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Abstract:  
 
Self-reported data collected via surveys are a key input into a wide range of research 
conducted by economists. It is well know that such data are subject to measurement 
error that arises when respondents are asked to recall past utilisation. Survey 
designers must determine the length of the recall period and face a trade-off as 
increasing the recall period provides more information, but increases the likelihood of 
recall error. A statistical framework is used to explore this trade-off. Finally we 
illustrate how optimal recall periods can be estimated using hospital use data from 
Sweden’s Survey of Living Conditions.  
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1. Introduction 
 

Self-reported data collected via surveys are a key input into a wide range of research 

conducted by economists and other social scientists. For example, in health 

economics economic evaluations of health care interventions are often based on self-

reported health care data that is collected during the course of a study. It is also 

routinely collected in national health surveys such as the Health Survey for England, 

Australia’s National Health Survey or the Medical Expenditure Survey in the US. 

While these surveys involve interviews conducted over the course of a year, there is 

considerable variation in the period over which subjects are asked to recall their 

previous health care use. This has been highlighted by a recent OCED study 

comparing inequity in access to health care across 21 developed countries based on 

health surveys in different countries. The period of recall for primary care and aspects 

of hospital use ranged from 2 weeks in the Australian National Health Survey to one 

year in the European Community Household Panel (Health Equity Research Group, 

2004).  

  

It has been widely recognized that there is an inverse relationship between the length 

of time over which subjects are asked to recall prior use and the accuracy of the 

reported estimates. The longer the period of recall the greater the likelihood of error. 

An early study by Sudman and Bradburn (1973) on the impact of the length of the 

recall period on response suggested two types of memory error may arise: (i) a 

respondent may forget an episode of use entirely; and (ii) they may remember the 

episode but incorrectly recall when it occurred. In regard to the latter, a particular 

form of error is telescoping which arises when the respondent recalls events that 

occurred before the period in question. For example, a person my report they have 

been in hospital in the last three months, even though the actual event was five 

months prior to the date of interview. While these errors can work in opposite 

directions, recent reviews of validation studies by Bound, Brown and Mathiowetz 

(2000) and Evans and Crawford (1999) that compared reported with actual use of 

different types of health care, suggest that under-reporting is more likely than over-

reporting, especially in primary care. This potentially has implications for economic 

evaluation, particularly if there are differing degrees of recall between interventions.  
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While recall error is undesirable, a survey with a short length of recall provides very 

little information about an individual’s normal health care use.  As Deaton (1997, p. 

24) has noted in the context of measuring general household consumption 

expenditure: 

 

“…if the object of the exercise is to estimate average consumption over a year, one 
extreme is to approach a sample of households on January 1 and ask each to recall 
expenditures for the last year. The other extreme is to divide the sample over the days of 
the year, and to ask each to report consumption for the previous day. The first method 
would yield a good picture of each household’s consumption, but runs the risk of 
measurement error… [t]he second method… will give a good estimate of the mean 
consumption over all households… [but] will yield estimates of individual expenditure 
that… are only weakly related to normal expenditures…” 

 

Suppose self-reported consumption or utilisation data are to be collected by a survey.  

At the survey design stage there is a choice of the length of the recall window. Even if 

the variable of interest is consumption over a particular period, say a year, errors 

induced by having long recall windows equal to the period of interest suggest that one 

could opt for a shorter window or sub-period as the basis of the survey question. 

While this provides a less error ridden measure it comes at the cost of providing less 

information. Hence, the basic research question is: “What is the optimal recall 

window over which to ask the utilisation question when recall error increases with 

window length but a longer window is likely to provide more (albeit imperfect) 

information directly relevant to the variable of interest?” 

 

We investigate these tradeoffs in order to determine what factors impact on the 

optimal recall window over which to ask consumption and utilisation questions when 

recall error increases with window length, but a longer window has the advantage of 

providing more (albeit imperfect) information directly relevant to the variable of 

interest. A simple framework is used to capture the key dimensions of the research 

question and this analysis is supplemented by an illustration drawn from hospital 

usage data from Statistics Sweden’s Survey of Living Conditions.  

