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Abstract

This paper proposes a threshold heteroscedastic model which integrates threshold nonlinearity and GARCH-type conditional

variance for modeling mean and volatility asymmetries in financial markets. The main feature of this model is that the threshold

variable for regime switching is formulated as a weighted average of important auxiliary variables. Estimation and diagnostic

checks are performed using Markov chain Monte Carlo methods. Forecasts of volatility and value at risk can also be generated

from predictive distributions. The proposed methodology is illustrated using both simulated and actual international market

index data. Empirical results show higher average volatility and more persistent volatility when bad news arrives. While the

domestic return is the major determinant of the regimes, both the SP 500 and Nikkei 225 indices also impact the dynamic

structure of domestic market returns.
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1. Introduction

It is well known that financial market volatility

changes over time. A common way to capture this

phenomenon was suggested by Engle (1982), who

introduced the ARCH model for modeling time-

varying conditional variance of financial returns.

Bollerslev (1986) proposed extending this the

GARCH model, which became a widely accepted

model to describe the time series properties of

financial market returns. However, if we model a
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financial series such as the returns of a stock index,

the simple GARCH model cannot capture some

stylized facts. For example, there is growing evi-

dence that stock returns respond differently to posi-

tive and negative shocks. While the GARCH model

assumes that positive and negative shocks have the

same effect on future volatility, several specifica-

tions like the exponential GARCH model of Nelson

(1991), the GJR model of Glosten, Jagannathan, and

Runkle (1993) and the threshold model with ARCH

errors of Li and Lam (1995) have been proposed to

introduce asymmetry in the mean or volatility equa-

tions. In this paper, we develop a time series model

that permits nonlinearity in the conditional mean

and conditional variance.
asting 22 (2006) 73–89
ers. Published by Elsevier B.V. All rights reserved.
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A popular model for explaining asymmetry in the

mean is the threshold autoregressive model of Tong

(1978); see also Tong (1983), Tong and Lim (1980) and

Tsay (1989). To describe mean asymmetry and chan-

ging volatility, Tong (1990, p.116) advocates the use of

a threshold model with ARCH errors. Li and Lam

(1995) present some evidence of mean asymmetry in

Hong Kong stock market returns using the threshold

ARCH. Li and Li (1996) seem to be the first to attempt

to model mean and volatility asymmetry together. They

propose a double threshold ARCH model for financial

market returns, applying an iteratively weighted least

squares approach to obtain the maximum likelihood

estimates, and using standardized residual autocorrela-

tions and squared residual autocorrelations for check-

ing model adequacy. Brooks (2001) further generalizes

this to a double threshold GARCH model. However,

both the models of Li and Li (1996) and of Brooks

(2001) suffer from the weakness that the threshold

variable is subjectively fixed. This model can be

improved upon because the term structure of a financial

return can be determined by many factors, such as its

past values, international market movements, eco-

nomic indices and interest rates. It would be too restric-

tive if we assume that the threshold variable, like

security returns, undergoes regime shifts determined

only by its own past values. In this paper, we introduce

a threshold heteroscedastic model which has the thresh-

old variable zt defined by a weighted average of aux-

iliary variables:

zt ¼ w1z1t þ . . . þ wmzmt:

These auxiliary variables are believed to be highly

relevant to regime switching. The threshold variable

is only partially observable because it depends on the

unknown parameters wi. Differing from Li and Li

(1996) and Brooks (2001), we let the data determine

the most appropriate zt by estimating wi. This helps us

understand the relative importance of zit, i=1,. . .,m, to

the dynamic structure of security returns. In our model

formulation, we also allow exogenous variables and a

flexible error distribution which is essential for com-

puting value at risk (VaR). Bayesian estimation is

carried out by Markov chain Monte Carlo (MCMC)

methods which are found to be very effective in simple

threshold models (Chen & Lee, 1995). While the clas-

sical estimation method in Li and Li (1996) requires a
fixed threshold value and a delay parameter in advance,

we can jointly estimate the parameters in the mean and

variance equations, the wi, the threshold value and the

time delay. We also perform diagnostic checking using

the method in Gerlach, Carter, and Kohn (1999), which

was demonstrated to be very effective in time series

regression (Chen & Wen, 2001).

This paper is organized as follows. Section 2

defines the proposed threshold heteroscedastic model.

Section 3 describes the Bayesian setup and detailed

procedures for carrying out the Bayesian inference.

Section 4 introduces a Bayesian forecasting method

for volatility and VaR under the threshold heterosce-

dastic model. Model adequacy checking and model

selection methods are presented in Section 5. Simula-

tion results showing the performance of our Bayesian

methods are given in Section 6. Applications of the

model to financial markets are shown in Section 7.

