differs from its theoretical counterpart as the result of

factors such as, for example, the non-synchronous recording of spot and option prices and

transaction costs.8

The joint density function for the vector of option prices c = (C1, C2, . . . , CN)
0, con-

ditional on the known vector z = (z1, z2, . . . zN)
0 and on the unknown φ, is thus given

by

p(c|z,φ, β, σu) = (2πσ2u)−N/2
NY
i=1

exp

Ã
− 1

2σ2u
[Ci − [β0 + β1qH(zi, φ)]]

2

!
. (11)

As already noted, in order to produce simultaneous inference about the parameters of

both the risk-neutral and objective processes or, equivalently, about the parameters of

the objective process and the market price of volatility risk, information about the way

in which the observed spot prices have evolved needs to be incorporated in the inferential

7



procedure. We incorporate this information by augmenting the data generating process

in (11) with a discretized bivariate spot price and volatility process in (3) and (4). This

augmentation also serves to identify the process to which the estimated volatilities must

adhere.9

The vector of (closing) spot prices associated with the n days in the sample is defined

as s = (S1, S2, . . . , Sn)0. Suppressing the dependence of p(c|z,φ) on all elements of z other
than s (including all other intraday synchronous spot prices that are used to calculate

qH(zi, φ) for each i) and defining the vector δ = {φ, µ, β, σu} as the full set of unknowns
in the problem, with β = (β0, β1)

0, the joint posterior density for δ is thus specified as

p(δ|c, s) ∝ p(c|s,v, ωa, λ, ρ, β, σu)× p(s,v|ωa, ρ, µ)× p(ωa, ρ, λ, µ, β, σu)

∝ p(c|s,v, ωa, λ, ρ, β, σu)× p(s|v, ωa, ρ, µ)× p(v|ωa)

×p(ωa, ρ, λ, µ, β, σu). (12)

The posterior density in (12) contains all information, both sample-based and a priori,

regarding the elements of δ. We further specify that

p(ωa, ρ, λ, µ, β, σu) = p(ωa)× p(ρ)× p(λ)× p(µ)× p(β)× p(σu). (13)

That is, it is assumed that the set of parameters that characterize the volatility process,

namely ωa, is a priori independent of the mean rate of return on the underlying asset,

µ, as well as being independent of both λ and ρ. The latter two parameters are also

assumed to be a priori independent of one another.10The regression parameters β and σu
are assumed to be a priori independent both of each other and of all other parameters in

the model.

3.2 The Hybrid Gibbs-MH Algorithm

Due to the large number of unknowns in the model and the manner in which they are re-

lated, computation of the joint posterior distribution and marginal posterior distributions

is not possible analytically, and an MCMC algorithm has been developed. To implement

the MCMC algorithm, the parameters in δ are ‘blocked’ into eight groups11as follows: v,

κa, θa, σv, λ, ρ, µ and (β, σu). Starting values are chosen, and a Gibbs-based MCMC

algorithm is then applied to produce successive draws of the unknowns via the respective

conditional posteriors:
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1. p(v|ωa, λ, ρ, µ, β, σu, c, s)

2. p(κa|v, θa, σv, λ, ρ, µ, β, σu, c, s)

3. p(θa|v, κa, σv, λ, ρ, µ, β, σu, c, s)

4. p(σv|v, κa, θa, λ, ρ, µ, β, σu, c, s)

5. p(λ|v, ωa, ρ, β, σu, c, s)

6. p(ρ|v, ωa, λ, µ, β, σu, c, s)

7. p(µ|v, ωa, ρ, s)

8. p(β, σu|v, ωa, λ, ρ, c, s)

In the description of each conditional, we make explicit the relevant conditioning elements.

For example, the conditionals of λ and (β, σu) do not depend on µ and the conditional of

µ does not depend on any aspect of the model that relates to the option prices, namely

(β, σu), λ and c.All of the conditionals, apart from those of µ and (β, σu), are nonstandard,

with MH subchains being applied to produce draws. Given the satisfaction of the relevant

regularity conditions (see Tierney, 1994), the draws obtained from the hybrid Gibbs-MH

algorithm converge in distribution to a sample from the full joint posterior distribution.

We consider the eight conditionals in order.

3.2.1 p(v|ωa, λ, ρ, µ, β, σu, c, s)

Conditional on values for ωa, λ, ρ, µ , β and σu the posterior density for v is given by

p(v|ωa, λ, ρ, µ, β, σu, c, s) ∝ p(c|s,v, ωa, λ, ρ, β, σu)× p(s|v, ωa, ρ, µ)× p(v|ωa). (14)

From (14) it follows that the ordinate of the conditional posterior for v, at some value,

v∗ say, is equal, up to a scale factor, to the product of the ordinate of the joint density

function for the option prices, conditioned on v∗, the ordinate of the joint density function

for the spot prices, conditioned on v∗, and the ordinate of the joint density function for

v, evaluated at v∗ (with all density functions also dependent on the conditioning values

for the relevant parameters).
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The MH algorithm for simulating from the conditional posterior for the stochas-

tic variance vector involves the specification of a candidate model for v. The result-

ing candidate posterior probability distribution has a joint density function denoted by

pc(v|ωa, λ, ρ, µ, β, σu, c, s). The form of the candidate model suggested here is based upon

a linearization of a state-space representation of the Heston model. This representation

is further augmented by the construction of a second observation equation which specifies

that the BS implied variances, calculated from the observed option prices, are noisy mea-

surements of the elements of the vector of true stochastic variances, v. In order to produce

a vector of implied BS variances that matches the dimension of v, the BS variances are

averaged over the day, with a vector of n BS variances produced as a result.

The form of p(v|ωa) in (14) is based on a Euler discretization of (4):

vt = vt−1 + κa(θa − vt−1)∆t+ σv
√
vt−1
√
∆tε1t

= κaθa∆t+ (1− κa∆t)vt−1 + σv
√
vt−1
√
∆tε1t (15)

ε1t ∼ N(0, 1); 2, 3, . . . n,

with the initial value set equal to the long-run mean, θa. By convention both the variances

and the parameters of the volatility model enter the theoretical option price formula,

qH(zi, φ), in annualized form. As (15) describes day-to-day movements in the annualized

variance, we set ∆t = 1/252 (years), assuming 252 trading days in the year; see also

Chernov and Ghysels (2000).12

The form of p(s|v, ωa, ρ, µ) in (14) is determined via an Euler discretization of (3),

namely

lnSt = lnSt−1 + (µ− 0.5vt−1)∆t+
√
vt−1
√
∆tε2t, (16)

ε2t ∼ N(0, 1); 2, 3, . . . n,

conditional on a specified value for lnS1. From (16) it follows that

p(ln s|v, ωa, ρ, µ) = (2π)−(n−1)/2[(1− ρ2)∆t]−(n−1)/2 × nQ
t=2

1√
vt−1

exp

(
−1/[2(1− ρ2)∆t]

nP
t=2
(
lnSt − µlnSt.vt√

vt−1
)2
)

(17)
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where

µlnSt.vt = (lnSt−1 + [µ− 0.5vt−1]∆t) +
ρ

σv
(vt − [θaκa∆t+ (1− κa∆t)vt−1]). (18)

Equation (15) describes the evolution of the variances, whereas the expressions in (17) and

(18) together describe the probabilities associated with the observation of the logarithm

of the current spot price, lnSt, conditional upon the value of the most recent spot price,

St−1, the values of the current and most recent variances, vt and vt−1, respectively, and

the unknown parameters, ωa, λ, ρ, and µ.

The discretized model in (15) and (16) can be written as a nonlinear state space model.