 

2. A framework for analysis  
 

Denote the variable of interest for the ith individual by Yi. If this could be recalled 

without error then there would be no problem. Such a situation represents a 
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benchmark for comparisons as specific forms of recall errors are introduced. Suppose 

the period over which the utilisation variable is required, call this the target period, 

can be divided into S sub-periods where the division is determined so that individuals 

can accurately recall their utilisation over the most recent sub-period. If we were 

interested in how much someone spent on medications over a year but the longest 

window over which they can recall last period’s drug expenditure without error is say 

a month then S is set to 12. Longer recall windows, denoted by w =1, 2, 3, … , S , are 

considered because monthly consumption may not be very representative of annual 

consumption. Moreover, we are ultimately interested in annual consumption and 

hence windows of less than a year imply that an imputation process must be 

undertaken in order to provide a predicted annual amount. 

 

Now denote actual utilisation over the recall window w by Yi
w. However, when asking 

the survey question the error ridden response will be given by: 

 
w
i

w
i

w
i vYX +=)1(  

 

where vi
w represents the measurement error. By assumption,  but for w > 1 

measurement error can occur because of incomplete or inaccurate recall. There are 

other potential causes for measurement error. In particular, respondents could act 

strategically or simply provide false answers to sensitive questions. In such cases the 

form of the measurement error is likely to be different from that associated with recall 

problems as are the likely remedies; see for example Carson, Groves, and Machina 

(1999) and Philipson and Malani (1999). In what follows, we concentrate on 

measurement errors that occur because of difficulties in recalling past events.  

11
ii YX ≡

 

Formalization of the design problem will depend on what the ultimate objectives are 

of the analyses to be undertaken using these data. Suppose interest centres on 

characterizing the variable of interest and hence the statistical problem is to estimate 

E(Yi
S), the mean utilisation over the target period. Given a sample of N individuals 

and a window of w, an obvious estimator would be a suitably weighted sample mean 

with the weights defined to scale up the sub-period utilisation to a target period 

estimate. Define this estimator as: 

 

 4



.)2(
1

1 w
i

N

i
w X

w
SNX ∑

=

− 





=  

 

For the present, assume that the relationship between sub-period utilisation and that in 

the target period is known. For example, to estimate the annual drug use of people 

with a chronic disease such as diabetes it may be sufficient to ascertain monthly use if 

their prescriptions do not vary over the course of a year. In practise, for many types of 

health care this is not likely to be the case and hence would represent an additional 

source of information loss associated with choosing w<S.  

 

One possible objective could be to consider the impact of w on the bias in the 

estimation of the mean utilisation over the target period. For example, Benitez-Silva 

et al (2004) introduce the hypothesis of rational unbiased reporting as part of a 

framework for testing the validity of self-reported health measures. For our purposes 

this is unsatisfactory because unbiasedness alone does not capture the tradeoffs that 

are involved. Instead, we consider quadratic loss so that the survey design problem 

requires choice of w to minimize the ).( wXMSE   

 

 

3. Some results for optimal recall windows 
 

Further investigation requires more structure for the data generating process assumed 

to be underlying this problem. In what follows both discrete and continuous utilisation 

variables are considered. The issues that arise and some of the conclusions are 

different enough to justify this distinction.  

 

3.1 Continuous case 

The starting point for our analysis is the case where Yi is assumed to be a continuous 

random variable. Assume that utilisation in each of the sub-periods are iid with mean 

and variance given by: 

 

;)(;)()3( 2σµ
S
wYVar

S
wYE w

i
w

i ==  
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which implies Y  has mean and variance given by:  S
ii Y≡

 

.)(;)()4( 2σµ == ii YVarYE  

 

For the measurement model, make the classical errors-in-variables assumption that vi
w 

is independent of Yi
w but allow  

 

µ





==

S
wwhwhvE w
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and 
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



==

S
wwgwgv w

i  

 

Thus, the mean and variance of the measurement errors are assumed to depend on the 

recall window and the h(.) and g(.) functions have been scaled to make these moments 

proportional to the mean and variance of the actual utilisation, Yi
w. These functions 

introduce two dimensions to recall error. Non-zero values for h(.) represent recall bias 

while a non-zero g(.) implies more noisy measurements. Because no recall error is 

assumed when w = 1 it must be that h(1) = g(1) = 0. Further, assume both functions 

are monotonic over the interval 1 to S. h(.) could either be monotonically deceasing if 

there was under reporting or monotonically increasing in the case of over reporting. 

g(.) is expected to be monotonically increasing. 