Section 8 contains concluding remarks.
2. A threshold heteroscedastic model

Motivated by the TAR model of Tong (1978, 1983)

and the GARCH model of Bollerslev (1986), we intro-

duce the following threshold heteroscedastic model:

yt ¼ / jð Þ
0 þ

XPj

i¼1

/ jð Þ
i yt�i þ

Xqj
l¼1

w jð Þ
l xlt þ at;

if rj�1Vzt�dbrj;

at ¼
ffiffiffiffi
ht

p
et; etfD 0; 1ð Þ;

ht ¼ a jð Þ
0 þ

Xdj
i¼1

a jð Þ
i a2t�i þ

Xcj
l¼1

b jð Þ
l ht�l; ð1Þ

where

zt ¼ w1z1t þ . . . þ wmzmt; 0VwiV1;Xm
i¼1

wi ¼ 1; ð2Þ

for j =1,. . .,g, d is a positive integer and D(0,1) is an

error distribution with mean 0 and variance 1. The

number of regimes is assumed to be g. Unknown

parameters are also admitted in this error distribution.
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The threshold values rj satisfy �l= r0b r1b . . .b

rg=l, and so the intervals [rj�1,rj), j =1,. . .,g, form

a partition of the space of zt�d. The positive integer d is

commonly referred to as the delay (or threshold lag) of

the model; it determines the time lag for which the

threshold variable zt has a large impact on the time

series structure of yt. To avoid the same process having

more than one representation, we assume that /Pj
( j)p 0

and that the g autoregressive vectors (/0
( j),. . .,/Pj

( j)),

j =1,. . .,g, are distinct. The main feature of our pro-

posed threshold heteroscedastic model in Eqs. (1) and

(2) is the construction of the threshold variable zt as a

linear function of m auxiliary variables zit, which are

believed to affect the dynamic structure of yt. In gen-

eral, zit can be any function of exogenous variables and

yt,. . .,y1. For example, we can choose z1t =yt and zit =

xit for iN1, where xit are exogenous variables. When

w1=1 and wi=0 for iN1, our model reduces to the

double threshold models of Li and Li (1996) and

Brooks (2001). This choice of auxiliary variables is

used in our application to real data. Another possibility

is to equate z1t with at instead of with yt, as

at ¼
�
yt � / jð Þ

0 �
Xpj
i¼1

/ jð Þ
i yt�i �

Xqj
l¼1

w jð Þ
l xlt

�

� I rj�1Vzt�dbrj
� �

which is also a function of exogenous variables and yts.

This particular z1t enables us to account for the leverage

effect; the mean and variance dynamics of a financial

time series yt respond differently to positive and nega-

tive price variations. A particular case belonging to this

formulation of z1t=at is the GJR–GARCH model of

Glosten et al. (1993):

ht ¼ a0 þ a1a
2
t�1 þ da2t�1I at�1N0ð Þ þ b1ht�1;

which corresponds to w1=1 and wi =0 for i N1 in our

model.

To suitably define zt, and to satisfy stationarity

conditions, we apply constraints on the model

parameters. Regarding the threshold variable, the

equation zt ¼
Pm

i¼1 wizit and the inequalities

rj�1V zt�d b rj cannot uniquely determine the thresh-

old values or wi. The reason for this can be under-

stood by observing that
Pm

i¼1 wizitbrj if and only ifPm
i¼1 cwið Þzitbcrj for any positive constant c. There-
fore, if wi and rj are the true parameter values, then cwi

and crj are also valid. To uniquely identify the thresh-

old values rj and the weights wi, we impose positivity

and sum-to-one constraints in Eq. (2), i.e., 0VwiV1
and

Pm
i¼1 wi ¼ 1. Consequently, zt is a weighted aver-

age of the auxiliary variables. In the case when zit are

returns of different markets, zt ¼
Pm

i¼1 wizit can be

interpreted as a kind of portfolio return. The model

specification in Eq. (1) implies that the conditional

mean of yt is given by

lt¼E ytjy1;t�1; xt
	 


¼/ jð Þ
0 þ

Xpj
i¼1

/ jð Þ
i yt�iþ

Xqj
i¼1

w jð Þ
l xlt;

where ys,t=( ys,. . .,yt)V, xt=(x1t,. . .,xqt)V and q =max

{q1,. . .,qg}. This resembles a typical AR( pj) process

with qj exogenous variables xlt. We restrict the auto-

regressive parameters by

Xp
i¼1

max
j

j/ jð Þ
i jb1;

where p =max{ p1,. . .,pg} and /i
( j)=0 for iNpj. Com-

bining this with the standard restrictions on the var-

iance parameters:

a jð Þ
0 N0; a jð Þ

i ; b jð Þ
l z0 and

Xdj
i¼1

a jð Þ
i þ

Xcj
i¼1

b jð Þ
l b1;

ð3Þ

the results of Ling (1999) then guarantee the statio-

narity of our threshold heteroscedastic model.

