
Moving Costs, Nondurable Consumption and

Portfolio Choice

Nancy L. Stokey∗

University of Chicago

September 27, 2007

Abstract

The substantial adjustment cost for housing transactions affects a home-

owner’s decision about when to move. It also affects her consumption of non-

durables and her portfolio, at dates when a new house is purchased and over

time intervals between moves. These decisions are studied using a calibrated

dynamic model. For reasonable transaction costs, portfolios display substan-

tial swings during intervals between moves and make large jumps when a new

house is purchased. This suggests that a measure of housing wealth will be

useful in empirical studies of portfolios at the micro level. The transaction cost

has only a modest effect on nondurable consumption, however. Consequently,

it can explain very little of the equity premium puzzle. These conclusions are

robust to the value assumed for the elasticity of substitution between housing

and nondurables, a parameter that over a broad range has a surprisingly weak

impact on the consumer’s behavior.

∗I am grateful to Monika Piazzesi, Robert Lucas, Narayana Kocherlakota, and

Robert Shimer for helpful comments.
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For most individuals housing accounts for large fractions of both consumption

and wealth. But housing is important for another reason as well. Moving typically en-

tails substantial adjustment costs, so individuals adjust their consumption of housing

services infrequently. As age, wealth, family size, and other household characteristics

change, the consumer must decide whether and when to sell her current house and

buy a new one, incurring the adjustment cost. She must also make decisions about

nondurable consumption and her portfolio of financial assets. Between moves the

size and direction of the latter adjustments are influenced by the fact that housing is

fixed, and when she sells one house and buys another her nondurable consumption

and portfolio take discrete jumps.

This paper studies the behavior of an infinitely lived consumer making these

decisions. The model focuses on changes in the consumer’s wealth as the driving

variable, ignoring life cycle effects. This approach, which allows the use of a time-

invariant Bellman-type equation, highlights some of the main forces at work and

makes the problem tractable.

A calibrated version of the model is simulated, and the quantitative results are

reasonable. With an adjustment cost of 8%, the consumer allows her wealth (perma-

nent income) to rise or fall by about 50% between moves.

The consumer’s portfolio of financial assets displays broad swings between moves

and large jumps at the time of a move. Portfolio choice in the model depends on the

local risk aversion of the consumer’s value function for wealth, and the shape of this

function is distorted by the presence of the transaction cost. Thus, with a transaction

cost, risk aversion depends on the consumer’s ratio of total wealth to housing wealth,

although absent the transaction cost it is constant. As in Grossman and Laroque

(1990), risk aversion in the value function is lower when the ratio of housing wealth

to total wealth is near a threshold that triggers a move and higher when that ratio is

at the level it assumes just after a move. Thus, the share of wealth held in the risky
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asset changes as the consumer’s wealth rises or falls, increasing by eleven percentage

points between its post-transaction level and its level just before a move to a bigger

house. It then jumps down when the new house is purchased.

These wide swings suggest that including a measure of housing will be useful in

empirical studies of cross-section or panel data on portfolios. The way that hous-

ing affects these decisions is subtle–it is non-monotone–but the calibrated model

suggests that the effects are substantial.

Between moves nondurable consumption rises and falls with the consumer’s

wealth, with the size of the change depending on the elasticity of substitution be-

tween housing and nondurables and the elasticity of intertemporal substitution. But

nondurable and total consumption are remarkably similar to what they would be in

the absence of a transaction cost. They are also remarkably insensitive to the value

assumed for the elasticity between nondurables and housing. This insensitivity may

explain why empirical estimates of that parameter vary over such a wide range.

The decades-old hypothesis that adjustment costs for housing explain the equity

premium puzzle is also examined. Given the insensitivity of total consumption to the

transaction cost, the conclusion here is not surprising: the adjustment cost works in

the right direction, but for reasonable parameter values the effect is small. Even with

a very low elasticity of substitution, the most favorable case, the transaction cost can

explain only a modest fraction of the puzzle.

Finally, it is interesting to note that the theoretical model here produces a value

function that is strictly concave. Thus, the non-concavities found in other models

arise from additional features, not from adjustment costs alone.

The rest of the paper is organized as follows. Section 1 contains a brief review

of the related literature. Preferences are described in section 2 and a model without

transaction costs is studied briefly in section 3. The model with transaction costs is

set out in section 4, the calibration is described in section 5, and the simulations are
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presented in section 6 Section 7 discusses the model’s predictions about the equity

premium puzzle, and section 8 concludes.

1. Related literature

There is a sizable literature, going back two decades, asking whether including

durable goods can improve the fit of asset pricing models. Early attempts assumed

that consumption of durables is flexible in the sense that there are no adjustment

costs. In this group are the papers by Dunn and Singleton (1986) and Eichenbaum

and Hansen (1990). They found that including durables does little to improve the fit

of the model.

The theoretical paper by Grossman and Laroque (1990) provided a framework for

studying the behavior of an individual who consumes only one good, housing services,

and faces adjustment costs for changing her level of consumption. They showed

that the adjustment cost affects the consumer’s portfolio choice in a systematic way.

Specifically, consumers who have recently adjusted their housing stock, and hence

anticipate a long interval of time before another adjustment, are more risk averse

than those who anticipate making an adjustment in the near future. Their model

does not include nondurable consumption, however, so it is difficult to calibrate and

provides no predictions about the behavior of standard Euler equations.

Several subsequent papers have further explored the implications of adjustment

costs. Marshall and Parekh (1999) study a model in which the adjustment cost applies

to total consumption, not just housing. They find that even small values for this

adjustment cost induce much smoother consumption behavior, and hence are quite

successful in explaining the equity premium puzzle. However, it is not clear what those

adjustment costs represent, or what data could be used to estimate or calibrate them.

Fukushima (2005) looks at a model with discretionary and precommitted consumption

goods, where in any period only a randomly chosen fraction of households are allowed
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to adjust the precommitted component of their consumption. The precommiteed

component makes consumption smoother, but the ad hoc nature of the adjustment

mechanism makes the model difficult to match to panel data.

Other work has explored the potential for adjustment costs to produce value

functions with regions that are not concave. Chetty and Szeidl (2007) examine the

effect of an adjustment cost in a setting with one large informational shock and one

decision. They find that the ex post value of the consumer, as a function of realized

wealth, has alternating convex and concave portions. Similarly, Vereshchagina (2007)

studies a model with a one-time housing adjustment decision and obtains a similar

result. But transaction costs do not necessarily produce non-concavities. As will be

seen below, the model here has a value function that is strictly concave.