 

With this framework, the following can be derived: 
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leading to: 
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These expressions provide the basis for a number of comparisons that inform us on 

the question of how best to choose w. These comparisons are organized around 

several different cases. 

 

Case 1: No recall bias 

 

Here h(w) = g(w) = 0 and (7) simplifies to: 
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It is clear that the optimal recall window is w = S as other choices produce less precise 

estimates. There is no gain from choosing a smaller recall window; such choices 

would involve collecting less data for the same sample size.  

 

Case 2: Comparison of w =1 and w = S 

 

A natural comparison is between using a recall window that involves no recall error 

(w = 1) and one where the question relates directly to the target period (w = S). In 

terms of our model structure, this case also avoids making additional assumptions 

about h(.) and g(.).  

 

Given different parameter configurations, it is a simple matter to produce MSE 

comparisons but the main points will be made with one representative set of results. 

Table 1 provides relative root mean square error (RMSE) measures for a particular set 

of parameters chosen to be: N =1000, S = 12, µ = σ = 1 and maximum values of h(.) 

and g(.) that are allowed to vary. Recall that these functions were scaled so as to 

represent proportions of the mean and variance of the actual utilisation. Consequently, 

unitary values for hmax and gmax imply substantial recall error in terms of either 

induced bias or added variability. Values in the table that are less than unity imply 
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that the recall window of w = S is preferred over w = 1 if the objective is estimation of 

the population mean of utilisation over the target period. 

 

When there is no recall bias, the results in the first row (h(w) = 0) of Table 1 indicate 

w = S is strongly preferred over w = 1 even when the recall error induces substantial 

amounts of measurement noise, i.e. g(w) is large. It is simple to demonstrate that with 

no recall bias the superiority of a window of S is even more pronounced if N and/or S 

are larger. Clearly it will not always be optimal to totally avoid recall error. This 

conclusion may still be valid even when recall bias is introduced. Consider the case 

where hmax = 0.1. Again it is better to ask about utilisation over the target period 

even though this involves both types of recall errors. The alternative of simply asking 

about utilisation for the most recent sub-period, while being measured without recall 

error, induces substantial variability in the resultant estimator because of substantial 

losses in information. 

 

Table 1: Relative RMSE of alternative estimators of µ:  
Case 2 with N = 1000, S = 12, µ = σ = 1* 

 
 Gmax 
hmax 0.0 0.2 0.4 0.6 0.8 1 
0.0 0.29 0.32 0.34 0.37 0.39 0.41 
0.1 0.96 0.97 0.97 0.98 0.99 1.00 
0.2 1.85 1.85 1.86 1.86 1.87 1.87 
0.3 2.75 2.76 2.76 2.76 2.77 2.77 
0.4 3.66 3.67 3.67 3.67 3.67 3.67 
0.5 4.57 4.58 4.58 4.58 4.58 4.58 
* Table entries represent ).(/)( 1XRMSEXRMSE S  
 

As more recall bias is introduced the preferred recall window switches to w = 1. Now 

the efficiency loss associated with this estimator is more than compensated by the 

large biases it avoids. A similar pattern can be shown to occur if µ is larger because 

again recall bias becomes more of a problem.  

 

Case 3: Optimal w  

 

Case 2 provided insights into the optimal recall window problem by comparing the 

extreme choices. Naturally it is possible that neither extreme is optimal and that the 

optimal recall window falls somewhere in between. Not surprisingly, whether this is 
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the case or not depends on parameter configurations and on assumptions made about 

the specific form of the h(.) and g(.) functions. In order to make some progress, first 

assume that these functions are both linear. 