Unlike traditional threshold modeling that chooses

the threshold variable subjectively, see for example

Tong and Lim (1980), Tsay (1989), Li and Li (1996)

and Brooks (2001), our zt is only partially observed

because of the unknown parameters wi. Therefore, the

above model generalizes the double threshold ARCH

of Li and Li (1996). It also extends the double thresh-

old GARCH model of Brooks (2001) by incorporating

exogenous variables and flexible error distribution

D(0,1). Typical empirical evidence in the literature

tells us that et is usually fat-tailed. Therefore, assum-

ing normality as in Li and Li (1996) and Brooks

(2001) may create substantial bias in the return per-

centile and volatility forecasts, especially when we are

interested in extreme percentiles of the return distribu-

tion, as in VaR estimation. In the empirical applica-

tions of this paper, we assume that D(0,1) is the
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standardized t-distribution which captures the usual

conditional leptokurtosis in financial return data.

Some advantages of our way of formulating zt are

noteworthy.First,our specification inEq. (2) allows the

simultaneous influence of more than one auxiliary

variable in determining the regime of the threshold

heteroscedastic model. Second, we can let the data

choose the most suitable zt by estimating wi. Third,

the weights wi can reflect the relative importance of

each zit in governing the time series behavior of yt.

Concerning the identification of zt, we choose promis-

ing values of zit closely related to the dynamics of yt.

In practice, the auxiliary variables can be yt and other

related factors. For instance, if yt is a stock return, zit
can be taken as a market index return and the returns

of major stocks in the same industry. Similarly, if yt is

a market index return, we can choose zit to be yt,

index returns of major financial markets, interest rates

and other economic variables. After fixing the auxili-

ary variables, we estimate the weights by the Bayesian

procedures discussed in Section 3.
3. Bayesian inference

Parameter estimation in homoscedastic threshold

models is usually performed in two steps; see for

example Tong and Lim (1980), Tong (1990) and

Tsay (1989, 1998). For fixed values of d and rj, the

other parameters are estimated first. Then estimates of

d and rj can be determined by minimizing the AIC

(Tong, 1990; Tong & Lim, 1980), by minimizing a

nonlinearity test statistic and using scatterplots (Tsay,

1989), or by minimizing a conditional least square

(Tsay, 1998). In the above two-step procedure, the

threshold variable zt is assumed to be known. It is

not clear whether existing asymptotic results, like that

in Tsay (1998, p.1195), hold in our case with partially

unknown zt. Moreover, the classical methods in Li

and Li (1996) and Brooks (2001) are subject to some

weaknesses. First, the uncertainty concerning rj and d

cannot be taken into account for statistical inference if

we follow Li and Li (1996) and Brooks (2001) and fix

rj and d to maximize the likelihood function. Second,

their final choice of rj and d is dependent on the

criteria they use. To tackle the above weaknesses,

we suggest in this paper a Bayesian approach to

performing simultaneous inference for all parameters,
including d, rj and wi. We generate samples from the

joint posterior distribution of all parameters via Mar-

kov chain Monte Carlo methods. One advantage of

our approach is that it allows rj and d to be esti-

mated simultaneously with other parameters and thus

incorporates their variations into the statistical infer-

ence. Another advantage of the Bayesian approach is

that we can estimate zt via wi rather than fixing it

subjectively. Estimating zt and the unknown para-

meters simultaneously enables us to take into

account the uncertainty in zt in estimating the para-

meters. In other words, the statistical inference, like

model selection and diagnostic checking, can be

done while accounting for possible the estimation

error of zt. The final advantage is that the prior

information regarding the parameters can also be

incorporated in their prior distributions.

Definefj ¼ ð/ jð Þ
0 ; . . . ;/ jð Þ

pj
; w jð Þ

1 ; . . . ;w jð Þ
qj ÞV,aj ¼

ða jð Þ
0 ; . . . ; a jð Þ

dj
; b jð Þ

1 ; . . . ; b jð Þ
cj
ÞV, r¼ðr1; . . . ; rg�1ÞV and

w ¼ w1; . . . ;wm�1ð ÞV as the mean, variance, threshold

and weight parameter vectors, respectively. The

weight w has dimension m�1 instead of m because

the last element wm can be determined as 1�wV1,
where 1 is a column vector of 1s. Denote the unknown

parameter (f1V,. . .,fgV,a1V,. . .,agV, rV,wV, d)V by q. Let d0
be the maximum delay and s =max{ p1,. . .,pg, d0}.

The conditional likelihood function of the model is

given by

p ysþ1;njq
� �

¼
Yn

t¼sþ1

Xg
j¼1

1ffiffiffiffi
ht

p pe
yt � ltffiffiffiffi

ht
p

� �
Ijt

" #
; ð4Þ

where pe(	) is the probability density function of et,

and Ijt is the indicator variable I(rj�1V zt�d b rj). The

dependence of the conditional likelihood on y1,s is

ignored for notational simplicity.

3.1. The prior

With maximum delay d0, we assume the uniform

prior p dð Þ ¼ 1
d0

for d =1,. . .,d0. To represent prior

ignorance regarding w, we take p(w)= I(B), where

B is the set of w having 0VwiV1 and
Pm

i¼1 wi ¼ 1.

