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Summary

This article proposes a new data-based prior distribution for the error vari-
ance in a Gaussian linear regression model, when the model is used for
Bayesian variable selection and model averaging. For a given subset of vari-
ables in the model, this prior has a mode that is an unbiased estimator of
the error variance but is suitably dispersed to make it uninformative rela-
tive to the marginal likelihood. The advantage of this empirical Bayes prior
for the error variance is that it is centred and dispersed sensibly and avoids
the arbitrary specification of hyperparameters. The performance of the new
prior is compared to that of a prior proposed previously in the literature
using several simulated examples and two loss functions. For each example
our paper also reports results for the model that orthogonalizes the pre-
dictor variables before performing subset selection. A real example is also
investigated. The empirical results suggest that for both the simulated and
real data, the performance of the estimators based on the prior proposed in
our article compares favourably with that of a prior used previously in the
literature.
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1. Introduction

This article is concerned with subset selection and model averaging for linear,
Gaussian regression models. The approach is Bayesian and by model aver-
aging we mean taking a weighted average of regression models, where each
model is defined by the subset of independent variables that it contains, and
the weight for each model is its posterior probability. Subset selection in lin-
ear regression is an important theoretical and applied problem and a Bayesian
analysis is given by a number of authors, (e.g. Mitchell & Beauchamp, 1988).
George & McCulloch (1993) were the first to propose a Bayesian sampling
method that enabled statisticians to consider problems with a large number
of variables. Raftery, Madigan & Hoeting (1997) emphasize that if predic-
tion is an important goal of the analysis, then it may be better to estimate
the regression function as a weighted average of different subset estimators,
rather than choosing a single ‘optimal’ subset of variables. See also the later
discussions by George & McCulloch (1997) and Hoeting et al. (1999).

The contribution of our article is to present a new prior specification for
the error variance. The prior specification for the complete regression model
is hierarchical, with a vector of binary indicator variables specifying which
covariates are in the model. The prior for the regression coefficients, condi-
tional on the error variance and the independent variables included in the
regression (specified by a set of indicator variables), is described first. The
mean of this prior is centred at an unbiased estimate of the parameters that
are specified as active by the set of indicator variables. It is proper, but
uninformative relative to the likelihood, and is approximately the same as
the sample size increases. The prior for the error variance is conditioned on
the indicator variables only. It is a proper prior, with a mode that is the
unbiased estimator of the error variance for a given subset of the regression
coefficients, but it is uninformative relative to the information about the er-
ror variance contained in the marginal likelihood obtained by integrating out
the regression coefficients. Conditional on a hyperparameter, the indicator
variables have a priori independent Bernoulli distributions.

Our prior specification for the regression coefficients and the indicator vari-
ables is the same as that of Kohn, Smith & Chan (2001), and is similar to
that used in previous work by Smith & Kohn (1996). However, the prior
specification for the error variance seems different to previous approaches,
and we argue that it has some conceptual and practical advantages over
them. Usually, the prior for the error variance is taken as an inverse gamma
distribution, with a mode close to 0 and parameters that do not depend on
the number of variables in the model. We believe that any prior for the error
variance that is skewed needs to be centred properly to be effective and this
is the aim of our article.

We study the performance of our approach empirically using both simulated
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and real data. Two loss functions are used to assess separately the per-
formance of our prior on a point estimate of the error variance and on the
predictive density.

Several authors (e.g. Clyde, Desimone & Parmigiani, 1996) have suggested
orthogonalizing the variables before carrying out variable selection in order to
speed up the computation. For completeness, our article also presents results
when the variables are orthogonalized and reports on the effectiveness of or-
thogonalizing at estimating the predictive distribution. All the computations
in the article are carried out using Markov chain Monte Carlo simulation.

The following simulated examples are considered in our article; (a) Predictors
that are highly multicollinear; (b) Models where the number of predictors is
large relative to the sample size; (c) ANOVA models with main effects and in-
teraction effects; (d) Nonparametric regression problems where the unknown
regression function is expressed in regression form as a linear combination
of basis functions. This application was the focus of the work of Smith &
Kohn (1996) and Kohn et al. (2001). The real data set investigated is the
US crime data examined in Vandaele (1978). The simulation results and US
crime data results show that the performance of the new prior specification
compares favorably with the results obtained using the prior in Kohn et al.
(2001), particularly when the number of predictors is large compared to the
sample size.