 

Figure 1 depicts a range of )( wXRMSE  functions that show the types of patterns that 

can result from different parameter configurations. All of the reported functions 

assume N = 1000, S = 12 and µ = σ = 1 with the differences being generated by 

variable forms of recall error represented by setting alternative values for hmax and 

gmax. Start with the function labelled A where hmax = 0 and gmax = 1. This was 

covered under Case 2 where we concluded that w = S was preferred to w = 1. Now we 

see that S is in fact the optimal choice of w as the RMSE function declines 

monotonically as w increases.  

 

Functions B and C illustrate non-monotonic patterns. Function B was generated with 

hmax = 0.1 and gmax = 0.2. Again, from the discussion under Case 2, w = S was 

found to be preferred to w = 1. However, it is possible to make a better choice for the 

recall window and the optimal w is in fact equal to 5. Similarly, function C with hmax 

= 0.5 and gmax = 0.2 yields a preference for w = 1 compared to w = S but the optimal 

w is in fact equal to 2.  

 

None of the parameter configurations considered under Case 2, together with the 

additional assumption of linear g(.) and h(.) functions, will generate a RMSE function 

that increases monotonically as w increases. However, such a result is possible if the 

recall bias is sufficiently large. Function D with hmax = 1.0 and gmax = 0 provides an 

example. 
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Figure 1: RMSE comparison
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3.2 Discrete case 

Many variables of interest will refer to incidence or participation and hence will be 

binary in nature. Have you visited your GP in the last 12 months? Have you had a Pap 

test in the last 2 years? If Yi
w and Xi

w are binary variables then the population 

parameter of interest will be denoted by: 

 

pY S
i == )1Pr()9(  

 

and  

 

.)1Pr()10( w
w

iY π==  

 

Here measurement errors are defined as: 

 

).1|0Pr()(

and),0|1Pr()()11(

01

10

===

===
w

i
w
i

w
i

w
i

YXw

YXw

π

π
 

 

The form of the measurement errors represented by (11) makes it clear that the 

measurement error vi
w defined by (1) will be negatively correlated with Yi

w. Unlike the 
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continuous case, the classical errors-in-variable framework is not appropriate in the 

discrete case. 1 

 

Assume that the measurement errors depend on the recall window and that:  
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Hausman, Abrevaya, and Scott-Morton (1998) refer to (14) as the monotonicity 

condition. To see the relevance of this condition note that: 

 

.)]()(1[)()1Pr()()15( 100110 w
w
i

w
i wwwXXE ππππ −−+===  

 

Thus the monotonicity condition ensures that Pr(Xi
w) (reported use) increases in 

Pr(Yi
w) = πw (actual use).  

 

The relationship between sub-period and target incidence is assumed known and for 

simplicity has the same form as used in the continuous case (i.e. pSww )/(=π ). For 

discrete data this is a relatively crude representation for the imputation process that is 

best suited for situations where the population proportion is small when w = 1. Under 

these conditions, (2) remains the natural estimator of the target population proportion 

but to emphasize that it is now a proportion that is being estimated the sample 

statistics defined by (2) are denoted by .  wp̂

 

With these assumptions, the following can be derived: 

 

                                                 
1 In fact it may also not be appropriate in continuous case, see for example Bound, Brown and 
Mathiowetz, 2000. 
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As in the continuous case the discussion of results is organized around a number of 

cases.  

 

Case 1: No recall bias 

 

Here π01(w) = π10(w) = 0 and (17) simplifies to: 

 

N

p
w
Sp

pMSE w


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



 −

=)ˆ()18(  

 

and it is clear that the optimal recall window is w = S. There is no gain from choosing 

a smaller recall window; such choices would involve collecting less data for the same 

sample size.  