Similarly, p(aj) is the indicator I(Sj), j=1,. . .,g,

where Sj is the set of aj that satisfy the restrictions

in Eq. (3). In threshold modeling, it is important to

set the minimum number of observations in each

regime so that we can generate meaningful inference
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results. Since zt�d is dependent on w, rather than

selecting an unconditional prior for r to fix the

minimum number, we choose the conditional prior

of r given w, p(r|w), as I(A) where A is the event

that each regime contains at least h percent zt�d. For

example, in a 2-regime threshold model, i.e. g =2,

with z1t =yt and d=1, having at least 10% of the

data in each regime (h =10) means that p(r|w1=1),

the conditional prior of r = r1 given w1=1, is the

uniform distribution from the 10th percentile of yt� 1

to the 90th percentile of yt� 1. Overall, the following

prior for q is adopted:

p qð Þ~ j
g

j¼1
p fj

� �
p aj

� �� �
p dð Þp rjwð Þp wð Þ; ð5Þ

where p fj

� �
fN fj0;V j

� �
.

3.2. Sampling scheme

Let pt be the time index in ascending order for the

set of time points corresponding to regime j, i.e., let

{t : t=s+1,. . .,n, Ijt =1} and a ¼
Pn

t¼sþ1 Ijt be the

number of observations in regime j. Also, let q� c

be the parameter vector q excluding the element c.
The prior in Eq. (5) leads to the conditional posterior

p fjjy sþ1;n; h�/j

� �
~p y sþ1;njh

� �
p fj

� �
: ð6Þ

In the simplest case, that is, when et is normal and ht
is constant, Eq. (6) reduces to

pðfjjysþ1;n; q�/j
Þ¼

Yn
t¼sþ1;Ijt¼1

1ffiffiffiffi
ht

p pe
yt � ltffiffiffiffi

ht
p

� �� �
p fj

� �

~jH j�
1
2exp � 1

2
y� Zfj

� �T
H�1 y� Zfj

� ��

� 1

2
fj � fj0

� �T
V�1

j fj � fj0

� ��

~jH j�
1
2exp � 1

2
fj � fT
� �T

VT�1 fj � fT
� �� �

;

ð7Þ

where

fT ¼ VT ZTH�1yþ V�1
j fj0

� �
;

VT ¼ ZTH�1Z þ V�1
j

� ��1

;

Z ¼

�
1 yp1�1

: : : yp1�pj x1p1
: : : xqjp1

v v v v v

v v v v v

1 ypa�1
: : : ypa�pj x1pa

: : : xqjpa

�
;

y ¼

�
yp1

yp2

v

ypa

�
and H ¼

�
hp1

0 : : : 0

0 hp2
: : : 0

v v O 0

0 0 : : : hpa

�
:

The conditional posterior in Eq. (7) is a Gaussian

distribution which provides us with a kernel for the

drawing of fj, under general pe and heteroscedasti-

city, by the Metropolis–Hasting (MH) method. Let f

denote the target density in Eq. (6) for notational

convenience. Details of the MH steps for fj are as

follows:

Step 1: At iteration i, generate a point fj* from

fj*=fj
[i�1]+e, where fj

[i�1] is the (i�1)th

iterate of fj and e ~N(0,aX).

Step 2: Accept fj* as fj
[i] with probability p =min{1,

f(fj*) / f(fj
[i�1])}. Otherwise, set fj

[i]=fj
[i�1].

We observe from Eq. (7) that p(fj|y
s+1,n, q�/j) is a

normal density with covariance matrix V* under

normality and constant conditional variance. There-

fore, it is anticipated that V* contains useful infor-

mation about the conditional correlations of /i
( j)

and wi
( j), even when pe is non-normal. Toward

this goal, we choose X to be V* with all ht in

H replaced by the sample variance of yt. The

positive scale a is fixed by controlling the accep-

tance rate (Gelman, Roberts & Gilks, 1996). A

suitable value of a with good convergence proper-

ties can usually be selected by having an accep-

tance probability of 25% to 50%.

We again apply the random walk MH algorithm to

the GARCH parameter aj for the first M iterations,

with the target density f given by

p ajjy sþ1;n; q�aj

� �
~p y sþ1;njq

� �
I Sj
� �

:

We form the sample mean la and sample covariance

Xa using the first M iterates of aj. Then, using the

Gaussian proposal distribution with mean la and

covariance Xa, we apply the following independent
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kernel MH algorithm starting from the (M +1)th itera-

tion to speed up the convergence:

Step 1: At iteration i, generate a point aj* according to

aj*=la +e, where e~N(0,Xa).

Step 2: Accept aj* as aj
[i] with probability

p ¼ min 1;
f aT

j

� �
g a i�1½ �

j

� �
f a i�1½ �

j

� �
g aT

j

� �
8<
:

9=
;;

where aj
[i] is the ith iterate of aj and g(a) is the

Gaussian proposal density with mean la and covar-

iance matrix Xa. Otherwise, set aj
[i] =aj

[i�1].