The paper is organized as follows. Section 2 presents the model, the priors,
the sampling scheme, the method of estimation, and the loss functions used
to judge performance. Section 3 describes the various regression functions
used in the simulation and the real example and compares our results to those
using the prior in Kohn et al. (2001). Section 3 also presents a new efficient
method of selecting knots for nonparametric regression problems. Section 4
concludes the paper.

2. Model, Orthogonalized Variables and Sam-

pling Scheme

2.1. Model Description

Let Y be a vector of responses and X an n × k design matrix having ones
in the first column and with the remaining columns containing the (k − 1)
predictor variables. We assume the model

Y = Xβ + e, e
d
= N(0, σ2I) . (1)
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Let γ = (γ1, . . . , γk) be a vector of binary variables such that the ith column
of X , i.e., the ith predictor variable, is included in the regression if γi = 1, and
is excluded if γi = 0. Let Xγ be the matrix obtained from X by including
column i of X if γi = 1 and let βγ be the corresponding subvector of β.
All the regression models contain an intercept, which means that the first
column of X is always retained and γ1 is identically 1. The vector γ indexes
all regression models, or equivalently, all subsets of variables. Conditional on
γ, (1) becomes

Y = Xγβγ + e .

A prior distribution on the parameters (βγ , σ2, γ) is specified in a hierarchical
manner as

p(βγ |σ2, γ)p(σ2|γ)p(γ) ,

where each of the densities is described below.

2.2. Prior for the Regression Coefficients

Before describing the prior for the regression coefficients we repeat the im-
portant point made by Kohn et al. (2001), which is that for any regression
coefficient whose prior has a discrete component (usually zero) and a con-
tinuous component, the distribution of the continuous component must be
proper. If it is improper, then this coefficient will always take its discrete
value. In our paper, this means that all the regression coefficients except
for the intercept must have proper continuous components. Our prior for
βγ assumes the intercept is always included in our model. All remaining
predictor variables are mean corrected and we set the first column of Xγ to
be a vector with all elements equal to 1/

√
n such that

X�
γ Xγ =

(
1 0
0 Aγ

)
.

The prior for βγ is
p(βγ|σ2, γ) ∼ N(bγ , σ2V γ) (2)

where bγ = (X�
γ Xγ)

−1X�
γ Y and

V γ =

(
c1 0
0 c2A

−1
γ

)
.

We set c2 = n in our model such that the prior has a covariance matrix that
stays approximately the same as n increases. For all elements of βγ except
the intercept this is equivalent to writing

p(βγ|σ2, γ) ∝ p(Y |βγ , σ2, γ)
1
n
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and is the same prior used in Kohn et al. (2001). That is, the prior for βγ

is centred consistent with the likelihood and is an unbiased estimator of βγ ,
conditional on γ and σ2, but has c2 times the variance. Also, we set c1 = n2

such that the prior for β1 has the same location as in Kohn et al. (2001)
but is more diffuse since we do not perform any variable selection for the
intercept.

2.3. Prior for the error variance

We define qγ as the number of independent variables that are in the model
specified by γ, i.e.

qγ =

k∑
i=1

γi .

The marginal likelihood for σ2 and γ, with βγ integrated out, is

p(Y |σ2, γ) ∝ (σ2)−n/2 exp

(
−SSE(γ)

2σ2

)
,

where
SSE(γ) = Y �Y − Y �Xγ(X

�
γ Xγ)

−1X�
γ Y ,

is the residual sum of squares for the model containing those predictors de-
fined by γ. This marginal likelihood is proportional to an inverse gamma
density with parameters (n/2)−1 and SSE(γ)/2, which has mode SSE(γ)/n
and variance

SSE(γ)2

(n − 4)2(n/2− 3)
for n > 6.