 

Case 2: Comparison of w =1 and w = S 

 

Table 2 provides relative root mean square error (RMSE) measures for a particular set 

of parameters chosen to be: N =1000, S = 12, p = 0.6 and classification errors that 

range from zero to 0.3. Values in the table that are less than unity imply that the recall 

window of w = S is preferred over w = 1 if the objective is estimation of the 

population rate of incidence over the target period. 
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There are clear patterns in these results that can be summarized as follows: 

 

• Even in the presence of misclassifications errors, w = S is preferred over w = 1 

often strongly so, for a wide range of parameter configurations; 

• From (16), notice that misclassifications may introduce bias that may be either 

positive or negative. Moreover, when classification errors are similar they tend 

to cancel each other out and such a situation tends to favour a longer recall 

window. This situation corresponds to entries on or near the main diagonal of 

the table.  

• On the other hand w = 1 is preferred over w = S when just one of the recall 

errors is large. 

• Changes in bias also explains why, given a particular level of one type of 

misclassification error, there is no systematic movement in the preference for 

w = S over w = 1 as the other misclassification rate is changed. 

 

Table 2: Relative RMSE of alternative estimators of p:  
Case 2 with N = 1000, S = 12, p = 0.6* 

 
 π10(S) 
π01(S) 0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.19 0.41 0.75 1.10 1.46 1.82 2.18
0.05 0.30 0.22 0.52 0.87 1.22 1.58 1.94
0.10 0.52 0.22 0.31 0.63 0.99 1.34 1.70
0.15 0.75 0.41 0.19 0.41 0.75 1.10 1.46
0.20 0.98 0.63 0.30 0.22 0.52 0.87 1.22
0.25 1.22 0.87 0.52 0.22 0.31 0.63 0.99
0.30 1.46 1.10 0.75 0.41 0.19 0.41 0.75

* Table entries represent  ).ˆ(/)ˆ( 1pRMSEpRMSE S

 
Case 3: Optimal w  

 

Figure 2 depicts a range of  functions that show the types of patterns that 

can result from different parameter configurations. All of the reported functions 

assume N = 1000, S = 12, p = 0.6 with the different functions generated by allowing 

the proportion of each type of classification errors to vary but subject to the restriction 

that π

)ˆ( wpRMSE

01(S) +π10(S) = 0.2. Each RMSE function is indexed by π01(w) and these errors 

are assumed to vary linearly with w. 
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Figure 2: RMSE comparisons of probability estimates 
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Just as in the continuous case, these RMSE functions can follow a variety of shapes 

and typically are non-monotonic. Moreover, the optimal recall window can be w = 1 

as it is for π01(S) = 0, π10(S) = 0.2; w = S as it is for π01(S) = 0.05, π10(S) = 0.15; or the 

optimal window may lie between these two extremes as it is in the remaining 

configurations. 

 

 

4. Some empirical results from Swedish data  
 

To illustrate how the previously derived results can be used to inform survey design 

we provide an example that is based on information concerning recall error associated 

with the number of nights spent in hospital over the previous three months obtained 

from Statistics Sweden’s Survey of Living Conditions (the ULF survey) which has 

been linked to the national Patient Register (the National Board of Health and 

Welfare).  Every year, Statistics Sweden conducts systematic surveys of living 

conditions, in the form of one-hour personal interviews with randomly selected adults 

aged 16-84 years. Since 1975 around 7,000 individuals have been interviewed each 

year. The Patient Register includes information about ICD-codes, hospital admissions, 

and the total length of stay in hospital over the past three months.  
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Information on the length of stay in hospital (number of nights) over the last three 

months by 11,948 patients from the 1996 and 1997 surveys was compared with 

registry data to determine the accuracy of reporting over this period. For the purposes 

of this example we assume that the patient registry is the gold standard by which the 

accuracy of reported use can be judged. Based a comparison of these data: 11,368 

people were classified as true negatives; 368 as true positives; 135 people as false 

positives; and 65 as false negatives. Of the 445 people that had at least one 

hospitalization, the mean (variance) in the number of nights over the last three months 

was 9.6 (172.6) based on patient registry data, and 8.8 (178.7) nights were reported in 

the survey.  

 

To illustrate how these data can be used to derive an optimal recall length we assume 

that the maximum period of time over which there would perfect recall is one week 

(i.e. 0)1()1( 0110 == ππ  and h = ) =0) and that the target period is three months 

(i.e 12 weeks). As there is no information on the degree of error for other periods 

linear interpolation was used to estimate errors for different values of w between the 

perfect recall and the target period. 