Flavin and Nakagawa (2004) study a model similar to the one here that also

includes life cycle effects and house price risk, and nests a habit persistence model as

well. Using data from the PSID, they estimate a very low elasticity of substitution

between housing and nondurables. They also find that while the habit persistence

model can be rejected, the adjustment cost model cannot be. Using aggregate (NIPA)

data, Siegel (2004) studies a similar model, and also finds evidence that adjustment

costs are important. However, using a different measure of housing consumption in

the PSID, he estimates a much higher elasticity of substitution between housing and

nondurables. The present paper is closely related to these two, simplifying the model

to make it analytically tractable and amenable to calibration and simulation.

Martin (2003) looks at nondurable consumption around the time of a housing

adjustment. Using PSID data, he distinguishes households that are likely to make

upward and downward adjustments in their housing from those that are unlikely

to adjust. He finds evidence those likely to move to a larger house reduce their

consumption of nondurables, and those likely to move to a smaller house raise their

consumption of nondurables. The model here predicts such behavior if the elasticity
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of substitution between housing and nondurables is smaller than the elasticity of

intertemporal substitution.

Finally, two recent papers find evidence of state-dependent risk aversion. Using

data from the Survey of Income and Program Participation, Chetty and Szeidl (2004)

find that households who have moved recently, and hence are unlikely to move again

in the near future, choose less risky portfolios than those with longer tenures at their

current residence. Using a sample of homeowners from the PSID, Kullmann and

Siegel (2005) find that lower ratios of net worth to housing wealth are correlated

with lower stock market participation and reduced holdings of stocks and other risky

assets. The model here predicts that risk aversion varies with the ratio of total wealth

to housing wealth, but the relationship is not monotone. Risk aversion is high just

after a housing transaction, when the wealth ratio has been adjusted to a target value.

It then falls as the consumer’s wealth increases or falls, with housing constant. But

risk aversion is not monotone in housing tenure either, since total wealth does not

change monotonically with tenure. 1

2. Preliminaries

There are two consumption goods, housing services H and a single composite

nondurable C. The flow of housing services H reflects both size and quality, in-

cluding features like location, lot size, and other attributes. The consumer has CES

preferences over the two goods,

U(C,H) =


£
ωC1−ζ + (1− ω)H1−ζ¤1/(1−ζ) , ζ 6= 1,
CωH1−ω, ζ = 1,

1In addition, many papers have studied other channels–like house price risk–through which

housing affects portfolio choice and nondurable consumption. For example, see Flavin and Yamashita

(2002), Campbell and Cocco (2005), Cocco (2005), Fukushima (2005), Lustig and Nieuwerburgh

(2006), Piazzesi, Schneider, and Tuzel (2007), and Fillat (2007).
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where ω ∈ [0, 1) is the relative weight on nondurables, and 1/ζ is the elasticity of
substitution, and her intertemporal utility function is

E0

"Z ∞

0

e−ρt
{U [C(t), H(t)]}1−θ

1− θ
dt

#
, (1)

where θ is the coefficient of relative risk aversion and ρ is the rate of time preference.

The consumer’s only income is the return on her portfolio. She holds two assets,

a safe one with a constant rate of return r, and a risky one with mean return µ > r

and variance σ2 > 0. Define the ratio

γ ≡ (µ− r) /σ2,

so γ > 0 is the inverse ‘price’ of risk. We will assume that the return r on the safe

asset is also the interest rate on mortgages.

The price of the nondurable is normalized to one. The purchase price of housing

is constant, and housing units can be chosen so that this price is also one. The direct

cost of housing then has three components: interest at the rate r, depreciation at the

rate δ, and maintenance at the rate m. Hence the (flow) cost of housing services is

ph = r+δ+m. Housing may also have an indirect cost because it enters the portfolio

constraint. That constraint will be discussed below.

Let Q denote the consumer’s total wealth, H the value of her house, and A her

holdings of the risky asset. Then Q − A denotes wealth in the safe asset, including

housing.

Under the parameter restrictions that will be used here the consumer always

chooses A > 0, so we do not need to impose a lower bound on A. But we will impose

an upper bound. The constraint has two parts.

First, there is an exogenously given minimal equity ∈ (0, 1] that an owner must
hold in her house. Since the mortgage interest rate is the same as the return on the

safe asset, this is equivalent to requiring that owner hold safe assets equal to H. For

= 0 the consumer can be interpreted as a renter.

7



In addition, if the consumer is sufficiently risk tolerant she may want to short the

safe asset, i.e., to buy the risky asset on margin. We will allow her to do so but will

limit the size of such holdings–which is like imposing a margin requirement–and

assume that the minimal equity in her house cannot be used as collateral. Specifically,

we will require

A ∈ [0, ass (Q− H)] , (2)

where ass ≥ 1 reflects the size of the margin requirement. If ass = 1, the consumer
cannot buy the risky asset on margin.

Given C,H,A,Q, the change in the consumer’s total wealth over a short interval

of time dt is

dQ = [r (Q− A−H) + µA− (δ +m)H − C] dt+ σAdz (3)

= [rQ+ (µ− r)A− phH − C] dt+ σAdz,

where z is a Wiener process. If Q − A ≥ H the consumer owns her house outright,

and if the inequality is strict she has additional wealth invested at the risk-free rate.

The following parameter restrictions will be used throughout.

Assumption 1:

0 < r < µ, σ2 > 0, ζ > 0, 0 ≤ ω ≤ 1,
0 ≤ ≤ 1, ass ≥ 1, ρ > 0, θ > 0, θ 6= 1,
δ,m ≥ 0, ρ+ (1− θ) δ > 0.

The case θ = 1, which represents logarithmic utility, can be treated along similar

lines. The last restriction will be used in section 4.

3. The frictionless model

A useful benchmark for comparisons is the model with no transaction cost. In

this case the consumer’s problem is to choose (C,H,A) to maximize (1) subject to

the budget constraint (3) and the portfolio constraint (2), given initial wealth Q0 > 0.

8



Since the objective function is homogeneous of degree (1− θ) in (C,H,A,Q) and

the constraints are homogeneous of degree one, the optimal ratios H/Q, A/Q, etc.

are constant over time. Hence the consumer’s problem can be written as

W (Q0) = max
c≥0,h∈[0,1/ ]
a∈[0,ass(1− h)]

E0

"Z ∞

0

e−ρt
[u(c)hQ(t)]1−θ

1− θ
dt

#
(4)

s.t.
dQ

Q
= [r + a (µ− r)− (ph + c)h] dt+ aσdz,

where c ≡ C/H is the ratio of nondurable consumption to housing services, h ≡ H/Q

is the ratio of housing to wealth, a ≡ A/Q is the portfolio share in the risky asset,

and u(c) ≡ U(c, 1) is the intensive form of the CES aggregator.