We choose the prior for σ2 as inverse gamma with shape and scale parameters
aσ and bσ specified as follows. For a given γ, let

aσ =
κ

2
− 1 and bσ =

κSSE(γ)

2(n − qγ)
,

so the prior for σ2 is

p(σ2|γ) ∝ (σ2)−
κ
2 exp

(
− κSSE(γ)

2(n − qγ)σ2

)
(3)

with mode
SSE(γ)

(n − qγ)
,

and variance
SSE(γ)2

(n − qγ)2
2κ2

(κ − 4)2(κ − 6)
, for κ > 6.
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The mode is an unbiased estimator of σ2 for given γ, and setting κ = 7
ensures the prior has finite variance and is much less informative than the
likelihood. We also ran the model with κ = 9, 10, and 11. The results were
insensitive to the choice of these values for κ. Thus, we can view (3) as an
empirical Bayes prior for σ2.

The prior for σ2 is usually taken as an uninformative inverse gamma prior
(e.g. George & McCulloch, 1993; Kohn et al., 2001) that does not depend on
γ; for example, see (1).

2.4. Prior for the vector of binary indicator variables

As in Kohn et al. (2001) we specify the prior for γ as

p(γ|π) = πqγ−1(1− π)k−qγ , with 0 ≤ π ≤ 1 ,

i.e. the γi, i = 2, . . . , k are assumed to be independent with p(γi = 1|π) = π.
For flexibility and convenience we place a beta hyperprior on π such that

p(γ) =

∫
p(γ|π)p(π)dπ

=
B(qγ + aπ − 1, k − qγ + bπ)

B(aπ, bπ)
. (4)

The marginal likelihood for γ, with βγ and σ2 integrated out, is

p(Y |γ) =

∫
p(Y |σ2, γ)p(σ2|γ)dσ2

∝ (c1 + 1)−
1
2 (c2 + 1)−

(qγ−1)

2

(
SSE(γ)

2(n − qγ)

)−n
2

(n + κ − qγ)
−n+κ−2

2 × K(κ)

where

K(κ) = (2π)−n/2Γ(κ/2− 1)−1Γ

(
n + κ − 2

2

)
κ(κ

2
−1) ,

and Γ is the gamma function.

The posterior density of γ is

p(γ|Y ) ∝ p(Y |γ)p(γ),

and it is this density that is used in the Markov chain Monte Carlo simulation
scheme.
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2.5. Orthogonalized regressors

Several authors have suggested orthogonalizing the design matrix X to speed
up the variable selection computations (e.g. Clyde et al., 1996; Liang, Truong
& Wong, 2001). Although there may be some difficulty in interpreting the
results of variable selection on orthogonalized variables when the original
variables are not orthogonal, we believe that it is of some interest to study
the effectiveness of model averaging at estimating the predictive distribution.
If orthogonalizing variables gives estimates of the predictive density that are
as good or nearly as good as working with the original variables, then orthog-
onalizing would be the method of choice because of its faster computation.
Therefore, for completeness, our empirical work also applies the priors for
β, σ2 and γ to the orthogonalized variables when the original variables are
not orthogonal.

To be specific, when the original variables are not orthogonal we begin with
a design matrix X and transform it to W = XT so that W is a n × k
orthonormal matrix with entries 1/

√
n in the first column. For conciseness,

we rewrite the model (1) as

Y = Wβ + e , (5)

noting that the β in (5) is different to that in (1).

2.6. Sampling Scheme

We use the following Gibbs sampler to explore the parameter space of γ.

Step 0: Randomly choose an initial value γ [0] = (γ
[0]
1 , . . . , γ

[0]
k ), with γ

[0]
1 = 1.

Step 1: for g = 1, 2, . . . , successively generate p(γi|Y , γi�=j), i = 2, . . . , k to
obtain γ [g]. Step 1 is performed a number of times and in two stages. The
first stage is a warm up period to allow the sampler to converge to draws
from the joint posterior distribution. The second is the sampling period and
the values of γ generated during this period are used for inference.