The measurement of the spot return, ∆ lnSt, depends upon the unobservable volatilities

vt and vt−1. To introduce information from the option prices, we further augment this

model by specifying that the implied BS variance for day t, vBSt , is an independent, noisy

measurement of the true stochastic variance, vt. The variance of this measurement is

fixed, and denoted by σ2imp. A state space representation of the augmented model is

therefore given by the following two bivariate equations

"
∆ lnSt
vBSt

#
=

"
ρ
σv
−
³
∆t
2
+ ρ(1−κa∆t)

σv

´
1 0

# "
vt
vt−1

#

+

"
µ∆t− ρθaκa∆t

σv

0

#
+

" q
vt−1∆t (1− ρ2)ε2t

σimpε3t

#
(19)

and

"
vt
vt−1

#
=

"
1− κa∆t 0

1 0

# "
vt−1
vt−2

#
+

"
θaκa∆t
0

#
+

"
σv
√
vt−1∆tε1t
0

#
. (20)

To eradicate the nonlinear dependence of both the return, ∆ lnSt, and the current sto-

chastic variance, vt, on the previous stochastic variance, vt−1, we replace vt−1 in the error

specification with its long-run mean, θa. It is this linearized approximation to (19) and

(20) that is used in the MH algorithm, with steps described as follows:

Step 1 For given values of the parameters ωa, λ, ρ, µ, simulate a vector of variances, v∗,

from the candidate density, pc(v|ωa, λ, ρ, µ, c, s), obtained by running a Kalman filter
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on the linearized state space model and subsequently drawing elements of v∗ using a

backwards simulation smoother as described, for example, in de Jong and Shephard

(1995).

Step 2 Select the simulated vector value, v∗, as a drawing from p(v|ωa, λ, ρ, µ, β, σu, c, s)

with probability

ψ = min

(
p(v∗|ωa, λ, ρ, µ, β, σu, c, s)

pc(v∗|ωa, λ, ρ, µ, c, s)
/
p(vs|ωa, λ, ρ, µ, β, σu, c, s)

pc(vs|ωa, λ, ρ, µ, c, s)
, 1

)

= min{p (c|s,v
∗, ωa, λ, ρ, β, σu)× p(s|v∗, ωa, ρ, µ)× p(v∗|ωa)

pc(v∗|ωa, λ, ρ, µ, c, s)

/
p (c|s, vs, ωa, λ, ρ, β, σu)× p(s|vs, ωa, ρ, µ)× p(vs|ωa)

pc(vs|ωa, λ, ρ, µ, c, s)
, 1}, (21)

where vs indicates a starting value for the MH subchain. Note that the evaluation

of the candidate density at the previously generated volatility vector, vs, requires

a rerunning of the Kalman smoothing algorithm using the vs values to obtain the

updated means and variances.13Note also that, since the Jacobian of the transfor-

mation from lnSt to St is not a function of any of the elements of δ, it follows

that
p(ln s|v∗, ωa, ρ, µ)

p(ln s|vs, ωa, ρ, µ)
=

p(s|v∗, ωa, ρ, µ)

p(s|vs, ωa, ρ, µ)

and that the joint density in (17) can be used in the MH selection algorithm. In

fact, this density is used in the algorithms for all blocks of δ. However, for notational

simplicity, we continue to refer to the density p(s|v, ωa, ρ, µ) in the description of

these algorithms.

3.2.2 p(ωa|v, λ, ρ, µ, β, σu, c, s)
Conditional on values for v, λ, ρ, µ, β, and σu, the posterior density for ωa = (κa, θa, σv)

0

is given by

p(ωa|v, λ, ρ, µ, β, σu, c, s) ∝ p (c|s, v, ωa, λ, ρ, β, σu)× p(s|v, ωa, ρ, µ)× p(v|ωa)× p(ωa)

∝ p (c|s, v, ωa, λ, ρ, β, σu)× p(s|v, ωa, ρ, µ)× p(ωa|v). (22)
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From (22) it follows that the ordinate of the conditional posterior for ωa, at some vector

value ωa∗ say, is equal, up to a scale factor, to the product of the ordinate of the joint

density function for the observed option prices, conditioned on ωa∗, the ordinate of the

joint density function for the observed spot prices, conditioned on ωa∗, and the ordinate

of the joint density function for ωa, evaluated at ωa∗, given the conditioning value v. The

latter density function, p(ωa|v), is like a posterior density function for ωa given ‘data’ v

and, hence, reflects both the assumed generating process for v, as specified in (4), as well

as the prior on ωa. Again using the Euler discretization for (4) as given in (15), the form

of p(ωa|v) is as follows. Defining
ζ = 1− κa∆t,

(15) can be rewritten as:

vt = κaθa∆t+ (1− κa∆t)vt−1 + σv
√
vt−1
√
∆tε1t

= θa(1− ζ) + ζvt−1 + σv
√
vt−1
√
∆tε1t. (23)

Further defining

ζ(L) = 1− ζL, (24)

yt =
ζ(L)vt√
vt−1
√
∆t

, (25)

xt =
1− ζ√
vt−1
√
∆t

(26)

and

et = σvε1t,

where L is the lag operator with respect to time period ∆t, (23) can be written as

yt = θaxt + et, (27)

et ∼ N(0, σ2v),

t = 2, 3, . . . , n.

Given (27), the form of p(ωa|v) is thus

p(ωa|v) ∝ σ−nv exp

(−1
2σ2v

nX
t=1

(yt − θaxt)
2

)
× p(ωa), (28)
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where

p(ωa) = p(κa)p(θa)p(σv)

∝ 1(κa>0) × 1(θa>0) × 1(2κaθa>σ2v) ×
1

σv
. (29)

With reference to (29) the first two indicator functions, 1(κa>0) and 1(θa>0), restrict κa

and θa respectively to the positive region14and the third indicator function, 1(2κaθa>σ2v),

ensures that the variances associated with (4) are always positive.

The elements of ωa are drawn one at a time, with each component of p(ωa|v, λ, ρ, µ, β, σu, c, s)
in (22) viewed as a function of the relevant parameter conditional on the other two para-

meters (and the remaining conditional elements). For drawing κa, the following random

walk MH algorithm is used:

Step 1 Generate κa from a normal candidate distribution, with mean equal to the pre-

vious draw in the outer Gibbs chain, denoted by κa(i−1), and variance, σ2κ, tuned in

a preliminary algorithm to produce an acceptance rate of between approximately

20% and 70%.

Step 2 Select the drawn value, κa∗, as a drawing from p(κa|θa, σv, v, λ, ρ, µ, β, σu, c, s)
with probability

ψ = min {p(κa∗|θa, σv, v, λ, ρ, µ, β, σu, c, s)/p(κas|θa, σv, v, λ, ρ, µ, β, σu, c, s), 1}
= min{p (c|s, v, κ

a∗, θa, σv, λ, ρ, β, σu)× p(s|v, κa∗, θa, σv, ρ, µ)× p(κa∗|θa, σv, v)
p (c|s, v, κas, θa, σv, λ, ρ, β, σu)× p(s|v, κas, θa, σv, ρ, µ)× p(κas|θa, σv, v) , 1},

where κas indicates a starting value for the MH subchain and p(κa|θa, σv, v) denotes
the density for κa implied by (28). That is, the MH subchain involves assessing

the ratio of the relative likelihoods of c given simulated and previous values for

the mean reversion parameter of the variance process, multiplied by the ratio of

corresponding likelihoods for the spot price data and the ratio of the (conditional)

‘posterior’ ordinates for κa, given the ‘data’ v.

The parameters θa and σv are drawn in an analogous fashion to κa.
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3.2.3 p(λ|v, ωa, ρ, β, σu, c, s)

The conditional posterior for λ is given by

p(λ|v, ωa, ρ, β, σu, c, s) ∝ p (c|s, v, ωa, λ, ρ, β, σu)× p(λ). (30)

To sample from (30) we adopt an MH algorithm, based on a normal candidate density.

A normal candidate is adopted due to the accuracy with which it has been found to

approximate the actual conditional for λ (based on a uniform prior for λ), in prelimi-

nary investigations. This empirical regularity implies that the theoretical option price,

qH(zi, φ), conditional on given values for v, ωa and ρ, is approximately linear in λ. We

use a Taylor Series expansion of qH(zi, λ|v, ωa, ρ) around λ = λ# to represent this linear

relationship as follows,

qH(zi, λ|v, ωa, ρ) ≈ qH(zi, λ
#|v, ωa, ρ) + q

0
H(zi, λ

#|v, ωa, ρ)(λ− λ#), (31)

where q
0
H(zi, λ

#|v, ωa, ρ) denotes the first derivative of qH(zi, λ|v, ωa, ρ) with respect to λ,

evaluated at λ#. This first derivative is, in turn, approximated as

q
0
H(zi, λ

#|v, ωa, ρ) ≈ qH(zi, (λ
# + h)|v, ωa, ρ)− qH(zi, λ

#|v, ωa, ρ)

h
(32)

for h small. Substitution of (31) and (32) for qH(zi, λ|v, ωa, ρ) in the expression for

p (c|s, v, ωa, λ, ρ, β, σu) in (30) produces a conditional candidate density, pc(λ|v, ωa, ρ, β, σu, c, s),

of the form

pc(λ|v, ωa, ρ, β, σu, c, s) ∝ exp(−β
2
1

PN
i=1(q

0
H(zi, λ

#|v, ωa, ρ))2

2σ2u
(λ− bλ)2)× p(λ),

where

bλ = PN
i=1(Ci − β0 − β1[qH(zi, λ

#|v, ωa, ρ)− q
0
H(zi, λ

#|v, ωa, ρ)λ#]q
0
H(zi, λ

#|v, ωa, ρ)

β1
PN

i=1(q
0
H(zi, λ

#|v, ωa, ρ))2
.