For any fixed (c, h, a), total wealth Q is a geometric Brownian motion with

constant drift and variance. Hence E0
£
Q(t)1−θ

¤
= Q1−θ

0 eΓ(c,h,a;θ)t, where

Γ(c, h, a; θ) ≡ (1− θ)

·
r + (µ− r) a− (ph + c) h− θ

1

2
(σa)2

¸
. (5)

Consequently, if ρ > Γ the value function in (4) has the form W (Q0) = Q1−θ
0 w∗,

where

w∗ ≡ max
c≥0,h∈[0,1/ ]
a∈[0,ass(1− h)]

[u(c)h]1−θ

1− θ

1

ρ− Γ(c, h, a; θ)
. (6)

The next assumption insures that Γ satisfies the required condition.

Assumption 2: If 0 < θ < 1,

ρ > (1− θ)×
 [r + (µ− r) ass − θa2ssσ

2/2] , if θ < γ/ass,

[r + (γ/θ) (µ− r) /2] , if θ ≥ γ/ass.

The following proposition characterizes the solution. The proposition first describes

the solution for renters, consumers with = 0. Although a renter faces a short sale

constraint, that constraint does not involve her housing choice. Thus, there is a

certain type of separation between her consumption and portfolio decisions, even if
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her portfolio constraint binds. For a buyer, a consumer with > 0, the solution is

the same as the renter’s if her (tighter) portfolio constraint is satisfied for the renter’s

choices. If that constraint is not satisfied, the buyer’s consumption and portfolio

choices are intertwined in a more complicated way.

Proposition 1: Let Assumptions 1 and 2 hold.

(a) For = 0 the unique solution to the problem in (6) is

aR(θ) = min {γ/θ, ass} , (7)

cR =

µ
ωph
1− ω

¶1/ζ
,

hR(θ) =
1

cR + ph

1

θ

½
ρ− (1− θ)

·
r + σ2γaR(θ)− θ

1

2
σ2a2R(θ)

¸¾
.

Moreover, hR is strictly concave in θ, reaching a maximum where

r − ρ

σ2
=

µ
θ

2
aR − γ

θ

¶
θaR.

(b) For > 0, the unique solution to the problem in (6) is as in (7) if ass [1− hR(θ)] ≥
γ/θ. Otherwise

[cB(θ, ), hB(θ, )] = argmax
c,h

[u(c)h]1−θ

1− θ

1

ρ− Γ[c, h, ass (1− h)]
, (8)

aB(θ, ) = ass [1− hB(θ, )] .

In this case

hB(θ, ) < hR(θ) and cB(θ, ) > cR.

Proof: See the Appendix.

For renters the share of wealth in the risky asset aR(θ) is strictly positive and

depends only on γ/θ and ass. For those who are sufficiently risk averse the solution is

interior, at aR = γ/θ, while for those who are sufficiently risk tolerant the constraint

binds and the solution is aR = ass.
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For renters the ratio cR of nondurable consumption, and hence also the expen-

diture share of housing ph/ (ph + cR) , depend only on the rental price ph and the

parameters ω and ζ, and not on θ, ρ, γ, σ2.

For renters the ratio of total expenditure to wealth, (cR + ph)hR(θ), depends on

θ, ρ, γ, σ2 but not on ph, ω or ζ. The function hR(θ) has an inverted U-shape. If r = ρ

and ass is large, then hR(θ) peaks at θ̂ = 2. The peak occurs at a lower value if ρ > r.

The hump shape is the result of two opposing forces. Consumers with lower θ

are more risk tolerant, so they hold portfolios with higher expected rates of return.

Hence they also choose lower ratios of expenditure to wealth. But consumers with

higher θ have have a stronger incentive to smooth consumption over time. Hence

they also prefer lower ratios of expenditure to wealth. The first force predominates

for values of θ below a certain threshold, and the second for θ above that threshold,

leading to the hump shape for hR(θ).

For a portfolio-constrained owner, the house/wealth ratio is lower than for a

renter. For this consumer housing services have an extra cost at the margin, the

incremental portfolio distortion. Hence she chooses a lower ratio of housing to non-

durables.

4. The model with transaction costs

Suppose the consumer must pay a transaction cost of λH when she adjusts her

housing, where λ > 0. Then she will adjust her housing only occasionally, by discrete

amounts, and her budget constraint has two parts. At dates when she adjusts her

housing her wealth falls by the amount of the transaction cost. At all other times the

durable depreciates deterministically and wealth grows stochastically.

In addition to voluntary housing adjustments, suppose that moves may be re-

quired for exogenous reasons. Job changes that involve relocating to a new city and

changes in family size are two possible interpretations of these moves. Assume that
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this shock is Poisson, with a constant arrival rate κ.

Define the stopping time TX as the arrival of the next exogenous relocation

shock, and define the stopping time TA as the time the consumer chooses for the next

adjustment in case an exogenous has not occurred. The time of the consumer’s next

housing adjustment is the minimum of these two, T 0 ≡ TA ∧ TX .
With a transaction cost for housing two state variables are needed, Q and H. But

the consumer’s value function V (Q,H) is, as before, homogeneous of degree (1− θ)

in the state variables, and the policy functions for C,A, and H 0 are homogeneous of

degree one. Hence a normalized form of the problem can be written in terms of a

single state variable, a ratio. It is convenient to use q = Q/H = 1/h. The Bellman

equation is then

v(q0) = sup
{c(t),a(t)},TA,q0

E0

(Z T 0

0

e−ηt
u[c(t)]1−θ

1− θ
dt+ e−ηT

0
µ
q(T 0)− λ

q0

¶1−θ
v (q0)

)
(9)

s.t. dq = {[r + δ + (µ− r) a] q − (ph + c)} dt+ σaqdz,

a ∈
·
0, ass

µ
1−

q

¶¸
, t ∈ [0, T 0),

T 0 = TA ∧ TX ,
q0 ≥ ,

where v(q) ≡ V (q, 1),

η ≡ ρ+ (1− θ) δ,

and as before c = C/H and a = A/Q. Assumption 1 insures η > 0. A solution

consists of a value function v(q) defined on R+ satisfying (9), and policy functions

{c(t), a(t)} , TA, q0 that attain the maximum. As shown in the Appendix, under As-
sumptions 1 and 2 v is well defined.

Two properties of the solution are immediate from (9). First, the maximizing

value for q0 does not depend on the state q(T 0) when the adjustment is made. Define

M ≡ max
q0

v (q0)
q01−θ

, (10)
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and let S denote the return point, the optimal value for q0. Thus, M is the optimized

value for an individual with net wealth Q = 1 when she buys a house, and S is the

wealth/house ratio she chooses.