)1( 1(g

 

Firstly, consider the discrete case where the statistic of interest is the proportion of 

people spending at least one night in hospital. Based on the registry data, 445 of the 

11,948 surveyed (i.e ) actually spent time in hospital. In terms of recall 

error,

037.0=p

)12(10π =135/11,503 = 0.01 and )12(01π =59/386 = 0.13 and hence the 

proportion of people reporting a hospital stay over the last three months 

. As the pattern of errors in the survey response is consistent with the 

monotonicity condition, (17) can be used to calculate the RMSE for different lengths 

of recall and these are shown in Figure 3(a). While the target period of 12 weeks has 

the lowest RMSE, suggesting that it is the optimal recall period, it should be noted the 

level of error is only 3% below using a one week recall period.  

044(XE .0) =w
i

 

To illustrate the continuous case, consider estimating the mean number of nights in 

hospital for those individuals which the patient registry indicated had at least one 

hospital stay over the target period. Using the summary statistics for the registry and 

survey data, 09.018.8/6.9)( −=−=wh  and 03.016.172/7.178)( =−=wg . Using (7) 

the RMSE for different lengths of recall is shown in figure 3(b). It is evident that 
 15



substantial reductions in the degree of error can be achieved by increasing the recall 

period beyond one week (i.e. perfect recall period) and that a recall period of around 8 

weeks will minimize the RMSE. This would suggest that if one were concerned with 

estimating hospital use over the target period, a survey with a two month rather than a 

three month recall period may be optimal, although the gains in terms of reductions in 

RMSE are relatively modest.  

 

 
Figure 3a: Discrete case: whether hospitalized in last three months
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Figure 3b: Continuous case: No. Nights in hospital
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5. Discussion 
 

While stylised, the modelling serves to highlight the key aspects of the generic 

problem. There are tradeoffs. While longer recall windows may invariably introduce 

recall errors, using shorter recall windows also come with costs associated with less 

information. The analysis so far has served to illustrate these tradeoffs and to stress 

that the case for eliminating recall errors is not necessarily compelling. 

 

It is worth highlighting some important dimensions of the problem that impact the 

analysis and results thus far. In particular, we have assumed a known imputation or 

prediction process for translating sub-sample data to an estimate of the key parameter 

for the target period window. For the discrete case there is a relationship between 

Pr(Yi
w) = πw and Pr(Yi

S) = p and this was assumed known so that converting an 

estimate of πw into an estimate of p did not introduce further error. In practice this is 

unlikely to be the case and having to infer say annual participation rates from monthly 

ones or having to somehow scale monthly consumption into a yearly estimate will 

surely introduce added estimation error. There may be cases where such errors are 

small, such as prescription drugs where consumption patterns are regular and hence 

very predictable. But there will be other situations where consumption is very 

irregular and/or subject to seasonal variation making prediction much more difficult.   

 

Other things being equal, introducing an imputation process to deal with the missing 

data (Briggs et. al. 2003) is likely to favour collecting data over the target period as 

the default in survey design. Otherwise, the argument has to be that the researcher, 

with accurate sub-period data, can do a better job of predicting utilisation or 

consumption over the target period than the respondent does in recalling this 

information. 

 

A key aspect of this line of argument is the distinction between the target period and a 

narrower period that eliminates recall error. Obviously if women can accurately recall 

whether they have had a Pap test in the last week and one week is a policy relevant 

and interesting period over which to measure Pap test incidence then the distinction is 

not overly important. However, in this example the policy relevant period is more 

likely to be one or two years rather than one or two weeks. It is also possible that 
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short windows designed to eliminate recall error may bring about other forms of error. 

For example, if one is concerned with estimating the number of nights in hospital then 

a short window has the potential to censor longer hospital stays and may introduce 

sample selection bias if the survey is undertaken in the community rather than while 

the patient is in hospital.  

 

Thus far the emphasis has been on estimating a population mean or proportion.  