(33)

Adopting a normal prior for λ, with mean λ and variance var(λ)15, the normal candidate

density for λ is given by

pc(λ|v, ωa, ρ, β, σu, c, s) ∝ exp( −1
2var(λ)

(λ− λ)2), (34)
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with

λ =

"
β21
PN

i=1(q
0
H(zi, λ

#|v, ωa, ρ))2

σ2u

bλ+ 1

var(λ)
λ

#

/

"
β21
PN

i=1(q
0
H(zi, λ

#|v, ωa, ρ))2

σ2u
+

1

var(λ)

#

and

var(λ) = 1/

"
β21
PN

i=1(q
0
H(zi, λ

#|v, ωa, ρ))2

σ2u
+

1

var(λ)

#
.

In the numerical application, we specify λ# to be the value of λ produced in the previous

iteration of the outer Gibbs chain.

In the usual way, a candidate value, λ∗ is drawn from pc(λ|v, ωa, ρ, µ, β, σu, c, s) and

chosen with probability,

ψ = min

(
p(λ∗|v, ωa, ρ, β, σu, c, s)

pc(λ
∗|v, ωa, ρ, β, σu, c, s)

/
p(λs|v, ωa, ρ, β, σu, c, s)

pc(λ
s|v, ωa, ρ, β, σu, c, s)

, 1

)
,

where λs indicates a starting value for the MH subchain.

3.2.4 p(ρ|v, ωa, λ, µ, β, σu, c, s)

The treatment of the parameter ρ is analogous to the treatment of λ, except for the fact

that the candidate density, pc(ρ|v, ωa, λ, µ, β, σu, c, s), is the product of two normal approx-

imations, to p (c|s, v, ωa, λ, ρ, β, σu) and p(s|v, ωa, ρ, µ) respectively, and a normal prior for

ρ. Combining the prior density with the normal approximation to p (c|s, v, ωa, λ, ρ, β, σu) ,

the first component of the candidate is defined as a normal density for ρ, with mean and

variance given respectively by

ρ =

"
β21
PN

i=1(q
0
H(zi, ρ

#|v, ωa, λ))2

σ2u
bρ+ 1

var(ρ)
ρ

#

/

"
β21
PN

i=1(q
0
H(zi, ρ

#|v, ωa, λ))2

σ2u
+

1

var(ρ)

#
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and

var(ρ) = 1/

"
β21
PN

i=1(q
0
H(zi, ρ

#|v, ωa, λ))2

σ2u
+

1

var(ρ)

#
,

where q
0
H(zi, ρ

#|v, ωa, λ) denotes the first derivative of qH(zi, ρ|v, ωa, λ), evaluated at ρ =

ρ#, ρ and var(ρ) are respectively the mean and variance of the prior normal distribution

for ρ and

bρ = PN
i=1(Ci − β0 − β1[qH(zi, ρ

#|v, ωa, λ)− q
0
H(zi, ρ

#|v, ωa, λ)ρ#]q
0
H(zi, ρ

#|v, ωa, λ)

β1
PN

i=1(q
0
H(zi, ρ

#|v, ωa, λ))2.

The second component of the candidate, based on a normal approximation to p(s|v, ωa, ρ, µ),

is defined as a normal density for ρ, with mean and variance given respectively by

bρs =


nP
t=2

y
(ρ)
t x

(ρ)
t

nP
t=2

³
x
(ρ)
t

´2


and

σ2ρs =

 ∆t
nP
t=2

³
x
(ρ)
t

´2


where

y
(ρ)
t =

(lnSt − lnSt−1 − (µ− 0.5vt−1)∆t)√
vt−1

and

x
(ρ)
t =

Ã
(vt − θaκa∆t− (1− κa∆t)vt−1)√

vt−1

!
× 1

σv
.

The product of these two normal components is used to produce a candidate draw

for ρ, ρ∗, which is in turn selected as a draw from the conditional posterior for ρ,
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p(ρ|v, ωa, λ, µ, β, σu, c, s), with probability

ψ = min

(
p(ρ∗|v, ωa, λ, µ, β, σu, c, s)

pc(ρ∗|v, ωa, λ, µ, β, σu, c, s)
/
p(ρs|v, ωa, λ, µ, β, σu, c, s)

pc(ρs|v, ωa, λ, µ, β, σu, c, s)
, 1

)
,

where ρs indicates a starting value for the MH subchain. Since the candidate density

needs to reflect the truncation of the actual conditional for ρ at ±1, the draws from the

candidate density are discarded if they fall beyond these bounds.

3.2.5 p(µ|v, ωa, ρ, s)

Using the expressions in (17) and (18) and adopting a uniform prior for µ, it follows that

p(µ|v, ωa, ρ, s) is normal with mean

bµ =


nP
t=2

y
(µ)
t x

(µ)
t

nP
t=2

³
x
(µ)
t

´2
× 1

∆t

and variance

σ2µ =

 (1− ρ2)
nP
t=2

³
x
(µ)
t

´2
× 1

∆t
,

with

y
(µ)
t =

³
lnSt − lnSt−1 + 0.5vt−1∆t− ρ

σv
(vt − [θaκa∆t+ (1− κa∆t)vt−1]

´
√
vt−1

and

x
(µ)
t =

1√
vt−1

.

Simulated values of µ are thus readily obtainable via the generation of normal random

variates.
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3.2.6 p(β, σu|v, ωa, λ, ρ, c, s)

Using the expression for the joint density of the vector of option prices in (11) and adopting

the following standard noninformative prior for (β, σu),

p(β, σu) = p(β)× p(σu)

∝ 1

σu
,

the joint conditional density for (β, σu) has the following normal-gamma form,

p(β, σu|v, ωa, λ, ρ, c, s) = p(β|σu, v, ωa, λ, ρ, c, s)p(σu|v, ωa, λ, ρ, c, s). (35)

The density p(β|σu, v, ωa, λ, ρ, c, s) in (35) is normal with mean

bβ = (X 0X)−1X 0c (36)

and variance

var(β) = σ2u(X
0X)−1, (37)

where X = (ι, qH), with ι a (N × 1) vector of ones and qH denoting the (N × 1) vector
of theoretical option prices with ith element qH(zi, φ). The density p(σu|v, ωa, λ, ρ, c, s)

in (35) is inverted gamma with degrees of freedom νσu = (N − 2) and parameter sσu =q
(c−X bβ)0(c−X bβ)/νσu . Draws of (β, σu) can be obtained from (35) using standard

simulation algorithms.

Implementation of the hybrid MCMC scheme requires only one draw for each of the

MH subchains (see Chib and Greenberg, 1996, on this point). All posterior quantities of

interest are to be calculated from the full set of MCMC iterates, excluding those in the

burn-in part of the chain. Marginal posteriors are to be estimated from the simulated

values for each parameter of interest using kernel smoothing.

3.3 Model Ranking and Model Averaging

The Heston (1993) model nests three alternative models for volatility, associated respec-

tively with: λ = 0, ρ = 0 and σv = 0. Setting λ = 0 is equivalent to imposing the
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assumption that volatility risk is not priced. This assumption is invoked in the early sto-

chastic volatility analysis of Hull and White (1987) for computational convenience. It has

however been challenged by more recent work, in which estimates of λ that differ signifi-

cantly from zero have been reported (see Guo, 1998 and Eraker, 2003, amongst others).