To draw the threshold vector r and the weight

vector w, we also use the random walk MH algorithm

with the target densities given by

p rjy sþ1;n; q�r

� �
~p y sþ1;njq

� �
p rjwð Þ

and p wjy sþ1;n; q�w

� �
~p y sþ1;njq

� �
p rjwð Þp wð Þ:

Drawing d is made easy by noting that it is discrete

and has the posterior probabilities

p d ¼ jjy sþ1;n; q�d

� �
¼ p y sþ1;njd ¼ j; q�dð ÞXd0

i¼1

p y sþ1;njd ¼ i; q�d

� � ;

j ¼ 1; . . . ; d0:

4. Forecasting volatility and value at risk

In addition to estimation of unknown parameters, vola-

tility and value at risk forecasting are also important in

analyzing derivative pricing, yielding a good portfolio for

investment andmanagingmarket risk in financial markets.

This section derives a simulation-based approach for pre-

dicting future values of hn+k, kz1, and for generating

VaR forecasts. Applying the sampling scheme in Sec-

tion 3 allows us to generate a Monte Carlo sample q[i],

i=1,. . .,N, from the posterior distribution p(q|y1,n).
As the conditional variance ht is a deterministic func-

tion of q and y1,n, smoothed values of ht, t =1,. . .,n,
that are compiled from p(ht|y

1,n) are readily obtained.

Let ht =gt(y
1,t�1,q) where

gt y
1;t�1; h

� �
¼
Xg
j¼1

a jð Þ
0 þ

Xdj
i¼1

a jð Þ
i a2t�iþ

Xcj
l¼1

b jð Þ
l ht�l

" #
Ijt:

ð8Þ
Then ht
[i] =gt(y

1,t�1,q[i]), i=1,. . .,N, form a posterior

sample of p(ht|y
1,n). A natural smoothed estimate of

ht is

1

N

XN
i¼1

h
i½ �
t :

To yield volatility forecasts, we simulate hn +k
(kz1) from the predictive distribution p(hn +k|y

1,n).

Because of the deterministic relationship in Eq. (8),

it is sufficient to generate Monte Carlo samples from

p( yn +1,. . .,yn +k� 1,q|y1,n). In particular for k =1,

hn+1
[i] =gn+1(y

1,n,q[i]) are draws from the predictive

distribution p(hn +k|y
1,n) and so hn+1 can be esti-

mated by the sample mean
PN

i¼1h
i½ �
nþ1=N or other

location measures. For kz2, we need to sample

yn+1
[i] ,. . .,yn+k�1

[i] from p( yn +1,. . .,yn +k� 1,q|y1,n). This
can be done by the method of composition and

decomposition:

p ynþ1; . . . ; ynþk�1; qjy1;n
� �
¼ p qjy1;n

� �
j
k�1

j¼1
p ynþjjy1;nþj�1; q
� �

:

We draw yn+1,. . .,yn+k�1 sequentially as follows:

1. With hn+1
[i] , draw yn+1

[i] from p( yn+1|y
1,n,q[i]) and set

j=2.

2. Calculate hn+j
[i] =gn+j(y

1,n,yn +1
[i] ,. . .,yn +j�1

[i] ,q[i]).

3. Draw yn+j
[i] from p( yn+j|y

1,n,yn +1
[i] ,. . .,yn +j�1

[i] ,q[i]).

4. Repeat steps 2 and 3 for j=3,. . .,k�1.

According to Eqs. (1) and (2), simulations in steps

1 and 3 are done via suitable t-distributions. Imple-

menting the above iterative scheme creates a draw

of yn +1
[i] ,. . .,yn +k�1

[i] from p( yn +1,. . .,yn +k�1,q|y1,n).
Obviously, k-step-ahead forecasts of volatility can

be formed by using hn+j
[i] in step 2.

VaR is a common risk measure. It is usually

defined as the loss of a portfolio that is exceeded

with a predetermined probability over a time horizon.

To forecast VaR, we need to estimate extreme pth

percentiles of yn +k. For multiple-period VaR estima-

tion, k N1, Bayesian forecasts are created with the

percentiles of the predictive distribution p( yn+k|y
1,n).

These dpredictiveT percentiles can be estimated by the

sample pth percentiles of yn+k
[i] , i=1,. . .,N. The Baye-

sian VaR predictor derived using p( yn+k|y
1,n) under
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our threshold heteroscedastic model provides an alter-

native to existing methods like those in RiskMetrics

and Wong and So (2003).
5. Testing model adequacy and model selection

5.1. Diagnostic checking

In the usual frequentist approach to parameter

estimation, residual autocorrelation has become a

standard device for checking time series model

inadequacy. In threshold ARCH modeling, Li and

Li (1996) use residual and squared residual autocor-

relations to detect misspecification in the mean and

variance equations. Based on our MCMC methods

for carrying out the statistical inference, it is natural

to consider a Bayesian way of performing diagnostic

checking. In this paper, we choose the method of

Gerlach et al. (1999), which is based upon the time

series

ut ¼ F ytjy1;t�1
� �

; t ¼ 1; . . . ; n; ð9Þ

where F(d ) is the conditional distribution function of

yt given y1,t�1 under the tested model. It is not

difficult to see that if the underlying tested model

is correct, ut will be independent and identically

distributed (i.i.d.) uniform on [0,1]; see Rosenblatt

(1952). Similarly, vt=F�1(ut); the inverse transfor-

mation of the standard normal distribution function

has a standard normal distribution under the correct

model specification. Smith (1985) uses these proper-

ties of ut and vt to build up diagnostic tests for time

series models with known parameters. In the more

realistic situation that q is unknown, Gerlach et al.