In addition, the stopping time chosen by the consumer has the form TA = T (b)∧
T (B), where T (β) denotes the first time the stochastic process q reaches β, and 0 ≤
b < B < +∞ are optimally chosen thresholds. Thus, the state has an inaction region,

the open interval (b, B) . While the state remains inside this interval the consumer

does not sell her house voluntarily, although the exogenous moving shock may force

her to do so. The consumer immediately adjusts her housing if q is outside the interval

(b, B) . Hence the value function outside the inaction region has the form

v(q) = (q − λ)1−θM, q /∈ (b,B) . (11)

After an initial transaction, if required, the state remains inside the interval (b, B).

To characterize the value function v, the critical points b, S, B, and the policy

functions c and a, we can use the fact that inside the inaction region the value function

satisfies the Bellman-type equation

(η + κ) v(q) = max
c,a∈[0,ass(1− /q)],q0

½
u(c)1−θ

1− θ
+m(q)v0(q) (12)

+
1

2
s2(q)v00(q) + κ (q − λ)1−θ

v (q0)

(q0)1−θ

)
,

where

m(q) ≡ [r + δ + (µ− r) a] q − (ph + c) ,

s2(q) ≡ (σaq)2 ,

are the instantaneous drift and variance for q under the optimal policies a(q) and

c(q). (See Stokey 2007, Ch. 9 for a more detailed discussion.)

The interpretation of (12) is fairly standard. The first term on the right is the

current utility flow from consumption. The second and third, which come from an
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application of Ito’s lemma, are the expected ‘capital gain’ from changes in the state

variable. To interpret the final term, subtract κv(q) from both sides. Then the final

term on the right, which is negative, is the expected net loss from the exogenous

moving shock. The remaining term on the left side ηv(q) is the ‘current return’ on

the value v.

The optimal policies for the portfolio and nondurable consumption are found by

maximizing the term in braces in (12). Hence the optimal portfolio is

a(q) = min

½
γ

−qv00/v0 , ass
µ
1−

q

¶¾
. (13)

The expression on the right is exactly analogous to the one for the problem with no

transaction costs in (7). The only difference is that here the relative risk aversion of

the value function, −qv00/v0, varies with q. With no transaction cost the transaction

cost the value function has the form W (Q) = Q1−θw∗, so −QW 00/W 0 = θ.

The condition for nondurable consumption is

d

dc

·
u(c(q))1−θ

1− θ

¸
= v0(q). (14)

The term in square brackets is instantaneous utility, as a function of nondurable con-

sumption only, when housing services are fixed at unity. Nondurable consumption

c(q) increases with wealth, but the extent to which it varies depends on the substi-

tution elasticity 1/ζ and the intertemporal elasticity 1/θ. Lower elasticities imply a

weaker response for nondurable consumption.

Optimal choice of the boundaries b and B requires that value matching and

smooth pasting conditions hold. That is, both v and v0 must be continuous. From

(11) we see that this requires

lim
q↓b

v(q) = (b− λ)1−θM, (15)

lim
q↑B

v(q) = (B − λ)1−θM,

14



lim
q↓b

v0(q) = (1− θ) (b− λ)−θM,

lim
q↑B

v0(q) = (1− θ) (B − λ)−θM,

whereM, defined in (10), is the optimized value for a consumer with unit wealth (after

the transaction cost is paid) who is buying a new house. In addition, the return point

S satisfies

v(S) = S1−θM, (16)

v0(S) = (1− θ)S−θM.

Although an analytic solution is not available, it is not difficult to compute solutions

computed numerically, and we turn next to the simulations.

5. Calibration

The model has thirteen parameters: (µ, σ, r, ass, ) describing asset markets,

(δ, λ,m, κ) for housing, and (ρ, θ, ζ, ω) describing preferences. Parameters about

which there is better information will be fixed throughout the analysis. For the

others I will choose benchmark values and conduct sensitivity experiments.

The asset returns will be fixed throughout at µ = 0.077, σ = 0.1655, and r =

0.015. These values are fairly standard. (See Kocherlakota, 1996, and Mehra and

Prescott, 2006.)

The short sale parameter will be fixed at ass = 1.20 throughout, which allows

some scope for the consumer to buy the risky asset on margin. Minimum down

payments for homeowners are typically 10-15%. The upper end of this range will be

used here, = 0.15. In the simulations below the portfolio constraint involving these

two parameters almost never binds.

Since most people maintain their houses rather than allowing them to depreciate,

I will set δ = 0 throughout.
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Smith, Rosen, and Fallis (1988) estimate the monetary cost of selling a house

to be 8% - 10% of the value of the unit. This figure includes agents’ commissions,

legal fees, taxes and other transaction costs, and moving costs. In addition there are

costs that are harder to measure, such as the time cost of search, the psychic cost of

disruption, and so on. I will use a conservative figure, λ = 0.08, for the benchmark

and experiment with other values.

A key element in the model is the ratio of total wealth to housing wealth. The

model includes only tangible wealth, while in fact the bulk of ‘total wealth’–in the

sense of what generates income–is intangible wealth, human capital. Capital’s share

in national income is about 1/3, so total wealth is about 3 times the stock of physical

capital. Residential structures are about 40 - 50% of total private fixed capital.2, so

total physical capital is about 2.0 - 2.5 times the housing stock. Multiplying these

two ratios suggests a figure of about 6.0 - 7.5 for the ratio of total wealth to housing

wealth.

The total wealth/housing ratio in the model is sensitive to the maintenance cost

m. That parameter is set at m = 0.04, a value that produces average wealth/housing

ratios in the appropriate range. This figure for maintenance does not seem unreason-

able, since it should be interpreted broadly. Thus, it includes property taxes, heating,

and other costs that are difficult to adjust and proportional to the value of the house.

Little direct evidence is available on the hazard rate for exogenous moves. I will

use κ = 0 for the benchmark and experiment with a positive value.

There are four preference parameters, ρ, θ, ζ, and ω. For the rate of time prefer-

ence, ρ = 0.025 will be used throughout. This figure is fairly standard.

There is less agreement about the elasticity of intertemporal substitution, with

values for θ in the range of [1, 10] all having their advocates. With asset returns

fixed at their market values, this parameter is important in determining the average

2See Davis and Heathcote (2005, Table 7), who use NIPA data for 1948-2001.
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growth rate of consumption and wealth. The value θ = 4 produces a growth rate close

to the historical average of 2%, so it will be used for the benchmark and sensitivity

experiments will be conducted with other values.

There is even less consensus about the elasticity of substitution between housing

and nondurables. Using data from a policy experiment that involved low-income

renters in two cities, Hanushek and Quigley (1980) estimate price elasticities of

ε = 0.45 and 0.64. Siegel (2004) obtains two estimates based on homeowners in the

PSID over the period 1978-1997, using the self-reported value of the owner occupied

house. Aggregating across households and using only the time series information,

the estimated elasticity is 0.53. Using the household level information and limiting

the sample to households that own stocks, the estimated elasticity is in the range

[1.23, 1.54] .