In our simulations, iterates of σ2 and β, which we write as (σ2)[g] and β[g],
are also generated concurrently during the sampling period, but are not part
of the sampling scheme in the sense that they do not affect the convergence
or mixing properties of the Markov chain. The iterates are generated from
the conditional densities p(σ2|Y , γ [g]) and p(βγ|Y , (σ2)[g], γ [g]).
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3. Simulation study

3.1. Alternative prior

This section uses six examples to compare the predictive performance of the
prior in our paper with the following prior, which is based on Kohn et al.
(2001). The priors for βγ and γ are the same as (2) and (4). The prior for
σ2 is an inverse gamma, with

p(σ2) ∝ (σ2
)−(1+aσ)

exp(−bσ/σ2) (1)

where aσ = 10−10 and bσ = 0.001. This is a proper, but uninformative, prior
for σ2, and does not depend on γ. The prior (1) is very close to the usual
noninformative and improper prior for σ2 , p(σ2) ∝ 1/σ2, (e.g. George &
McCulloch, 1997).

3.2. Loss functions

We use two loss functions to assess the effect of the new data-based prior
for the error variance. The Squared Error loss function (SQE) assesses the
effect on a point estimate of the regression error variance and the Average
Kullback-Leibler Divergence (AKLD) loss function assesses the effect on the
whole predictive density. These two loss functions are described now.

1. The squared error loss function. Let σ̂2 be the posterior mean of σ2 and
σ2

T its true value. We define the SQE as

SQE = (σ̂2 − σ2
T )

2

2. The Kullback-Leibler divergence. Suppose that the true model generating
the data is

y = fT (x) + e , e
d
= N(0, σ2

T ) ,

i.e. fT (x) and σ2
T are the true regression function and true error variance.

Hence,

pT (y|x) = 1√
2πσ2

T

exp
(
− 1

2σ2
T

(
y − fT (x)

)2)
.

Let p(y|x, Y ) be the estimated predictive density of y given x and the data
Y . The Kullback-Leibler divergence between p(y|x, Y ) and pT (y|x) for a
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given x is defined as (Kullback & Leibler, 1951)

KL
(
p(·|x, Y ), pT (·|x)

)
=

∫
pT (y|x) log

(
p(y|x, Y )

pT (y|x)
)

dy

=
1√
π

∫
φ(z) log

(
p
(
σT

√
2z + fT (x)|x, Y

)
φ(z)/

√
2πσ2

T

)
dz

where
φ(z) = exp(−z2)

and we evaluate this integral using Gauss-Hermite integration over 10 points.

We note that KL
(
p(·|x, Y ), pT (·|x)

) ≤ 0 and that it is equal to 0 if and only
if p(y|x, Y ) = pT (y|x) for all y (Rao, 1973, pp 58-59). Thus, the closer KL
is to 0 for a given abscissa x, the closer is the predictive density to the true
density. We also note that Kullback-Leibler divergence is often defined as
the negative of KL

(
p(·|x, Y ), pT (·|x)

)
.

In our simulations, we compute the predictive density and the Kullback-
Leibler divergence at a number of abscissae xl, l = 1, . . . , L, and average
the Kullback-Leibler divergences over these abscissae. We write this average
as AKLD and it is this value which we use as our loss function to assess
performance in terms of the predictive density.

In practice, we cannot compute the predictive density exactly because it
is necessary to average over all possible models γ and this is infeasible if
the number of variables k is moderate to large. Instead, we estimate the
predictive density from the Markov chain Monte Carlo output as follows. Let

β[j], σ2[j]
, γ [j], j = 1, . . . , M be the iterates of β, σ2 and γ during the sampling

period. Then,

p(y|x, Y ) =
∑
γ

∫∫
p(y|x, β, σ2, γ)p(β, σ2, γ|Y )dβγdσ2

≈ 1

M

M∑
j=1

p(y|x, β[j], (σ2)[j], γ [j])

=
1

M

M∑
j=1

1(
2π(σ2)[j]

) 1
2

exp

(
− 1

2(σ2)[j]
(y − x′β[j]

γ )2
)

.