(1999) propose a simulation-based method to esti-

mate ut and vt. Suppose that we have a posterior

sample of q, denoted by qk
[i], i =1,. . .,N, from

p(q|y1,k) for a given k. This sample can be obtained

by our sampling scheme in Section 3. Gerlach et al.

(1999) show that for kz t,

ûut ¼

XN
i¼1

F ytjy1;t�1; q i½ �
k

� �
=p yt;k jy1;t�1; q i½ �

k

� �
XN
i¼1

1=p yt;k jy1;t�1; q i½ �
k

� � ð10Þ
converges to ut as NYl. Similarly, for k b t,

ûut ¼

XN
i¼1

F ytjy1;t�1; q i½ �
k

� �
p y kþ1;t�1jy1;k ; q i½ �

k

� �
XN
i¼1

p y kþ1;t�1jy1;k ; q i½ �
k

� � ð11Þ

converges to ut as NYl. Since the variance of ût
in Eq. (10) increases with k� t, we need to calculate

ût with t reasonably close to k. This can be achieved

by increasing k sequentially, say to 100, 200,. . ., n,

and evaluate ût using Eq. (10) with k� t not greater

than the increments. We can improve the precision of

the approximation by reducing the increments, but

longer computational time is involved. A similar

arrangement to control the size of |k� t| is required

if we use Eq. (11) to estimate ut.

Based on the convergence properties of ût, we

construct v̂t =F�1(ût), which is approximately i.i.d.

N(0,1) under the correct model. We then examine

whether our threshold model formulation is adequate

by applying two standard tests to v̂t. The first one is

analogous to Li and Li (1996) and explores its time

series structure. The usual Portmanteau test statistic is

applied for testing independence:

Q ¼ n nþ 2ð Þ
XJ
j¼1

n� jð Þ�1q̂q2
j ;

where q̂j
2 is the sample autocorrelation of v̂t. In addi-

tion, we also perform the Studentized range test

(D’Agostino & Stephens, 1986, p.392) to see whether

v̂t deviates significantly from a standard normal dis-

tribution. The test statistic is the sample range of v̂t.

The critical values of this range test are determined by

simulations.

5.2. Model selection

To investigate whether our proposed formulation

of zi is superior to the original threshold model in Li

and Li (1996) and Brooks (2001), we need to set up a

model selection method. Evaluating the performance

of our formulation means comparing our model in Eq.

(1) with those in Li and Li (1996) and Brooks (2001).

To compare two models A and B in the Bayesian

framework, say A is our model and B is Li and Li’s
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(1996) model, we compute the posterior odds ratio of

A vs. B as

PORAB ¼ pA y sþ1;nð Þ
pB y sþ1;nð Þ � prior odds ratio; ð12Þ

where pA(y
s+1,n) and pB(y

s+1,n) are the marginal like-

lihoods under models A and B, respectively. Without

any prior information on which model is better, we set

the prior odds ratio equal to 1 so that PORAB is

simplified to the Bayes factor pA(y
s+1,n)/pB(y

s+1,n).

The larger the value of PORAB, the more evidence

we have in support of A over B; normally, when

PORAB N1, we conclude that A is preferable to B.

Based on the above discussion, it suffices to compute

the marginal likelihoods for model selection.

We adopt the method in Gerlach et al. (1999) to

estimate the marginal likelihood of a model. By repla-

cing F( yt|y
1,t�1,qk

[i]) with p( yt|y
1,t�1,qk

[i]) in Eq. (10),

we obtain an estimate for the predictive density

p( yt|y
1,t�1) when kz t:

p̂p ytjy1;t�1
� �

¼

XN
i¼1

p ytjy1;t�1; q i½ �
k

� �
=p y t;k jy1;t�1; q i½ �

k

� �
XN
i¼1

1=p y t;k jy1;t�1; q i½ �
k

� � :

Likewise, we can do the same substitution in Eq. (11)

to estimate the predictive density when k b t. An esti-

mate of the marginal likelihood p(ys+1,n) is then eval-

uated as

Yn
t¼sþ1

p̂p ytjy1;t�1
� �

:

6. Simulation studies

We perform simulation studies to illustrate the

proposed Bayesian estimation and diagnostic check-

ing methods. In the first part, we simulate time series

from two threshold models to investigate the finite

sample properties of the posterior mean estimator. In

the second part, the model checking method dis-

cussed in Section 5 is applied to time series generated

by five different models to study the power of the

diagnostic test.
6.1. Parameter estimation

The orders pj, qj, cj and dj of the two threshold

models considered are set to 1. The first model is

Model 1:

yt ¼
0:2þ0:1yt�1þat; zt�1V0:1;