Flavin and Nakagawa (2004) also use data from the PSID, for 1975-1985, but

they employ a different measure of housing to sidestep the problem of price variation

across cities. They obtain an elasticity of substitution of ε = 0.13. Using NIPA data

on real rents and the aggregate expenditure share of housing over the period 1936-

2001, Piazzesi, et. al. (2007) estimate the elasticity to be in the range [1.05, 1.25] .

Using CEX data for 27 cities in 2003, a simple regression of the expenditure share of

housing on the relative price of housing leads to an estimated elasticity of ε = 0.45.3

The value ε = 0.5 will be used as the benchmark, and sensitivity experiments

conducted with values of ε = 0.15, 1.0, and 1.25.

The weight parameter ω will be calibrated using the expenditure share of housing.

Aggregate data from NIPA suggest an expenditure share of about 20% over the period

1960-2005, with relatively little variation. Data from the CEX suggests a somewhat

3This estimate excludes Anchorage, which is an extreme outlier. The price data, from Aten

(2005, Tables 3 and 4), are for 2003. The expenditure shares, from Tables 21 - 24 of the Consumer

Expenditure Survey, are for 2003-2004.
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higher figure, around 33%. I will use an intermediate value, calibrating ω in each

simulation so that the expenditure share of housing is 30%.

Table 1 displays the benchmark parameters.

Table 1

µ = 0.077 r = 0.015 ρ = 0.025 ζ = 2

σ = 0.1655 ass = 1.20 θ = 4 λ = 0.08

δ = κ = 0 = 0.15 m = 0.04 ω = 0.184

Another figure that can be used to check the predictions of the model (or to

calibrate κ) is the average length of residence. For persons 15 years and older who

live in owner occupied housing, this figure is 11.3 years.4

6. Quantitative results

a. Frictionless model.–

Figure 1 displays results for the model with no transaction costs (λ = 0) and

risk aversion θ ∈ [0.75, 5.0]. The preference parameter ω is calibrated to give hous-
ing an expenditure share of 30%, and the benchmark values are used for the other

parameters.

Figure 1a shows the portfolio share in the risky asset. The short sale constraint

binds for consumers who are sufficiently risk tolerant, those with θ < θc ≈ 1.9.
Figure 1b shows the ratio of expenditures to wealth, (ph + c) h. The curve is

single peaked, as Proposition 1 predicts for = 0.

Figure 1c shows the average (long run) growth rate for income, consumption and

wealth. It declines with θ over most of the range, with a kink at θc. For θ < θc the

growth rate declines with θ because the expenditure flow increases, while the portfolio

4Calculated from Figure 4 in Schachter and Kuenzi (2002), which is based on Census (SIPP)

data for 1996.
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allocation is almost constant, constrained at (1− h) ass. For θ > θc expenditures

decrease with θ, but there is also a portfolio reallocation toward the safe asset, which

reduces the return on the portfolio. The latter effect swamps the former, so the

growth rate continues to decline. For θ = 4, the growth rate is g = 1.9%.

Figure 1d shows the ratio of total wealth to housing wealth, which is roughly a

mirror image of the expenditure flow/wealth ratio in Figure 1b. For θ = 4 the ratio

is Q/H = 6.0.

b. Benchmark model.–

Figures 2 - 4 display results for the benchmark calibration. The portfolio con-

straint involving housing equity and short sales does not bind.

Figure 2 shows the value function and its first two derivatives, as well as the

value function for a consumer who faces no transaction costs. (The same value for ω

is used here for the consumer who faces no transaction cost.) Both value functions are

smooth and concave, their first derivatives are smooth and convex, and their second

derivatives are smooth and concave. The transaction cost does not create kinks or

nonconvexities.

The adjustment thresholds, indicated with dotted lines, are wealth/house ratios

of b = 3.4 and B = 9.5, and the ratio chosen when a new house is purchased, indicated

with a small open circle, is S = 6.2. Thus, an upward adjustment is made when wealth

has increased by about 52% and a downward adjustment when it has fallen by 45%.

The long run average, which is 6.4, is higher than the (constant) ratio of 5.4 chosen by

a consumer who faces no transaction cost. The transaction cost makes housing more

expensive so less is consumed, producing a higher ratio of total wealth to housing

wealth.

Figures 3 and 4 describe the consumer’s behavior between housing transactions.

Since there is no depreciation, the consumer’s flow of housing services is constant
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over such intervals. Long run averages are calculated using the density function for

q following a start at q = S. (The density, not shown, has a fairly symmetric tent

shape, with a peak at S.)

Figure 3a shows the share of her wealth that the consumer holds in risky assets.

This function is U-shaped, reflecting the fact–first noted by Grossman and Laroque–

that the consumer is more risk tolerant when she is close to the adjustment thresholds,

and more risk averse in the middle of the inaction region. The fairly high risk aversion

coefficient used here, θ = 4, means that the consumer puts only 53% - 64% of her

wealth in the risky asset. The long run average is 55%, a little lower than the 57%

chosen by a consumer facing no transaction cost.

Figure 3b shows nondurable consumption relative to housing wealth. It moves

linearly with total wealth, rising 69% or falling 51% relative to its level just after the

most recent housing adjustment. Its long run average is 13%, which is a little higher

than the 11% for a consumer who faces no transaction costs. The transaction cost

induces the consumer to shift her consumption mix toward nondurables.

The average return on the portfolio (not shown) is 4.9%, and the average growth

rate of consumption, income and wealth (they are all the same) is 2.0%.

Figure 4a shows how total expenditure and its two components change with

wealth, for the benchmark consumer and for one who faces no transaction cost. Since

the consumer’s preferences are homothetic, in the frictionless world expenditures on

housing and nondurables–and hence their sum–increase in proportion to wealth.

Thus, the three dashed lines, for the consumer who faces no transaction cost, are rays

from the origin. With a transaction cost, the consumer’s expenditures on nondurables

increase as her wealth increases, but her housing expenditure is constant. In this

normalized model it is simply ph = r+m = 0.055.With housing fixed, the consumer

who faces a transaction cost substitutes into nondurables. Thus, her nondurable

expenditure increases more strongly with wealth than for the consumer who faces
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no transaction cost. Nevertheless, her total expenditure increases less strongly with

wealth than it would if the transaction cost were absent.

Figure 4b shows the housing share of total expenditure, which falls from about

47% at the lower threshold to about 20% at the upper threshold. The long run average

value, which by construction is 30%, is slightly lower than the 33% for a consumer

who faces no transaction costs (and has the same preference parameters).

On average the consumer spends about 60% of her income, slightly less than a

consumer who faces no transaction costs.