An assessment of this restricted model thus amounts to an assessment of the attitude to

volatility risk that is implicit in option prices.

The model obtained by setting ρ = 0 implies a lack of the so-called “leverage effect”

(associated with ρ < 0), whereby negative returns are accompanied by an increase in

volatility. Since this effect corresponds, in turn, to the empirical characteristic of negative

skewness in returns, an assessment of this restricted model corresponds to an assessment

of whether or not returns are skewed and/or option prices have factored in skewed returns.

Finally, the restriction σv = 0 implies constant volatility. Given the assumption of

normal returns, this restriction equates to the assumption of BS option pricing. An

assessment of the empirical validity of this restriction thus amounts to an assessment of

the validity of the BS model.

We refer to the alternative models corresponding to the restrictions λ = 0, ρ = 0

and σv = 0 as respectively M2, M3 and M4, and to the full Heston model as M1. In this

section, several criteria that are used to rank these alternative models in the empirical

section are described. These criteria are used to supplement the results obtained by

simply estimating the full model, M1, and testing the restrictions via the construction of

interval estimates for each of the relevant parameters. The concept of averaging across

the alternative models, in particular with a view to improving predictive performance, is

also discussed. In what follows, we refer to the vectors of unobservables associated with

the four models, M1, M2, M3 and M4, as δ1, δ2, δ3 and δ4 respectively. These vectors are

in turn defined as follows:

1. δ1 = {v, ωa, λ, ρ, µ, β, σu}

2. δ2 = {v, ωa, ρ, µ, β, σu}

3. δ3 = {v, ωa, λ, µ, β, σu}

4. δ4 = {θa, µ, β, σu}
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Due to the nested structure of these models, we can also re-express δ1 as, alternatively,

δ1 = {δ2, λ}, δ1 = {δ3, ρ} or δ1 = {δ4, v, κa, σv, λ, ρ}.

3.3.1 Bayes Factors using the Savage-Dickey Density Ratio

In the Bayesian framework, the four alternative models, M1, M2, M3 and M4, can in

principle be ranked according to the magnitude of their respective posterior probabilities.

In the present context, the data on which posterior inference is based comprises the vector

of option prices, c, and the vector of spot prices, s. Hence, the ranking occurs via the model

probabilities, P (M1|c, s), P (M2|c, s), P (M3|c, s) and P (M4|c, s). These probabilities can,
in turn, be derived via the set of posterior odds ratios for each model, relative to the

reference model,M1, subject to the restriction that the posterior probabilities add to one.

Given equal prior odds for all models, the posterior odds ratio for Mk versus M1 reduces

to the Bayes Factor for Mk versus M1,

BFk1 =
p(c, s|Mk)

p(c, s|M1)
; k = 2, 3, 4, (38)

where p(c, s|Mk) denotes the marginal likelihood for model Mk and is defined as

p(c, s|Mk) =
Z
δk
p (c|s, δk,Mk) p(s|δk,Mk)p(δk|Mk)dδk; k = 1, 2, . . . 4. (39)

In the expression for p(c, s|Mk) in (39), δk denotes the vector of unobservables that char-

acterize modelMk, p (c|s, δk,Mk) denotes the joint density for the option prices underMk,

p(s|δk,Mk) denotes the joint density for the spot prices under Mk and p(δk|Mk) denotes

the prior density for δk under Mk. For models M1, M2 and M3, δk includes the vector of

variances. Hence, for these models, p(δk|Mk) is equal to the product of the density for

the variances, given the parameters, and the prior density for the parameters.

In the present context, there is no closed form expression for p(c, s|Mk). Various

numerical approaches to the estimation of marginal likelihoods have been proposed; see

Geweke (1999). However, such numerical procedures would be particularly burdensome

in the present context, in particular due to the presence of the n−dimensional vector of
latent variances, v, in both the reference model and two of the alternative models, M2

and M3. Fortunately, the Bayes Factors for M2 and M3, relative to Heston model, M1,

can be expressed in a particularly simple analytical form. This particular form of (38) is
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referred to as the Savage-Dickey (SD) density ratio; see Verdinelli and Wasserman (1995)

and Koop and Potter (1999). For the case ofM2 versusM1, the SD density ratio is given

by:

SD21 =
p(λ = 0|M1, c, s)

p(λ = 0|M1)
, (40)

where p(λ = 0|M1, c, s) denotes the ordinate of the marginal posterior for λ under the He-

ston model,M1, evaluated at λ = 0 and p(λ = 0|M1) denotes the ordinate of the marginal

prior for λ under M1, evaluated at λ = 0. For (40) to be an equivalent representation of

the Bayes Factor for M2 versus M1, BF21, it must hold that

p(δ2|M1, λ = 0) = p(δ2|M2), (41)

where p(δ2|M1, λ = 0) denotes the density for δ2 in the model M1 with λ = 0 imposed.

The condition in (41) can be interpreted as the requirement that the prior distribution

over all unknowns in the Heston model, M1, conditional on λ = 0, is equivalent to the

prior assigned to these unknowns in the submodel, M2, in which λ = 0 is imposed from

the outset. The assumption of a priori independence between λ and all other parameters

in the Heston model (see (13)), means that this condition is satisfied.

For analogous reasons, the Bayes Factor for the case of M3 (ρ = 0) versus M1 reduces

to

SD31 =
p(ρ = 0|M1, c, s)

p(ρ = 0|M1)
. (42)

The denominators in both SD21 and SD31 are readily computed, given the specification

of proper prior densities over both λ and ρ. The numerators are also easily computed via

the MCMC simulation output, from which estimates of the marginal densities of λ and ρ

are computed.

Adopting this same approach to compute the Bayes Factor for the BS model, M4,

versus M1 is, however, problematic. This can be seen as follows. Under M4, neither κa

nor ρ is identified, with the model implying a constant variance of θa. Applying the results

of Koop and Potter (1999), as long as

p(θa, µ|M1, σv = 0) = p(θa, µ|M4), (43)

where θa and µ are the parameters common to both models, the Bayes Factor for M4
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versus M1 still reduces to a form which is directly analogous to (40) and (42), namely,

SD41 =
p(σv = 0|M1, c, s)

p(σv = 0|M1)
. (44)

Since (43) seems to be a reasonable assumption, it would appear, at first glance, that

estimation of a Bayes Factor to test the BS model could proceed along the same lines as

estimation of the Bayes Factors used to test M2 andM3.This is not the case however, for

the following reason. Since σv must be positive, any prior density specified for σv must

have an ordinate of zero when σv = 0, thereby producing a zero value for the denominator

in (44). The same point applies to the posterior ordinate in the numerator. Hence,

application of l’Hopital’s rule would be required in order to evaluate SD41. However,

in practice, whilst the prior ordinate would be specified exactly as zero, the posterior

ordinate would only ever be estimated numerically, as would the derivatives needed for

the application of l’Hopital’s rule. Hence, it is not possible to produce a reliable estimate

of SD41. We choose therefore not to calculate a Bayes Factor for M4 versus M1, ranking

M4 solely via its fit, predictive and hedging performance relative to the other models.

3.3.2 Fit and Predictive Performance

For modelMk with parameter vector δk, the residual associated with fitting the ith option

price, Ci, is given by

resi = Ci − [β0 + β1q(zi, φk)] , i = 1, 2, . . . , N, (45)

where q(zi, φk) denotes the theoretical option price associated with model Mk, k =

1, 2, . . . 4, and δk = {φk, µ, β, σu}. ForM1 the appropriate price is qH(zi, φ1), as defined in

(8). ForM2 andM3, the price is qH(zi, φ2) and qH(zi, φ3) respectively; that is, the Heston

option price, but with λ = 0 and ρ = 0 respectively imposed. For M4, the price is the

theoretical BS option price, defined as

qBS(zi, φ4 = θa) = SiΦ (d1)−Kie
−riτiΦ (d2) , (46)

where

d1 =
ln (Si/Ki) + (ri + θa/2) τ i√

θaτ i
, (47)

d2 =
ln (Si/Ki) + (ri − θa/2) τ i√

θaτ i
(48)
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and Φ (x) denotes the cumulative normal distribution function evaluated at x; see, for

example, Hull (2000). The quantity resi is a nonlinear function of the underlying pa-

rameters and latent volatilities contained in φk, as well as a function of β = (β0, β1)
0.