0:2�0:1yt�1þat; zt�1N0:1;

�

at¼
ffiffiffiffi
ht

p
et; etft10;

ht ¼
0:5þ 0:02a2t�1 þ 0:9ht�1; zt�1V0:1;

0:2þ 0:05a2t�1 þ 0:6ht�1; zt�1N0:1;

(

zt ¼ 0:6z1t þ 0:2z2t þ 0:2z3t;

which has two regimes ( g =2). The threshold variable

zt is a linear combination of m =3 auxiliary variables.

We set the variance equation the match the empirical

evidence that the first regime has higher volatility

persistence, with a1
(1)+b1

(1) closer to 1 than a1
(2)+b1

(2),

and a higher average variance, i.e. a0
(1) / (a1

(1)+

b1
(1))Na0

(2) / (a1
(2)+b1

(2)). We assume that yt�2 is in the

model, though /2
(1) and /2

(2) are zero in Model 1. To

formulate the threshold variable, the exogenous vari-

able x1t is generated from the GARCH(1,1) process:

x1t ¼
ffiffiffiffi
ht

p
nt; ht ¼ 0:01þ 0:2x21t�1 þ 0:6ht�1;

ntfN 0; 1ð Þ:

The three auxiliary variables z1t, z2t and z3t are

defined as yt, x1t and N(0,1) white noise, respec-

tively. Model 2, formulated below, has specifications

similar to Model 1:

Model 2 :

yt ¼
0:2þ 0:1yt�1 þ 0:3x1t þ at; zt�1V0:1;

0:2� 0:1yt�1 � 0:2x1t þ at; zt�1N0:1;

�

at ¼
ffiffiffiffi
ht

p
et; etft6;

ht ¼
0:5þ 0:02a2t�1 þ 0:9ht�1; zt�1V0:1;

0:2þ 0:05a2t�1 þ 0:6ht�1; zt�1N0:1;

(

zt ¼ 0:4z1t þ 0:3z2t þ 0:3z3t:

The major differences between Models 1 and 2 are in

the wi and in the degrees of freedom m; the latter has

more balance weights and fewer degrees of freedom.



Table 2

Summary statistics of the posterior mean estimator for Model 2

obtained from 100 replications

True value Mean SD Mean SD

n =2000 n =4000

/0
(1) 0.2 0.208 0.051 0.202 0.035

/1
(1) 0.1 0.105 0.046 0.099 0.029

w1
(1) 0.3 0.332 0.182 0.289 0.126

/0
(2) 0.2 0.198 0.049 0.199 0.033

/1
(2) �0.1 �0.096 0.041 �0.098 0.026

w1
(2) �0.2 �0.211 0.143 �0.200 0.102

a0
(1) 0.5 0.637 0.148 0.547 0.090

a1
(1) 0.02 0.046 0.026 0.031 0.017

b1
(1) 0.9 0.814 0.075 0.870 0.048

a0
(2) 0.2 0.261 0.138 0.224 0.071

a1
(2) 0.05 0.058 0.025 0.053 0.016

b1
(2) 0.6 0.560 0.084 0.580 0.055

r1 0.1 0.089 0.089 0.104 0.014

m 6 6.045 0.762 6.053 0.535

w1 0.4 0.422 0.050 0.414 0.030

w2 0.3 0.267 0.078 0.279 0.050

w3 0.3 0.311 0.041 0.308 0.026
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To allow et to be t-distributed, that is,

pe xð Þ ¼
C m þ 1

2

� �
C

m
2

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p m � 2ð Þ

p 1þ x2

m � 2

� �� mþ1
2ð Þ

;

ð13Þ
we have to draw m in the MCMC iterations. This is

achieved via a random walk MH algorithm as used in

simulating fj. We adopt the prior p(m)= I(m N2) so

that et has finite variance. For drawing d, the max-

imum delay is fixed at d0=3. We also choose the non-

informative prior for fj that Vj
�1 is set to 0. In fact,

simulations show that using informative priors for fj

has a negligible effect on its posterior. To retain a

sufficient number of observations for Bayesian analy-

sis, we choose h =5 for n=2000 and h =2.5 for

n =4000 in the prior p(r|w) so that there are at least

100 observations in each regime. In this simulation

experiment, two sample sizes n =2000 and n=4000

with 100 replications are used for demonstration.

We carry out N =20,000 MCMC iterations and

discard the first M =8000 burn-in iterates for each

series. In all replicates, the posterior probabilities for

d =1 are very close to 1, implying that the posterior

mode of d accurately estimates the delay parameter.