To compare two models, which we call Models A and B for convenience, in
terms of a certain loss function, LOSS, with Model A treated as the base
model, we use the percentage change in the LOSS in going from A to B, i.e.,

D(A, B) =
LOSS(B)− LOSS(A)

LOSS(A)
× 100. (2)

If D(A, B) > 0 then Model A outperforms Model B and if D(A, B) < 0 then
Model B outperforms Model A.
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3.3. Regression test functions

Six linear regression functions were considered in the study. For each regres-
sion function a new design matrix was generated similar to the original design
matrix used to construct the sample data in order to evaluate the AKLD. In
all the examples the first column of the design matrix was a vector of ones.

Example 1: The first regression function is similar to that used by Raftery
et al. (1997) and Fernandez, Ley & Steel (2001). A 50 × 16 design matrix
was generated as follows. Columns 2 to 11 were generated from independent
standard normal distributions. The last 5 columns were constructed as linear
combinations of (X2, . . . , X6) with noise, i.e.,

(X12, . . . , X16) = (X2, . . . , X6)× (0.3, 0.5, 0.7, 0.9, 1.1)′ × (1, 1, 1, 1, 1) + E,

where E is an 50× 5 matrix drawn from independent standard normal dis-
tributions. The generation of the last five columns resulted in moderate
correlation between the groups (X2, . . . , X6) and (X12, . . . , X16) and sub-
stantial correlation within (X12, . . . , X16).

The response Y was generated as

Y = 4X1 + 2X2 − X6 + 1.5X8 + X12 + 0.5X14 + e, e
d
= N(0, 2.52I) .

Example 2: The second regression function was constructed by generating
a 10 × 9, design matrix, X. Columns 2 to 9 were drawn from independent
standard normal deviates. The response Y was generated as

Y = Xβ + e, e
d
= N(0, 2.52I) ,

where the first 8 elements of β were generated as independent uniform ran-
dom variables on (-5,5) and the 9th element was zero. The maximum and
minimum absolute values of the first 8 elements of the generated β were 4.11
and 0.53.

Example 3: The third regression function was constructed by generating a
50 × 41 design matrix X. Columns 2 to 41 were drawn from independent
standard normal deviates. The response Y was generated as

Y = Xβ + e, e
d
= N(0, 2.52I) ,

where the first 31 elements of β were generated as independent uniform ran-
dom variables on (-5,5), and the remaining elements of β were zero. The
maximum and minimum absolute values of the first 31 elements of the gen-
erated β were 4.90 and 0.14.
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Example 4: The fourth regression function was constructed by generating
a 100× 80 design matrix X. Columns 2 to 80 were drawn from independent
standard normal deviates. The response Y was generated as

Y = Xβ + e, e
d
= N(0, 2.52I) ,

where the first 71 elements of β were generated as independent uniform ran-
dom variables on (-5,5), and the remaining elements of β were zero. The
maximum and minimum absolute values of the first 71 elements of the gen-
erated β were 4.94 and 0.22.

Example 5:

The fifth regression function was constructed by generating a 50× 22 design
matrix X. Columns X2, . . . , X7 were dummy variables where p(xij = 1) =
0.5 for j = 2, . . . , 7, i = 1, . . . , 50 and xij is the ith element of column Xj .
Columns X8, . . . , X22 represent all the possible two-way interaction effects
between X2, . . . , X7. The response Y was generated as

Y = Xβ + e, e
d
= N(0, 2.52I),

where βi = 0 for i = 6, 7, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, and the remaining
elements of β were generated uniformly on the interval (-10,10). The maxi-
mum and minimum absolute values of the non-zero elements of the generated
β were 9.55 and 0.58.

Example 6: We follow the work of Kohn et al. (2001) and estimate a surface
nonparametrically. Consider the bivariate surface described by the mixture
of normal densities,

f(x) = 1 + N(x;µ1,Σ1) + N(x;µ2,Σ2) ,

where N(x;µ,Σ) is the bivariate normal density with mean µ and covariance
matrix Σ, evaluated at the abscissa x. Following Kohn et al. (2001), we took
µ1 = (0.25, 0.75)′, µ2 = (0.75, 0.25)′,

Σ1 =

(
0.05 0.01
0.01 0.05

)
and Σ2 =

(
0.1 0.01
0.01 0.1

)
and generated

Y = f(x) + e, e
d
= N(0, 2.52).