Table 2 describes housing transactions. The fraction of downward adjustments

is small, only 9%. Since the consumer’s wealth grows, on average, only a (relatively

rare) sequence of bad portfolio returns induces her to downsize her house.

Table 2

at b at B

probability of adjustment (q = S) 0.09 0.91

new/old house 0.54 1.51

new/old nondurable consumption 1.11 0.89

change in portfolio share −0.06 −0.11
For transactions at the lower threshold the value of the new house is about 54% of

the value of the one being sold, nondurable consumption rises by about 11%, and the

portfolio share in the risky asset falls by 6 percentage points. For transactions at the

upper threshold, the value of the new house is about 51% higher than the value of the

one being sold, nondurable consumption falls by about 11%, and the portfolio share

in the risky asset falls by 11 percentage points.

For a consumer who has just transacted, with q = S, the expected time to

the next adjustment is 20.8 years. This figure is the expected value for completed

durations, so it is not comparable to the cross section average of 11.3 years in the

data.
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c. Sensitivity analysis: ε.–

As noted above, there is conflicting evidence about the elasticity of substitution

between housing and nondurables. To explore the effect of this parameter, we will

next compare results for elasticities of ε = 1/ζ = 0.15, 0.50, 1.0, and 1.25. In each

case ω is adjusted to keep the average expenditure share for housing at 30%.

A higher elasticity allows the consumer to substitute more easily into nondurables

as her wealth increases, reducing the incentive to pay the transaction cost associated

with a housing adjustment. Thus, as shown in Table 3, the inaction region gets wider

as the elasticity of substitution increases–b falls and B rises.

Table 3

ε b B E [T ] g Pr(B)

0.15 3.9 9.0 14.9 1.98 0.87

0.50 3.4 9.5 20.8 1.97 0.91

1.00 3.1 10.0 26.6 1.96 0.93

1.25 2.9 10.2 28.7 1.96 0.94

The wider inaction region leads to longer expected times between adjustments, with

the expected duration rising from 14.9 years to 28.7 years. The long run growth

rate g does not change much as the substitution elasticity varies, remaining at about

2.0%. The probability that the next adjustment is at the upper threshold increases

slightly with the elasticity, rising from 0.87 to 0.94. As ε increases, the widening of

the inaction region reduces the probability of a sequence of low returns sufficiently

long and severe to induce a downward housing adjustment.

Figure 5a shows the portfolio policies. All four have a U shape. The U is

flatter for higher elasticities, but the functions are quite similar except for the lowest

elasticity, ε = 0.15, where it displays much sharper fluctuations.

Figure 5b shows nondurable consumption. In all cases it increases with wealth,

but higher elasticities lead to larger adjustments–steeper slopes. The behavior of
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nondurable consumption is remarkably similar for the three higher elasticities. Only

for ε = 0.15 is the curve significantly flatter.

These figures suggest why the elasticity of substitution is so difficult to estimate:

within a broad range it has remarkably little effect on behavior.

Next consider the changes when a transaction is made. We will focus on the

upper threshold, since most transactions occur there. These changes are displayed in

Table 4.

Table 4, transactions at B

ε Ĥ/H ĈND/CND a(S)− a(B)

0.15 1.4 1.09 −0.17
0.50 1.5 0.90 −0.11
1.00 1.6 0.84 −0.07
1.25 1.7 0.83 −0.06

The ratio of new to old house values after an adjustment, Ĥ/H, increases slightly

with the elasticity of substitution, from 1.4 to 1.7. This pattern is a straightforward

result of the widening of the inaction region.

The ratio of new/old nondurable consumption, ĈND/CND, falls with the elastic-

ity. Recall that since 1/θ = 0.25, for ε = 0.25 (not shown), preferences are additively

separable between housing and nondurables. In this case nondurable consumption is

unchanged after a housing transaction, ĈND/CND = 1. For ε = 0.15 the ratio exceeds

one, and the consumer increases her nondurable consumption when she purchases a

larger house. For the higher elasticities the ratio is less than one, and the consumer

reduces her nondurable consumption after purchasing a larger house, with the size

of the reduction increasing with the elasticity. Thus, for elasticities exceeding 1/θ

the consumer behaves like someone who is ‘house poor,’ although she is not liquidity

constrained, as that term suggests.

When a transaction is made at the upper threshold, the consumer reduces the
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share of her portfolio in the risky asset. This shift simply reverses, in a single jump,

the increases that occurred gradually as the consumer’s wealth accumulated since the

last housing transaction. The jump is larger for lower elasticities. For ε = 0.15, the

consumer reduces her risky asset holdings by 17 percentage points. For ε = 1.25, the

reduction is only 6 percentage points.

d. Sensitivity analysis: λ,m, κ, θ.–

A higher transaction cost λ has two effects: it increases the incentive to avoid

a housing adjustment and it increases the cost of housing. The first effect tends to

widen the inaction region and increase the expected duration. The second effect shifts

the consumption mix toward nondurables. Thus, it increases the ratio of total wealth

to housing, both at the transaction point and on average, and it tends to shift both

thresholds upward. Thus, the two effects work in opposite directions at the lower

threshold and in the same direction at the upper threshold.

Figure 6 displays these effects. An increase in λ widens the inaction region,

and the effect is greater at the upper end. A higher transaction cost also makes the

consumer more risk averse, but has virtually no effect on nondurable consumption

for a given ratio of total wealth to housing. Instead it simply shifts the likely range

for that ratio. The expected duration between adjustments rises from 16.0 years for

λ = 0.04 to 20.8 and 23.8 at the higher values.

A higher maintenance cost m also makes housing more expensive, shifting con-

sumption toward nondurables and increasing the ratio of total wealth to housing

wealth. Thus, an increase in m shifts the curves in Figures 3a and 3b to the right,

raising the critical values b, S, B.

A positive hazard rate for exogenous moves, κ > 0, means that the consumer is

sometimes forced to sell her house and pay the transaction cost. This makes housing

less attractive and moves more frequent. As with an increase in the maintenance
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cost, the critical values b, S and B increase, and the curves describing the portfolio

and nondurable consumption shift to the right. For a hazard rate of κ = 0.01., the

average ratio of total wealth to housing rises from 6.4 to 7.0, the expected duration

falls from 20.8 to 19.6 years.

Figure 7 shows the effects of changing the risk aversion parameter θ. The most

dramatic effect is, as expected, on the portfolio, with more risk tolerant consumers

holding more of the risky asset. For θ = 2 the short sale constraint comes into play,

constraining the consumer when she is near either transaction threshold. A reduction

in θ increases the consumer’s willingness to substitute intertemporally, shifting the

lower threshold b downward. Changes in θ also produce large changes in the average

growth rate, as suggested by Figure 1c.