Hence, its posterior distribution can be derived via the appropriate transformation of the

posterior distribution of φk and β. As outlined in Section 3.2.6, p(β|σu, φk, c, s) is normal,
with mean and variance given in (36) and (37) respectively. As such, the conditional

posterior for resi, p(resi|σu, φk, c, s), is also normal, with mean
E(resi|σu, φk, c, s) = Ci −

hbβ0 + bβ1q(zi, φk)i
and variance

var(resi|σu, φk, c, s) = σ2u [1, q(zi, φk)] (X
0X)−1 [1, q(zi, φk)]

0 ,

with bβ0 and bβ1 the elements of the two-dimensional vector in (36) and X as defined

following (37). As such, the marginal posterior of resi is given by

p(resi|c, s) =
Z
σu

Z
φk

p(resi|σu, φk, c, s)p(σu, φk|c, s)dσudφk,

which can, in turn, be estimated via B MCMC draws of σu and φk, σ
(j)
u and φ

(j)
k , j =

1, 2, . . . , B, as

p(resi|c, s) = 1

B

BX
j=1

p(resi|σ(j)u , φ
(j)
k , c, s).

For M1, the appropriate algorithm is the full MCMC scheme as described in Section 3.2.

For M2 and M3, the algorithm is a reduced version of that scheme, with λ = 0 and

ρ = 0 respectively imposed. ForM4, iterates of δ4 = {θa, µ, β, σu} are generated from the
posterior density for δ4, given by

p(δ4|c, s) ∝ p(c|s,θa, β, σu)× p(s|θa, µ)× p(θa, µ),

where p(c|s,θa, β, σu) is given by

p(c|s,θa, β, σu) = (2π)−N/2σ−Nu
NY
i=1

exp

Ã
− 1

2σ2u
[Ci − [β0 + β1qBS(zi, θ

a)]]2
!

and p(s|θaµ) is defined in accordance with
p(ln s|θa, µ) = (2π)−n/2(θa∆t)−n/2 ×

exp
½
(−1/[2θa∆t])

nP
t=2
(lnSt − [lnSt−1 + (µ− 0.5θa)∆t])2

¾
. (49)
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The prior density, p(θa, µ), is specified as being uniform over both parameters, truncated

from below at θa = 0. Draws of δ4 can be produced via the conditionals for µ and

θa respectively. Since the conditional for µ is normal, with mean and variance given

respectively by

bµ = Pn
t=2(lnSt − lnSt−1 + 0.5θa∆t)

n− 1 × 1

∆t

and

σ2µ =

Ã
θa

n− 1
!
× 1

∆t
,

draws for µ given θa are readily obtained. Draws of θa conditional on µ can be obtained

via a simple approximation of the one-dimensional conditional distribution function for θ

(i.e. via ‘Griddy Gibbs’), with the boundary at θa = 0 imposed on the draws.

The proportion of 50% and 95% HPD intervals that cover zero can be calculated for

each modelMk, with the best fitting model being the one for which this proportion is the

closest to the nominal level. If the observed option prices used to define (45) belong to the

vector c, the fit assessment is within-sample. If not, the fit assessment is out-of-sample.

The latter is the form of fit assessment used in the empirical section.

Given the distributional assumption in (9), for modelMk the predictive density for an

out-of-sample option price, Cf say, is given by:

p(Cf |c, s) =
Z
δk
p(Cf |c, s, φk, β, σu)p(δk|c, s)dδk, (50)

where p(Cf |c,s, φk, β, σu) is a normal density with mean β0+ β1q(zf , φk) and variance σ
2
u

and p(δk|c, s) is the joint posterior density for parameters of model Mk. The notation zf

is used to denote the known factors associated with the future option contract f. In order

to impose the lower bound that Cf must exceed in order for arbitrage opportunities to

be avoided, in the construction of (50) we specify p(Cf |c,s, φk) as the truncated normal
density

p(Cf |c,s,φk, β, σu) =
(2πσ2u)

−1/2

(1− Φ(slbf))
exp

Ã
− 1

2σ2u
[Cf − [β0 + β1q(zf , φk)]]

2

!
, (51)

where

slbf =
lbf − [βo + β1q(zf , φk)]

σu
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is the standardized version of the no-arbitrage lower bound,

lbf = max{0, Sf − e−rf τfKf}.

Again using the simulation output from the algorithm appropriate to model Mk, re-

peated draws from p(δk|c, s), δ(j), j = 1, 2, . . . , B, can be used to construct an estimate of
p(Cf |c, s) as dp(Cf |c, s) = 1

B

BX
j=1

p(Cf |c,s, φ(j)k , β(j), σ(j)u ). (52)

In Section 4, prediction intervals constructed from (52) are used to rank the predictive

performance of the models.

3.3.3 Hedging Performance

An important measure of the performance of the alternative volatility models is the extent

to which they produce small hedging errors. In this paper we focus on the errors associated

with single instrument hedge portfolios, in which movements in the underlying spot price,

St, are hedged against by taking the appropriate position in a single option contract, with

price Ct, at time t. In this case the resulting cash position with minimum variance is

Ct −NkSt, (53)

where Nk denotes the number of shares in the underlying asset in which the investor goes

long for every call option in which the investor goes short, assuming model Mk. In the

case of the Heston model, M1, N1 is defined as

N1 =
∂qH
∂St

+
ρσv
St

∂qH
∂vt

,

where
∂qH
∂St

= P1

and
∂qH
∂vt

= St
∂P1
∂vt
−Ke−rtτ

∂P2
∂vt

, (54)

with qH as defined in (8) and P1 and P2 as defined in the appendix; see Bakshi, Cao and

Chen (1997) and Chernov and Ghysels (2000). The hedging error over one day, say, for
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the Heston model, H1, is defined as the difference between the minimum variance hedge

portfolio, as constructed on day t and invested at the risk-free rate rt, and the value of

that same portfolio when unwound one day later, namely,

H1 = (Ct −N1St) e
rtτ − (Ct+1 −N1St+1) , (55)

where Ct+1 and St+1 denote respectively the option and spot prices on day t + 1. Since

H1 is a function of the unknown parameters and variances, via N1, the posterior density

of H1, p(H1|c, s), can be estimated from the MCMC output associated with estimation of
the Heston model. That is, draws of φ1 can be used to produce draws of H1, which can

then be used to produce a nonparametric kernel estimate of p(H1|c, s). The distribution
of hedging errors over any time period can be constructed in an analogous way.

The same sort of exercise can be performed for each of the alternative models, M2,

M3 and M4. For the first two of these alternative models, the relevant posterior densities

for the hedging errors, p(H2|c, s) and p(H3|c, s), can be estimated from the output of the
MCMC schemes in which λ = 0 and ρ = 0 are imposed respectively. In the case of M4,

specification of

N4 = Φ (d1) ,

with d1 as defined in (47), renders the portfolio in (53) delta-hedged; see Hull (2000). For

the three stochastic volatility models, the derivatives with respect to vt which enter (54)

need to be computed numerically. The best performing model according to this criterion

is the model with the hedging error density most closely concentrated around zero.