The test data and knot selection are described in subsection 3.4. below.

3.4. Knot Selection and Basis Function Construction

Before presenting the empirical results we first describe the construction of
the basis functions and an easy and efficient method of knot selection, which
avoids the clustering approach in Kohn et al. (2001).
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Knot selection in the bivariate case is more difficult than in the univariate
case because the abscissae cannot be ordered. Kohn et al. (2001) use a
clustering algorithm to choose abscissae, whereas Holmes & Mallick (1998)
use all the abscissae. However, clustering algorithms can be computationally
expensive, while choosing all abscissae may result in an unnecessarily large
number of knots. We now outline a knot selection strategy based on dividing
the predictor space into cells. Without loss of generality, suppose that the
abscissae all lie in the unit square, and that the sample size is n, so that there
are n abscissae. We partition the unit square into intervals of area δ2, giving
a grid of squares labeled ∆i, i = 1, . . . , 1

δ2 . For each square ∆i, we take its
midpoint as a knot if ∆i contains at least one abscissa. No other knots are
selected and redundant knots are omitted.

For the simulated data from regression function 6, we generated n = 50
abscissae in the unit square. Figure 1 shows bivariate data generated over
the unit square for n = 50 with the knots selected using δ = 0.1, giving
100 squares, and 39 knots were selected. It is clear from Figure 1 that the
proposed knot selection method provides good coverage of the abscissae. We
also generated 50 test data points from a uniform distribution on the interval
[0.05, 0.95]2. The knots were selected only on the basis of the sample data.

Once the knots were selected, a bivariate thin plate spline basis was con-
structed as follows. Let the collection of knots selected by the above method
be denoted as (ζ1, . . . , ζl), and let X be the covariate matrix. Then, for
regression function 6, the ith row of X is

X i. =
(
1, xi1, xi2, ||xi − ζ1||2 log(||xi − ζ1||2), . . . , ||xi − ζ l||2 log(||xi − ζ l||2)

)
,

where xi = (xi1, xi2) is the ith abscissa. For the test data the thin plate
splines were

Xg. =
(
1, xg1, xg2, ||xg − ζ1||2 log(||xg − ζ1||2), . . . , ||xg − ζ l||2 log(||xg − ζ l||2)

)
,

where xg = (xg1, xg2) is the gth abscissa for the test data.

3.5. Simulation results

For each of the simulated regressions we examined the performance of the
priors (3) and (1) for σ2 when the design matrix was non-orthogonalized and
when the design matrix was orthogonalized. We also compared the results
of the orthogonalized design matrix versus the non-orthogonalized design
matrix. For each comparison we examined the percentage difference in the
AKLD, D, defined by (2). We note that in (2), if Model A outperforms Model
B then D > 0. Details of the exact models constructed for comparison are
given below. We include boxplots of D for 50 replications of each simulated
example and a one-sided hypothesis test such that
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Figure 1. Plot of the sample data, test data and knots selected using δ = 0.1.

The sample data are the empty dots, the test data are the crosses and the

knots are the filled dots.

H0 : E(D) = 0 and HA : E(D) > 0. (3)

3.5.1. Comparison of Priors: original design matrix

This section compares the two priors for σ2 described in the paper for the
non-orthogonalized design matrix. When calculating the loss function D the
prior for σ2 is (3) for Model A and (1) for Model B. The prior for β is (2)
and the prior for γ is (4). Figure 2 presents the boxplots of D for all six
examples for the two loss functions. Table 1 contains the p-values of the
t-statistics for the hypothesis (3) for the two loss functions. For the AKLD
loss function, Figure 2 shows that the prior (3) outperformed the prior (1)
for all the examples. Table 1 shows that the p-values for the null hypothesis
that E(D) = 0 were less than 5% for all the examples except example 2,
where the null hypothesis could not be rejected. For the SQE loss function,
Figure 2 shows that the prior (3) outperformed (1) for examples 2 to 6,
and particularly for examples 2 to 4 where the number of predictors is large
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relative to the sample size. Table 1 shows that the p-values for the null
hypothesis that E(D) = 0 were less than 0.05 for examples 2 to 4, less than
0.10 for examples 5 and 6, and the null hypothesis could not be rejected
for example 1. We conclude that, for the non-orthogonalized case, the prior
proposed in our article outperformed the prior specified by Kohn et al. (2001)
for estimating the predictive density and the error variance.