7. The equity premium puzzle

A standard exercise in finance5 uses the Euler equation

Et

·
U 0 (Xt+s)

U 0 (Xt)
e−ρs

¡
1 + rjt+s

¢¸
= 1, (17)

which hold for any asset j, to conclude that

µj − r = θCov

µ
dXt

Xt
, rjt

¶
, (18)

where Xt is total consumption, r
j
t+s is the instantaneous return on asset j at t + s,

µj is the expected return on asset j, r is the risk-free rate, and θ is the coefficient of

relative risk aversion. This is the equation commonly used to back out an estimate of

the risk aversion parameter θ, using data on consumption growth and asset returns.

The equity premium puzzle noted by Mehra and Prescott (1985) is a puzzle

because the covariance of consumption growth with asset returns is low, while the

excess return on risky assets is high. Thus, a large value of θ is needed to justify the

5See Mankiw and Zeldes (1991) for more detail.
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excess return on the left side of (18). While it is usually labeled as a puzzle about

the excessively high return on equity, it can as well be viewed as a puzzle about the

excessive smoothness of consumption.

But the relationship in (17) is derived in a frictionless model. If some components

of consumption are costly to adjust, then they will vary less than predicted by the

frictionless model, and hence the covariance of consumption growth and asset returns

will be lower. Thus, a transaction cost for housing offers a potential explanation for

smooth consumption. With an adjustment cost, housing consumption is constant over

long intervals, and for elasticities ε < 1/θ nondurable consumption is also smoother.

The question then is quantitative: are these effects large enough to explain the puzzle?

Using the model here we can calculate the magnitude of the error an econometrician

would make if he estimated θ using the (misspecified) frictionless model.

Let rat = µdt+ σdzt denote the instantaneous return on the model’s risky asset.

First note that with no transaction cost, as in section 3, consumption growth tracks

growth in wealth, so

dXt

Xt
=

dQt

Qt
= [(1− a∗) r + µa∗ − x∗] dt+ σa∗dzt,

where x∗ is the (constant) ratio of consumption expenditures to wealth and a∗ is

the (constant) portfolio share in the risky asset. The term in square brackets is not

stochastic, so

Cov

µ
dXt

Xt
, rat

¶
=

1

dt
E [(σa∗dzt) (σdzt)]

= a∗σ2.

Since a∗ = (µ− r) /σ2θ, the econometrician using (18) would obtain an estimate

(neglecting sampling error) of θ. In the absence of a transaction cost the model is

correctly specified, and the estimate of θ is correct.

Now suppose there is a transaction cost, and consider a consumer who is using the

thresholds b, S,B and the policy functions c(q) and a(q). To compute the covariance
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that would be obtained using long time series, we must average over q values inside

the interval (b,B) using the stationary density and also take into account the discrete

jumps that occur at the boundaries.

First consider expenditure growth inside the inaction region. If the consumer’s

wealth is qt, then her consumption expenditure is

Xt = ph + c(qt),

and the increment to her wealth is

dqt = h(qt)dt+ a(qt)qtσdzt,

where

h(qt) ≡ r [1− a(qt)] qt + µa(qt)qt − [ph + c(qt)]

is the expected return on her portfolio less consumption expenditures. Thus, inside

the inaction region expenditure growth is

dXt

Xt
=

c0(qt)
ph + c(qt)

[h(qt)dt+ a(qt)qtσdzt] .

As before the first term is not stochastic. Thus, averaging across wealth levels with

the stationary distribution ψ(q), we obtain

Cov

µ
dXt

Xt
, rat

¶
= σ2

Z B

b

c0(q)
ph + c(q)

a(q)qψ(q)dq +M, (19)

where M is the contribution of the jump terms.

Next consider jumps. An adjustment at B means the consumer is purchasing

a larger house. Although her nondurable consumption may fall, depending on the

calibration (cf. Table 2), her total expenditure always increases. The reverse occurs

after an adjustment at b. Let JB > 0 and Jb < 0 denote the expenditure jumps at the

two thresholds. Next, note that the jump at B occurs only if dz > 0, and the jump

at b only if dz < 0. Hence M ≥ 0, and the jump terms can only add to the (positive)
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first term in (19). Thus, setting M = 0 gives a lower bound on the covariance, and

using (19) we can place an upper bound on the value θ̂ that an econometrician using

(18) would obtain (neglecting sampling error).

For the benchmark calibration the estimated value would be θ̂ ≤ 4.6, while

the true value is θ = 4.0. A lower elasticity of substitution between housing and

nondurables increases the size of the error, and for the very low elasticity of ε = 0.15

the estimated value is θ̂ ≤ 7.1 Larger transaction costs also increase the error, but

only slightly. With an elasticity of ε = 0.15 and a transaction cost of λ = 0.15, the

estimated value is still θ̂ ≤ 7.1. Thus, while the effect is in the right direction it is too
small to explain much of the equity premium puzzle.

Figure 8 displays total expenditures as a function of total wealth, for a consumer

with a house normalized to size one, for various scenarios. The dotted line is for a

consumer who faces no transaction cost, with ω calibrated to give housing a share

of 30% in total consumption. The substitution elasticity does not matter for this

consumer. The other three curves describe consumers who face a transaction cost of

8% and have elasticities as indicated. Even for the very low elasticity, ε = 0.15, the

transaction cost has has a modest effect on total expenditure. A higher transaction

cost, 15% instead of 8%, narrows the inaction region for this consumer, but otherwise

has almost no impact.

8. Conclusions

Adjustment costs for housing are substantial, so it is not surprising that they

have significant effects on portfolios as well. Empirical work thus far confirms this con-

clusion, with evidence that anticipation of an impending housing adjustment, length

of tenure in the current house, or the ratio of housing wealth to total wealth affect the

more flexible aspects of behavior like nondurable consumption and portfolios. The

model here provides a basis for refining empirical frameworks of this type. It also
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offers a rich set of predictions for other aspects of consumer behavior, such moving

probabilities and the ratio of new to old house values when a family moves.

Adjustment costs for housing have surprisingly little impact on consumption

of nondurables, however, and hence they provide little help in resolving the equity

premium puzzle. Even with a very low substitution elasticity, there is simply too much

response in nondurable consumption. Increasing the expenditure share for ‘housing,’

by including transportation, furniture, and other consumption components that are

closely linked to housing, might help. But it would then be difficult to justify a low

substitution elasticity between the broad ‘housing’ good and the remaining set of

nondurables.

It is interesting that the elasticity of substitution between housing and non-

durables plays a relatively minor role. The fact that changing that parameter over

a wide range has so little effect on the simulation results may explain why empirical

studies have produced such a wide range of estimates.

It is also interesting that the model here produces a value function that is strictly

concave over its entire domain. Thus, it is not adjustment costs per se that produce

the non-concavities in Chetty and Szeidl (2007) and Vereshchagina (2007).