3.3.4 Model Averaging

As described in Section 3.3.1, the posterior probability of three of the four alternative mod-

els can be estimated from the option prices. These posterior probabilities can be used

to produce a model-averaged predictive density, which can, in turn, be used as the tool

for prediction rather than the predictive associated with any one particular model.16The

rationale of this approach is that with option prices being determined by the interaction of

market participants using different distributional assumptions, the model-averaged predic-

tive may well have better coverage properties that the predictives associated with specific

models. Given model-specific predictive densities, p(Cf |Mk, c, s), k = 1, 2, 3, the averaged

27



predictive density, pa(Cf |c, s), is defined as:

pa(Cf |c, s) =
3X

k=1

p(Cf |Mk, c, s)P (Mk|c, s), (56)

with P (Mk|c, s), k = 1, 2, 3 calculated as described in Section 3.3.1.17

4 Numerical Illustration: News Corporation Option
Prices

4.1 Data Description

The methodology is demonstrated using data on News Corporation option and equity

trades over the four year period: 1998 to 2001. All data has been obtained from the

Australian Stock Exchange. Only options with maturities of between 15 and 90 days are

included in the dataset. In order to use the option data to produce inferences on the

day to day movements in the underlying spot prices process, options trades are selected

from one particular period of time each day, namely the last hour of trading. A range of

option prices that maximizes the moneyness spread is then selected from the set of prices

observed during this period. A total of 10904 observations are used for estimation, with a

maximum of 60 prices selected from any one day in the within-sample period. The out-of-

sample period constitutes the nine trading days from 11 December, 2001 to 21 December

2001, with 855 trades used for the out-of-sample assessments. Since equity trades on News

Corporation stock occur very frequently, for each option trade it is possible to obtain a

virtually simultaneous equity price: usually recorded within a few seconds of the option

trade. When several equity trades are recorded at exactly the same time, a weighted

average is taken, with the weights determined by the trading volume. Observations on the

discretized process for equity prices are taken as the average of the spot prices observed

during the last hour of normal trading. The dividends paid on News Corporation shares

are typically about 0.1% of share value, paid 6-monthly. The impact of dividends on

share prices is therefore so small that they have only been taken into account as a constant

continuous discount factor.
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4.2 Numerical Results

4.2.1 Posterior Results for the Heston Model

Table 1 presents point and interval estimates of both the parameters and selected variances

associated with the Heston model. All results are produced by running the MCMC

algorithm for 5000 iterations, with the first 500 iterations discarded. The starting values

for the parameters are as follows: κa = 2.0; θa = 0.20; σv = 0.55; λ = 0.5; ρ = −0.05
and µ = 0.16.18The prior mean and standard deviation for λ are respectively 0.2 and 1.0.

The prior mean and standard deviation for ρ are respectively −0.2 and 0.3.19The prior
specifications and starting values for the parameters are determined by a combination of

preliminary analysis of New Corporation returns data and preliminary experimentation

with the MCMC algorithm. In order to improve the acceptance rate of the component

of the MCMC algorithm related to v, the elements of the full vector v are selected in

blocks with an average size of 10. The actual block lengths at each iteration are chosen

randomly; see Shepherd and Pitt (1997) and Strickland, Forbes and Martin (2003) for

details.

The acceptance rates for the four MH subchains vary considerably. The subchains

for the parameters λ and ρ have acceptance rates of 100% and 91% respectively. The

acceptance rates for κa, θa and σv are respectively 64%, 21% and 48%, and that of the

(blocked) vector v, 14%. The normal candidate densities for both λ and ρ, constructed as

described in Sections 3.2.3 and 3.2.4, are updated only when v changes, since it has been

determined in preliminary experimentation that v is the most important determinant of

the form of the conditionals for these two parameters. This represents a considerable

computational saving.

Table 1 reports the mean, mode and (approximate) 95% Highest Posterior Density

(HPD) estimates for the parameters and selected random variances20. The point esti-

mates of κa correspond to daily persistence measures of (1 − 3.240/252) = 0.987 and

(1− 3.483/252) = 0.986 respectively, with the interval estimate translating into a (daily)
persistence interval of (0.983, 0.988). All estimates are thus well within the realm of typical

returns-based estimates of such measures. For instance, the persistence measure from a

Generalized Autoregressive Conditional Heteroscedastic (GARCH) (1,1) model estimated

for News Corporation returns over the 1998-2001 period is 0.968. The point estimates
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of θa correspond to an estimate of long-run volatility of approximately
√
0.210 = 0.458,

a value that corresponds very closely to the unconditional mean of volatility associated

with a GARCH(1,1) model estimated over the 1998-2001 period, namely 0.457. The point

and interval estimates of λ all indicate a positive value, which contrasts with the negative

values that are typical found for this parameter. That said, empirical estimates of λ are

notoriously variable across different samples of option prices, with positive estimates hav-

ing been reported; see, for example, Guo (1998). The estimates of σv imply a moderate

degree of excess kurtosis in the returns process, whilst the estimates of ρ indicate that

negligible returns skewness is implied by the joint options and spot datasets. The point

estimates of µ imply an (annualized) rate of return on the News Corporation stock of

approximately 30%, well in excess of the returns-based mean rate of return of 15% esti-

mated for the 1998-2001 period. However, the interval estimate indicates the extent of the

uncertainly associated with estimation of this parameter, with 95% probability assigned

to the range (−0.170, 0.730).
The point estimates of the variances reported in Table 1 are slightly lower than the

estimated value of the long-run mean, θa. However, the interval estimates cover values

that overlap with the interval estimates of θa.

Figure 1 graphs the marginal densities for the parameters and Figure 2 the marginal

posteriors for selected random variances.

Table 1 here.

Figure 1 here.

Figure 2 here.

4.2.2 Model Ranking

In this section we apply the methods discussed earlier to rank the three restricted models,

M2, M3 and M4, and the full model M1. From the interval estimates reported in Table 1,

it is evident that two of the three restricted models, M2 and M4, are clearly rejected by

the data, with neither of the intervals covering the relevant parameter restrictions. The

interval estimate for ρ also fails to cover the value of ρ = 0, thereby providing evidence
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against M3. However, as is evident from the marginal posterior for ρ in Figure 1, there is

substantial posterior mass in the region very close to zero.

To supplement these results, we estimate the three submodels, assessing the out-of-

sample performance of each, relative to that of M1, along the lines discussed in Sections

3.3.2 and 3.3.3, as well as constructing Bayes Factors for M2 and M3. The details of the

algorithm used to estimate M2 and M3 are identical to the details given in the Section

3.2, apart from the obvious parameter restrictions associated with the nested models.

Estimation of the BS model, M1, in the manner described in Section 3.3.2, produces a

marginal posterior for
√
θa that is extremely concentrated around a single value, namely√

θa = 0.37. With only this parameter affecting the theoretical option prices, we report

the fit, predictive and hedging results conditional on this single value. As noted in Section

3.3.1, we choose not to construct a Bayes Factor for this submodel.

Table 2 reports the estimated Bayes Factors forM2 and M3, with M1 as the reference

model. The bottom row in the table gives the corresponding model probabilities, based on

equal prior probabilities for all three models and assuming that these three models span

the model set. It is clear that the posterior probabilities supportM1, but with substantial

weight also assigned to M3. This latter result tallies with the substantial posterior weight

assigned to the region around ρ = 0 by the marginal posterior of ρ derived from the full

model,M1. Negligible posterior weight is assigned toM2, again a result which tallies with

the clear non-zero estimates of λ in the full model.

Table 2 here.

The fit and predictive results reported in Table 3 represent the proportion of times

that each criterion is satisfied, for each model, for the 855 out-of-sample observations. If

the model is correctly specified, this proportion should approximate the nominal coverage

level. As is evident, models M1, M2 and M3 are all very close to the nominal level in the

case of the 95% fit intervals and slightly overstate the nominal level in the case of the 95%

prediction intervals. All three of these models understate the 50% nominal coverage of

both the fit and prediction intervals. The coverage of the prediction intervals for all four

models is always greater than that of the corresponding fit intervals, since the prediction
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intervals factor in the extra variation associated with the future option price, as captured

by σ2u.

The fit and predictive results are consistent with the posterior model probabilities to

the extent that M1 out performs M3, but not by a substantial amount. Interestingly,

despite the negligible probability weight assigned to M2, this model does best (in terms

of closeness to the nominal coverage level) for three of the four criterion reported below.

The Black-Scholes model, M4, is clearly inferior to all other models in terms of all four

criteria, with none of the fit intervals, at either nominal coverage level, encompassing the

observed out-of-sample option prices. The coverage of the predictions intervals is also

markedly below the nominal level, indicating that the model is significantly misspecified.

The model-averaged predictive, constructed according to (56), with P (Mk|c, s), k =
1, 2, 3, as given in Table 2, has an interquartile coverage of 0.316 and a 95% interval

coverage of 0.986. Since only M1 and M3 have non-negligible posterior probability, the

weighting effectively occurs with respect to the predictives of these models only. For the

95% interval in particular, there is negligible difference between the coverage of the model-

averaged predictive and that of the individual models. For the interquartile interval, the

averaging produces marginally better coverage than that of both individual intervals.

Table 3 here.

In Table 4 the hedging error results associated with the four models are reported.