Clearly, there may be other objectives that could be considered in deciding on the 

optimal recall window. The data may be used in further analyses, say as the dependent 

variable or one of the explanatory variables in a regression analysis. Here we return to 

our original contention that econometricians devote considerable time and effort in 

developing procedures to counteract flawed data. Such efforts are usually in the 

context of data that has been collected by others and potentially for purposes other 

than econometric analysis; see Griliches (1986) for an extended discussion of this 

characterisation.  

 

If researchers have the opportunity to be involved in the survey design then some of 

the problems often encountered with secondary data may be avoided. However, given 

procedures exist that can accommodate measurement errors of the type we have been 

discussing, their availability needs to be considered as part of the design problem. 

What does seem to be a sensible approach is to recognize the issues and be flexible in 

the design of questions and the collection of survey data in general. One such idea is 

the use of validation surveys. As Bound, Brown and Mathiowetz (2000, p. 3832) 

conclude: 

 

“… there are clear payoffs to greater involvement of users in the design of validation 
studies”  

 

and that  

 

“… in general we believe that more effort devoted to collecting and analyzing validation 
data would significantly enhance the value of survey data.” 

 

There is no shortage of validation studies in health; for example see the studies 

surveyed in Bound, Brown and Mathiowetz (2000), Bowman, Sanson-Fisher and 

Redman (1997) and Evans and Crawford (1999). However, the emphasis is invariably 
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on determining the accuracy and validity of particular survey instruments and data 

collection modes. What is missing is the use of validation data in conjunction with 

large-scale surveys in order to improve inferences.    

 

To reliably estimate appropriate recall periods in future health care surveys it is 

necessary to gain an understanding the nature of recall error for different types of 

health care. One way of estimating optimal recall periods would be undertake a 

randomised trial in which patients were asked to recall utilisation of different periods 

and these would then be compared with objective data on health care use, in order to 

estimate how the degree of error changes over time. Given variation in the frequency 

and pattern of use of health care (e.g. the proportion of the population visiting a 

physician versus attending a hospital over the previous year) and the potential for 

variation in the propensity to recall different types events it is likely that the optimal 

recall period may vary across different types of health care. Another aspect of survey 

design is to define the target period that is relevant for the research issue under 

consideration, as this will also influence the optimal recall period. 

 

 

6. Conclusions 
 

A common criticism of statistical analyses using self-reported data is the problem 

caused by recall error. A possible response by survey designers is to choose extremely 

short recall windows in order to eliminate this source of error. For example, some 

national health surveys only ask health service use over the previous two weeks. One 

possible interpretation of our results is that such a reaction may not be entirely 

justified. Recall error may be eliminated but at a potentially huge cost in terms of 

information loss. These tradeoffs need to be considered and factored into decisions on 

recall windows. Moreover, if recall errors in the form of recall bias are known to exist 

it is possible that alternative estimators may be employed to correct for the resultant 

biases. Such approaches were not included in our comparisons and if available would 

likely add support for using longer rather than shorter recall windows.  

 

Similarly, we abstracted from the imputation problem that arises when short recall 

windows are used. If the ultimate objective is to measure consumption or utilization 
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over a target period that is much longer than the recall window then the data collected 

for the sub-period needs to be scaled up in some way in order to produce the desired 

estimate. This is likely to be a non-trivial exercise in many applications. Once again 

this consideration is likely to put more weight on choosing longer rather than shorter 

window lengths. In such cases, the trade-off is between the errors incurred by the 

respondent in recalling consumption over the target period compared with the error 

induced by the imputation process used by the researcher. 

 

Relatively simple models have generated all calculations of optimal recall windows 

but the results are suggestive of a number of important relationships and tendencies. 

With some knowledge of the key parameters it may be possible to decide whether a 

shorter or longer recall window is better. But it is clear that there is no general answer 

to the question of optimal recall windows. It depends on the primary objective of the 

data collection and the full range of window lengths may be optimal for certain 

reasonable circumstances. What we have argued is that there is no compelling reason 

why the default situation in survey design should be a short recall period. 
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