The model here excludes several important features: labor income, life cycle

considerations, and housing price risk. Extending the model to include them is an

interesting avenue for further research.

APPENDIX

Proof of Proposition 1: First we must show that (6) has a finite maximum.

If 0 < θ < 1, we must show that ρ > Γ for all feasible (c, h, a), so that utility does not

diverge to +∞. If θ > 1, we must show that ρ > Γ for at least one feasible (c, h, a),

so that utility does not diverge to −∞.
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To this end we will first show that if

ρ > Γ(c, h, a; θ),

 all feasible (c, h, a) , if 0 < θ < 1,

some feasible (c, h, a) , if θ > 1,
(20)

then the optimal portfolio α(h; θ) is

α(h; θ) = min
nγ
θ
, ass (1− h)

o
. (21)

Then we will show that under Assumptions 1 and 2, (20) holds.

(i) Suppose (20) holds. Since a appears in (6) only as an argument of Γ, the optimal

portfolio solves

max
a∈[0,ass]

1

1− θ

1

ρ− Γ(c, h, a; θ)
.

Hence the objective is to maximize Γ if 0 < θ < 1 and to minimize Γ if θ > 1. Note

that

Γa(c, h, a) = (1− θ)
£
(µ− r)− θaσ2

¤
= (1− θ)σ2 (γ − θa) .

If 0 < θ < 1, then Γaa < 0, so Γ is concave. Since Γa(c, h, 0) > 0, there cannot be an

optimum at a = 0. If γ/θ > ass (1− h) , then

Γa(c, h, ass (1− h) ; θ) = (1− θ)σ2 [γ − θass (1− h)] > 0,

so the solution is at a corner, α(h; θ) = ass (1− h) . Otherwise the solution is interior

and satisfies Γa = 0. Hence the optimal portfolio is as in (21).

If θ > 1, the objective is to minimize Γ(c, h, a). In this case Γ is convex, and the

preceding argument holds with a sign change. Hence (21) also holds for θ > 1.

(ii) Next we will show that Assumptions 1 and 2 insure (20) holds. Suppose

0 < θ < 1. Then

d

dh
Γ(c, h, α(h; θ); θ) = Γh + Γaα

0(h; θ)
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= − (1− θ) (ph + c) + (1− θ) σ2 [γ − θα(h; θ)]α0(h; θ)

≤ − (1− θ) (ph + c)

< 0, (22)

where the second line uses the fact that γ/θ ≥ α(h; θ) and α0(h; θ) ≤ 0. Hence for
any ≥ 0,

ρ > Γ(0, 0, α(0; θ); θ) ≥ Γ(c, h, α(h; θ); θ) ≥ Γ(c, h, a; θ), all feasible (c, h, a) ,

where the first inequality uses Assumption 2, the second uses (22) and the fact that

∂Γ/∂c < 0, and the third uses the fact that α(h; θ, ) maximizes Γ(c, h, a; θ).

If θ > 1, then since r > 0, for a = 0 and all c, h sufficiently small,

ρ > 0 > (1− θ) [r − (ph + c) h] = Γ(c, h, 0).

Proof of part (a): Suppose = 0. The optimal portfolio aR is as in (21). And for

any expenditure flow E > 0, the optimal consumption mix solves

max
c,h

u(c)h s.t. (ph + c) h = E,

so

cR = argmax
c

u(c)

ph + c
.

For the CES preferences here, the solution is (7).

Since aR does not involve h, maximizing (6) with respect to h implies

0 =
1− θ

hR
+

Γh
ρ− Γ

= (1− θ)

µ
1

hR
− ph + cR

ρ− Γ

¶
,

or

(ph + cR)hR = ρ− Γ [0, 0, αR(θ); θ] + (1− θ) (ph + cR)hR,
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or

θ (ph + cR)hR = ρ− (1− θ)

·
r + (µ− r) aR(θ)− θ

1

2
σ2a2R(θ)

¸
,

as claimed. Then

(ph + cR) hR =
ρ− r

θ
+ r − (1− θ)

µ
1

θ
γσ2aR − 1

2
σ2a2R

¶
so

(ph + cR)h
0
R(θ) = − 1

θ2
¡
ρ− r − γσ2aR

¢− 1
2
σ2α2R − (1− θ)

µ
1

θ
γ − αR

¶
σ2a0R

=
1

θ2

·
r − ρ+

µ
γ − 1

2
θ2αR

¶
σ2aR

¸
,

establishing the last claim.

Proof of part (b): The solution in (7) solves the problem with > 0 if and only

if aR, hR satisfies the tighter portfolio constraint. Otherwise the tighter portfolio

constraint binds, so hB(θ, ) < hR(θ). Using (21), the consumer’s problem is as in (8).

The conditions for a maximum are

0 =
(1− θ)u0(c)

u(c)
+

Γc
ρ− Γ

,

0 =
1− θ

h
+

Γh − Γa ass
ρ− Γ

,

or

u0(c)
u(c)

=
h

ρ− Γ
,

1

h
=

c + ph + [γ − θass (1− h)]σ2 ass
ρ− Γ

.

Combining these two gives gives

1

c+ ph + [γ/θ − ass (1− h)] θσ2 ass
=

u0(c)
u(c)

=
ω

ωc+ (1− ω) cζ
,
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so

cB(θ, ) =

·
ω

1− ω

©
ph + [γ/θ − ass (1− h)] θσ2 ass

ª¸1/ζ
.

For a renter the term on the right in square brackets is zero, while for a constrained

buyer it is positive. Hence cB(θ, ) > cR. ¥

Proof that v is well defined: It suffice so show that for any fixed initial condition

(Q0,H0) with Q0 > λH0, the value V (Q0,H0) is finite.

The transaction cost cannot raise utility, so clearly V (Q0, H0) is bounded above

by Q1−θ
0 w∗. In addition, under Assumption 1 it is possible to choose a feasible strategy

for which expected utility is bounded below. For example, set A ≡ 0, so the risky
asset is not held; let C = cH, where c > 0 is small; set H = hQ when a transaction is

made, where h > 0 is small; choose a long period T between transactions; and make

the first transaction at date 0. During intervals when no transaction is made wealth

grows at a constant rate
dQ

Q
= [r − (ph + c)h] dt.

For c and h sufficiently small, this growth rate is positive. Hence Wn+1 > Wn, all

n. where Wn is wealth after the n
th housing transaction. Over each interval with no

transaction, utility is vW 1−θ
n , where v is a constant. Hence lifetime utility under this

strategy is
∞X
n=0

e−ρnTvW 1−θ
n ≥ v (Q0 − λH0)

1−θ 1

1− eρT
,

where the right side is finite.
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