Hedging errors are calculated using (55) for M1 and the version of (55) appropriate for

the remaining models, as described in the text immediately following (55). Errors are

calculated for one day and five days ahead, with the portfolio constructed at the end of

the estimation period and not rebalanced during the entire out-of-sample period. On each

of these days the hedging errors associated with all contracts are calculated. The errors

are then averaged across all contracts.21It is these averaged hedging errors to which the

summary statistics in Table 4 relate and whose posterior densities are graphed in Figure

3.

Table 4 here.
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The results in Table 4 make it clear that there is very little difference between all

four models according to this criterion. It is also clear that none of the HPD intervals

cover zero. That said, for all four models, the errors associated with the hedge portfolio

one day out from its construction are minimal, in terms of both the point and interval

estimates. These errors represent between approximately 1% of the average magnitude

of the option prices on the first out-of-sample day. As would be anticipated, the errors

increase over time without any rebalancing taking place, with the five-day out hedging

errors representing approximately 5% of the average magnitude of the option prices on

the fifth out-of-sample day.

Figure 3 here.

In Figure 3 the posterior densities for the one day ahead and five days ahead hedging

errors associated with modelM1,M2 andM3 are presented. Densities are not constructed

for M4 since the hedging errors are calculated only for a single value of the volatility

parameter.

5 Conclusions

In this paper a new methodology for producing option and spot price-based estimates

of the parameters of a stochastic volatility model is presented. The method has been

developed within the context of the Heston (1993) theoretical option pricing model and

certain variants thereof. The numerical scheme adopted exploits the state-space repre-

sentation of the Heston spot and volatility process, as well as the approximate linearity

of the relationship between the theoretical option price and the price of volatility risk.

Simulation of the latent volatilities occurs via the application of a bivariate Kalman fil-

ter and smoother, with information from the option prices impacting on the filter via a

measurement equation in which the BS implied volatilities proxy the option prices. Con-

struction of Bayes Factors, in addition to fit, prediction and hedging intervals, enables the

alternative variants of the proposed model to be ranked on the basis of observed option

and spot price data.
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Application of the methodology to Australian News Corporation stock and options

data produces estimates of the parameters of the Heston model that imply a very persis-

tent volatility process, with the degree of volatility in volatility indicating that a certain

amount of excess kurtosis characterizes the spot price data and/or has been factored into

the options data. Skewness is not a feature of the results, with the posterior probability

associated with the volatility model in which zero skewness is imposed being only slightly

less than that associated with the unrestricted Heston model. The model that imposes a

zero premium for volatility risk is clearly rejected, as it is assigned virtually zero posterior

probability. Both point and interval estimates of the relevant parameter indicate that the

risk premium that is factored into option prices over this period is positive. Hence, the

risk-neutral volatility process is estimated to converge more rapidly to a lower long-run

mean than would be the case for the objective process. This implies, in turn, that the

observed option prices are lower than would be the case had they been priced under the

objective measure. The constant volatility BS model is also clearly rejected by the data

in the sense that the point and interval estimates of the variance of the Heston volatility

process are non-zero. The within-sample fit and out-of-sample predictive performance of

the BS model is also markedly inferior to that of all variants of the Heston model that

are considered. On the other hand, there is little to choose between the stochastic volatil-

ity variants in terms of fit, predictive and hedging performance. Given the similarity in

the predictive results across models, the model averaging process produces only a minor

improvement in predictive performance.
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Appendix: Solution of the Heston model

The Heston stochastic volatility model is based on the bivariate stochastic process in

(3) and (4). From this process, the partial differential equation for the option price, U

say,

1

2
v(t)S2(t)

∂2U

∂S(t)2
+ ρσvv(t)S(t)

∂2U

∂S(t) ∂v(t)
+
1

2
σ2vv(t)

∂2U

∂v(t)2

+rS(t)
∂U

∂S(t)
+ [κa(θa − v(t))− λv(t)]

∂U

∂v(t)
− rU +

∂U

∂t

= 0 (57)

can be obtained largely by the standard Black-Scholes type procedure. Ito’s lemma is used

to obtain an expression for the change in the value of the option, dU, and in the underlying,

dS(t), and an appropriate combination formed to attempt to eliminate randomness. Since

there are two sources of randomness and only one hedging instrument, not all randomness

can be removed. If we wish to remove all terms involving dε1(t) and leave the term in

dε2(t) untouched, we form the combination

dU − ∂U

∂S(t)
dS(t). (58)

In the absence of other random terms, this could be equated with growth at the risk-free

interest rate r,

r(U − ∂U

∂S(t)
S(t))dt. (59)

However, since there is no tradable security relating to the stochastic volatility, the ex-

pression for (58) obtained using the Ito lemma still includes a random term with expected

value zero, which cannot be hedged away, namely σv
q
v(t) ∂U

∂v(t)
dε2(t). Following Cox, In-

gersoll and Ross (1985), this random term can be replaced by a term −λv(t) ∂U
∂v(t)

dt,

yielding (57). Here, λv(t) ∂U
∂v(t)

is the premium associated with the volatility risk, and we

call λ the risk premium parameter. Note that if the investor were neutral with respect to

volatility risk, and therefore did not require a premium, λ would be zero. In equilibrium,

the risk premium term λv(t) ∂U
∂v(t)

is equal to the excess expected return over the risk-free

rate demanded by the investor as a result of volatility risk.
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An alternative approach is to decompose dε2(t) into a dε1(t) component, and a com-

ponent independent of dε1(t),

dε2(t) = ρdε1(t) +
q
1− ρ2dW, (60)

where dW is a Gaussian process independent of dε1(t); see, for example, Chernov and

Ghysels (2000). Then a different partially hedged portfolio is formed where dε1(t) com-

ponents from both sources are eliminated. The appropriate portfolio is the one given in

(53). In this case, to obtain the Heston equation we must replace the term

σv
∂U

∂v(t)

·
ρ(r − µ)dt+

q
1− ρ2

q
v(t)dW

¸
(61)

by −λv(t) ∂U
∂v(t)

dt.

Equation (57) can be rewritten in the form

1

2
v(t)S2(t)

∂2U

∂S(t)2
+ ρσvv(t)S(t)

∂2U

∂S(t) ∂v(t)
+
1

2
σ2vv(t)

∂2U

∂v(t)2

+rS(t)
∂U

∂S(t)
+ κ(θ − v(t))

∂U

∂v(t)
− rU +

∂U

∂t

= 0 (62)

where

κ = κa + λ, θ =
κaθa

κa + λ
. (63)

This is the form of (57) which would arise in a hypothetical risk neutral world characterized

by mean reversion parameter κ and long-run mean parameter θ. For positive values of

λ, the variances in the risk neutral world would revert more rapidly to a lower mean.

The Heston option price, denoted by qH in the text, is the solution of (57) subject to

the boundary conditions

U(S(t), v(t), t) = Max(0, S(t)−K)

U(0, v(t), t) = 0
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∂U

∂S(t)
(∞, v(t), t) = 1

U(S(t),∞, t) = 0

and

rS(t)
∂U

∂S(t)
(S(t), 0, t) + κaθa

∂U

∂v(t)
(S(t), 0, t)− rU(S(t), 0, t) + U(S(t), 0, t) = 0.