Table 1

P-values for the hypothesis (3) for the non-orthogonal case for the AKLD

loss function (top row) and the SQE loss function (bottom row). The prior

for σ2 is (3) for Model A and (1) for Model B

Example 1 2 3 4 5 6

AKLD P-value 0.06 0.20 0.00 0.00 0.00 0.00

SQE P-value 0.14 0.04 0.00 0.00 0.09 0.06
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Figure 2. The non-orthogonal case. The left panel shows the results for the

AKLD loss function and the right panel shows the results for the SQE loss

function. From left to right in both panels the boxplots of D are for examples

1 to 6 respectively. The prior for σ2 is (3) for Model A and (1) for Model B.
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3.5.2. Comparison of Priors: othogonalized design matrix

This section compares the priors (3) and (1) for the case of orthogonalized
variables, with model A corresponding to (3) and model B to (1). The priors
for β and γ are (2) and (4) for both Model A and Model B. Figure 3 presents
the boxplots of D for all six examples for the two loss functions. Table 2
contains the p-values of the statistics for the hypothesis (3) for the two loss
functions. For the AKLD loss function, Figure 3 shows that the prior (3)
outperformed the prior (1) for examples 2, 3, 4 and 6 and the results were
similar for examples 1 and 5. Table 2 shows that the p-values for the null
hypothesis that E(D) = 0 were less than 0.05 for examples 2, 3, 4 and 6 and
the null hypothesis could not be rejected for examples 1 and 5. For the SQE
loss function, Figure 3 shows that the prior (3) outperformed (1) for examples
2, 3, 4 and 6 but the prior (1) outperformed the prior (3) for examples 1 and
5. Table 2 shows that the p-values for the null hypothesis that E(D) = 0
were less than 0.05 for examples 2, 3, 4 and 6 and the null hypothesis could
not be rejected for examples 1 and 5. Again, the improvement was most
significant in examples 2, 3 and 4 where the number of predictors was large
relative to the sample size. We conclude that, for the orthogonalized case,
the prior proposed in our article outperformed the prior specified by Kohn
et al. (2001) for estimating the predictive density as well as the error variance
when the number of predictors was large relative to sample size.

Table 2

P-values for the hypothesis (3) for the orthogonal case for the AKLD loss

function (top row) and the SQE loss function (bottom row). The prior for

σ2 is (3) for Model A and (1) for Model B

Example 1 2 3 4 5 6

AKLD P-value 0.60 0.00 0.00 0.00 0.19 0.00

SQE P-value 0.34 0.00 0.00 0.00 0.35 0.02

3.5.3. Comparison of original versus orthogonalized design matrix

This section compares the results of using the original design matrix versus
the orthogonalized design matrix for examples 1, 5 and 6, where the co-
variates were correlated. We did not consider examples 2 to 4 because for
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Figure 3. The orthogonal case. The left panel shows the results for the

AKLD loss function and the right panel shows the results for the SQE loss

function. From left to right in both panels the boxplots of D are for examples

1 to 6 respectively. The prior for σ2 is (3) for Model A and (1) for Model B.

these examples the columns were generated independently and were almost
orthogonal. The results are reported in terms of the AKLD loss function
only. Figure 4 presents the boxplots of the percentage difference in AKLD
defined in (2), i.e. D, between the orthogonalized and non-orthogonalized
cases, for the two priors for σ2. For each boxplot, Model A corresponds to
the non-orthogonalized case and Model B to the orthogonalized case, and
the same prior for σ2 was used for both models. The figure shows that the
non-orthogonal case outperformed the orthogonal case for all three examples
so that if speed is not a consideration, then the original (non-orthogonalized)
design matrix should be used. Testing hypothesis (3) gave p-values that were
approximately zero. We conclude that when the covariates are correlated it is
better not to orthogonalize if performance is judged by the predictive density.