These conditions correspond to a European call option with strike price K and maturing

at time T . For the detailed formula for qH we refer to Heston (1993). Here we simply

make a few brief comments on the solution. We denote by p∗ the probability density

function corresponding to the processes (1) and (2), which characterize the hypothetical

risk neutral world. Transforming to x(t) = lnS(t), these equations become

dx(t) = [r − 1
2
v(t)]dt+

q
v(t)dε1(t) (64)

and

dv(t) = κ[θ − v(t)]dt+ σv
q
v(t)dε2(t) (65)

respectively. The risk neutral method of solution outlined above yields

qH = e−rτ
Z ∞
K
(S(t)−K) p∗(S(t)) dS(t)

= S(t)P1 −Ke−rτP2, (66)

where

P1 =
Z ∞
K

e−rτS(t)
S(t)

p∗(S(t)) dS(t) (67)

and

P2 =
Z ∞
K

p∗(S(t)) dS(t). (68)

The quantity P2 is the risk neutral probability that the option will be exercised. Since

S(t) = e−rτE∗(S(t)),

P1 =
Z ∞
K

S(t)

E∗(S(t))
p∗(S(t))dS(t)

=
Z ∞
K

f(S(t)) dS(t)
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is also a probability. As shown in Heston (1993), it is the probability that the option will
be exercised in a risk neutral world characterized by the processes

dx(t) = [r +
1

2
v(t)]dt+

q
v(t)dε1(t) (69)

dv(t) = [κθ − (κ− ρσv)v(t)]dt+ σv
q
v(t)dε2(t). (70)

Although the above discussion indicates that the pdf p∗ corresponding to the bivariate

process in (64) and (65) is the appropriate risk neutral measure for the Heston model, it is

not clear whether the transformation to the risk neutral measure is well-defined (Chernov

and Ghysels, 2000). For very small values of the volatility, the risk premium on asset risk

is very large, leading to arbitrage opportunities. Extremely small values of the volatility

are unlikely in practice. Our numerical results, for instance, produce a mean value for the

stochastic variance of approximately 0.2, a value that is fairly typical of the variance in

certain empirical stock market data.
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Notes

1. More details of the derivation of qH and of the interpretation of P1 and P2 are given

in the Appendix.

2. On the basis of certain assumptions, Bates is able to estimate a lower bound for λ.

3. Jones (2003) also uses Bayesian methods to conduct option-based inference about

a stochastic volatility model. However, his methodology is somewhat different from

that proposed here, in that observed market option prices are not used in the infer-

ential procedure.

4. Although Eraker exploits information in both the spot and option prices in the esti-

mation procedure, the precise manner in which the spot and option prices processes

feed into the ‘single-move’ MCMC algorithm that he proposes is not made explicit.

5. Results on the empirical usefulness of allowing for random jumps in the asset process

and/or the volatility process are rather mixed; see, for example, Eraker (2003).

6. The assumption of a constant variance for the pricing errors is maintained, since,

for the data set under consideration in the paper, no discernable pattern in the

variance, across moneyness in particular, is found.

7. In the dataset used in the empirical analysis prices from the spot market are matched

as closely as possible with the prices observed in the option market. Since the market

for News Corporation shares is very liquid, this matching process is very accurate,

with a spot price recorded usually within a few seconds of the option trade.

8. To rule out arbitrage, the distribution of Ci should strictly speaking be truncated at

a lower bound of lbi = max{0, Si−e−riτ iKi}; see Hull (2000). Since experimentation
has established that the truncation has only minimal impact on inferences, we choose

to ignore it in the estimation procedure. We do however, invoke the truncation when

producing the predictive densities used in ranking alternative models.

9. See Bates (2000) for more on this issue.
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10. These assumptions could be questioned, in particular given prior knowledge of the

possible relationship between the signs of λ and ρ. They are however maintained for

the sake of computational convenience.

11. Depending on the size of the sample to which the method is applied, the vector

v may be further divided into smaller blocks, in order to increase the acceptance

rates associated with this component of the algorithm. However, we describe the

simulation of v below in terms of the full vector, with details of the further blocking

that is applied in the context of the empirical application provided in Section 3

12. See Eraker, Johannes and Polson (2003) for evidence that the daily interval is small

enough to render the discretization bias arising from (15) negligible.

13. The Kalman filter need not be rerun, only the smoothing algorithm.

14. These restrictions serve to impose mean reversion in the volatility process a priori

and to reflect the fact that θa is the long-run mean of a variance process.

15. Note that a proper prior on λ is required for the purpose of constructing well-defined

Bayes Factors related to λ.

16. See Geweke (1999) for discussion of the principles of Bayesian model averaging.

17. Model-averaged fit and hedging error densities can also be produced in a similar

manner. We focus only on the model-averaged predictive density as it has a clear

interpretation as an inferential tool and, hence, better serves to illustrate the po-

tential benefits of model averaging.

18. As β and σu are essentially nuisance parameters, we do not devote space to them

in the reporting of results in the text. However, we note that the posterior mean

estimates of these parameters are respectively (−0.075, 1.002) and 0.062.

19. These prior parameters imply only a very small prior probability of ρ falling beyond

the bounds of ±1. These bounds are imposed on the posterior distribution by way
of discarding any draws of ρ that fall beyond them.
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20. An HPD interval is one with the specified probability coverage, whose inner ordi-

nates are not exceeded by any density ordinates outside the interval. The intervals

reported in Table 1 and elsewhere in the paper are approximate HPD intervals in

that the kernel smoothing procedure used to estimate the marginal posteriors does

not always enable the ordinate condition described here to be satisfied exactly. Fur-

thermore, for densities that are multimodal the 95% intervals are contructed so that

the ordinates of the lower and upper bounds are as close as possible to being equal,

subject to the restriction that the tail probabilities sum to 5%. This implies that

there may be ordinates within the interval that are smaller than ordinates beyond

the interval.

21. The data was not plentiful enough to construct meaningful hedging statistics for

the different moneyness categories.
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Table 1: Marginal Posterior Density Results for the Heston Model

Mode Mean 95% HPD interval

Parameter

κa 3.240 3.483 (2.920, 4.300)
θa 0.213 0.221 (0.174, 0.258)
σv 0.640 0.651 (0.600, 0.710)
λ 1.900 1.539 (0.700, 2.100)
ρ 0.070 0.062 (0.010, 0.110)
µ 0.320 0.284 (-0.170, 0.730)

Variance

v100 0.159 0.164 (0.137, 0.193)
v500 0.200 0.189 (0.163, 0.208)
v990 0.163 0.163 (0.144, 0.183)

Table 2: Bayes Factors and Model Probabilities
Entry (i, j) indicates the Bayes Factor

in favour of Mj versus Mi

M1 M2 M3

M1 1.000 2.342× 10−21 0.874
M2 1.000 3. 732× 1020
M3 1.000

P (Mk|c, s) 0.534 1. 250× 10−21 0.466
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Table 3: Fit and Predictive Performance Measures

Criterion(a) M1 M2 M3 M4

Zero in Interquartile Fit Interval(b) 0.2012 0.2070 0.1485 0.000
Zero in 95% Residual Interval(b) 0.9520 0.9404 0.9450 0.000
Cf in Interquartile Predictive Interval(b) 0.3135 0.4339 0.2924 0.0491
Cf in 95% Predictive Interval(b) 0.9860 0.9848 0.9825 0.6339

(a) All figures represent proportions of 900.

(b) The (1 − α)% Interval is the interval which excludes α/2% in the lower and upper tails of the
fit/predictive distribution. This interval equals the (1− α)% HPD interval only for those distrib-
utions which are symmetric around a single mode.

Table 4: Hedging Performance of the Different Models
Means of (Average) Hedging Error Densities with 95% HPD Intervals in Brackets ($)

M1 M2 M3 M
(a)
4

One Day Ahead
-0.011 -0.011 -0.010 -0.006

(-0.012, -0.010) (-0.012, -0.010) (-0.0105, -0.00995) n.a.

Five Days Ahead
0.063 0.063 0.065 0.062

(0.061, 0.064) ( 0.061, 0.065) (0.0645, 0.0652) n.a.

(a) Since only a single point estimate of the BS volatility has been produced, HPD intervals cannot
be constructed.
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Figure 1: Marginal Posterior Densities for the Parameters of the Heston Model.
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Figure 2: Marginal Posterior Densities for Selected Variances from the Heston Model.

47



-0.014 -0.013 -0.012 -0.011 -0.010 -0.009 -0.008
H1

(a) M1:  p(H1 | c, s) one day ahead

0.055 0.060 0.065 0.070
H1

(b) M1:  p(H1 | c, s) five days ahead

-0.014 -0.013 -0.012 -0.011 -0.010 -0.009 -0.008
H1

(c) M2:  p(H1 | λ = 0, c, s) one day ahead

0.055 0.060 0.065 0.070
H1

(d) M2:  p(H1 | λ = 0, c, s) five days ahead

-0.014 -0.013 -0.012 -0.011 -0.010 -0.009 -0.008
H1

(e) M3:  p(H1 | ρ = 0, c, s) one day ahead

0.055 0.060 0.065 0.070
H1

(f) M3:  p(H1 | ρ = 0, c, s) five days ahead

Figure 3: Hedging Error Densities for M1, M2 and M3 : $ value one day ahead and five
days ahead.

48