3.6. Comparison of priors using a real example

We now compare the two priors for σ2 discussed in our article on the real
data described in Vandaele (1978). This data aims to describe how the
crime rate depends on the other variables provided in the study. There are
47 observations in the study and the variables are:

1. Crime: rates of crime in a particular category per head of population

2. M: The percentage of males aged 14-24
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Figure 4. The orthogonal vs non-orthogonal case. Boxplots of D. In each

boxplot, Model A corresponds to the non-orthogonal case and Model B to

the orthogonal case, and the priors for Models A and B are the same. From

left to right the panels correspond to examples 1, 5 and 6 respectively. In

each panel the prior for σ2 is (1) for the left boxplot, indicated by 1 on the

horizontal axis, and (3) for the right boxplot, indicated by 2 on the horizontal

axis. For each boxplot, values of D greater than 300% are omitted so as not

to distort the rest of the boxplot.

3. S: Indicator variable for Southern states (0 = No, 1 = Yes)

4. Ed: Mean number of years of schooling

5. Po1: Police expenditure in 1960

6. Po2: Police expenditure in 1959

7. LF: Labor force participation rate

8. MF: The number of males per 1000 females

9. Pop: State population

10. NW: The number of non-whites per 1000 people
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11. U1: Unemployment rate of urban males of age 14-24

12. U2: Unemployment rate of urban males of age 35-39

13. GDP: Gross domestic product per head

14. Ineq: Income inequality

15. Prob: Probability of imprisonment

16. Time: Average time served in state prisons

We assumed that the relationship between the dependent variable and the
predictor variables could be described by a linear regression with Gaussian
errors. The predictor variables Po1, Po2, Pop and NW were right skewed
and we took the natural logarithms of these variables. In the real example
the true error variance and the true predictive density were unknown, so we
used the following strategy to mimic the approach taken in the simulated
examples. We fitted a regression model to the data using the priors (2),
(3) and (4) and identified the model having the highest marginal likelihood
observed in the MCMC run. We then treated the estimated values of β and
σ2 associated with this model as the true parameter values and denoted these
estimates as β∗ and σ2

∗ respectively. The dependent variable Y was generated
as

Y = Xβ∗ + e, e
d
= N(0, σ2

∗). (4)

Twenty four training data points and 23 test data points were generated for
each of 50 replications. For each replication the parameters in (4) were esti-
mated using the prior (3) for Model A and (1) for Model B. For both models
the priors for β and γ were (2) and (4). Figure 5 shows the boxplots of D
for the AKLD and SQE loss functions. The figure suggests that the prior (3)
for σ2 outperformed the prior (1) under both loss functions. We also tested
the null hypothesis E(D) = 0 against the alternative that E(D) > 0. The
p-values for the AKLD and SQE loss functions were both less than 2%. We
concluded for this example that the prior for σ2 in this paper outperformed
the prior specified in Kohn et al. (2001) both in terms of estimating the
predictive density and for point estimates of the error variance.

4. Conclusions

Our article presents a data-based prior for the error variance in a linear re-
gression model with Gaussian errors, when that model is used for Bayesian
variable selection and model averaging. The new prior is centred at an un-
biased estimate of σ2 given the variables included in the model and is made
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Figure 5. The US Crime Data Set. The boxplot of D. Model A has the prior

(3) for σ2. Model B has the prior (1) for σ2.

suitably uninformative. The prior is simple to use and largely avoids the
specification of arbitrary hyperparameters as in equation (1). The perfor-
mance of the new prior compared favorably on simulated data to the tradi-
tional uninformative prior for σ2, e.g. equation (1), when the loss function
is the Kullback-Leibler divergence between the estimated predictive density
and the true density and also when the loss function is the squared error loss
between the posterior mean of the error variance and the true error variance.
This was true in particular when the number of predictors in the regression
was large compared to the sample size.

The article makes two further contributions. First, the simulation results
suggested that it is always better to work with the original variables when
carrying out variable selection, rather than orthogonalizing them. Second,
a novel technique for knot selection in nonparametric regression problems is
also presented that is simple, covers the observed predictor space effectively
and avoids the need for clustering algorithms.
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