Tables 1 and 2 display the summary statistics from 100

replications for the posterior mean estimators of other
Table 1

Summary statistics of the posterior mean estimator for Model 1

obtained from 100 replications

True value Mean SD Mean SD

n =2000 n =4000

/0
(1) 0.2 0.194 0.097 0.203 0.045

/1
(1) 0.1 0.107 0.047 0.101 0.033

/2
(1) 0 �0.005 0.043 �0.003 0.026

/0
(2) 0.2 0.188 0.062 0.201 0.044

/1
(2) �0.1 �0.093 0.049 �0.103 0.034

/2
(2) 0 �0.004 0.029 �0.005 0.019

a0
(1) 0.5 0.632 0.238 0.546 0.075

a1
(1) 0.02 0.040 0.022 0.028 0.013

b1
(1) 0.9 0.826 0.087 0.868 0.046

a0
(2) 0.2 0.246 0.100 0.223 0.064

a1
(2) 0.05 0.056 0.024 0.054 0.016

b1
(2) 0.6 0.566 0.064 0.581 0.051

r1 0.1 0.088 0.115 0.105 0.015

m 10 11.547 4.404 10.333 1.952

w1 0.6 0.615 0.061 0.609 0.039

w2 0.2 0.184 0.073 0.189 0.051

w3 0.2 0.200 0.032 0.202 0.017
parameters. The means of the estimators are close to

the respective true values, indicating that the posterior

mean obtained by our sampling scheme is a reliable

estimator. We can also see that the bias is substantially

reduced when the sample size is doubled. The only

exceptions are for /2
(2) in Model 1 and m in Model 2

where a small bias is observed in both sample sizes.

Concerning the variability of the posterior mean esti-

mators, the standard property that their standard devia-

tions diminish as the sample size increases is revealed.

Even for the moderately large size of n =2000, we can

conclude from the small standard deviations that the

posterior mean is a precise estimator for all parameters.

6.2. Diagnostic test performance

To study the power of the diagnostic test outlined

in Section 5, we generate data series from the follow-

ing five models:

Model 3 :

yt ¼
0:2þ 0:15yt�1 þ 0:1yt�2 þ at; yt�1V� 0:3;

� 0:2þ0:05yt�1�0:1yt�2þat; yt�1N� 0:3;

�

ht ¼
0:2þ 0:05a2t�1 þ 0:85ht�1; yt�1V� 0:3;

0:05þ 0:1a2t�1 þ 0:8ht�1; yt�1N� 0:3;

(

zt ¼ yt and etfN 0; 1ð Þ;



Portmanteau Studentized range Implication

Significant Not significant Misspecification in the orders

only

Not significant Significant Misspecification in the error

distribution only

Significant Significant Misspecification in the orders

and error distribution
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Model 4 : Same as Model 3 but etft5:

Model 5 : Same as Model 3 but

yt ¼
0:2þ 0:15yt�1 þ at ; yt�1V� 0:3;
� 0:2þ 0:05yt�1� 0:2yt�2 þ 0:4yt�3 þ at ; yt�1N� 0:3:

�

Model 6 : Same as Model 3 but

yt ¼
0:2þ 0:15yt�1 þ at ; yt�1V� 0:3;
� 0:2þ 0:05yt�1� 0:2yt�2 þ 0:4yt�3 þ at ; yt�1N� 0:3:

�

Model 7: Same as Model 6 but etft5:

The fitted threshold model for the simulated series has

p1=p2=2, q1=q2=0, dj =cj=1, zt=yt and et ~N(0,1),

ensuring its adequacy for the data of Model 3. How-

ever, it is inadequate for the data of Model 4, as we

assume that et is normal in the model fitting. Like-

wise, the mean equation is misspecified for the time

series of Models 5 and 6, which have correct order

p2=3. In Model 7, the error distribution and the

autoregressive orders are both misspecified.

In this simulation experiment, we apply the

MCMC method with M =8000 and N =20000 to

each simulated series to estimate ut, t=501,. . .,2000,
via Eq. (10). This is done by setting the value of k

sequentially at 550, 600,. . ., 2000 and estimating ut
with k� t b50 for each k. The Portmanteau test with

J =10 and the Studentized range test are used to check

whether v̂t violates the hypothesis that it is i.i.d.

N(0,1). Under the null hypothesis, the 90% confi-

dence interval (6.03, 7.55) and the 95% confidence

interval (5.93,7.76) of the Studentized range test sta-

tistic for 1500 observations are obtained by simula-

tions to conduct the diagnostic test. Table 3 reports the

number of rejections out of 1000 replications. Since

the data from Model 3 are correctly fitted, it is good to
Table 3

Proportions, out of 1000 replications, for which the fitted model is

found to be inadequate for Models 3 to 7

Portmanteau Studentized range

5% 10% 5% 10%

Model 3 4.7 10.0 5.2 10.6

Model 4 5.9 11.9 99.7 100.0

Model 5 50.6 61.8 5.3 11.4

Model 6 85.8 90.7 6.0 11.8

Model 7 94.3 96.5 99.6 99.8

The levels of significance are 5% and 10%.
see that the empirical sizes of the Portmanteau test

(4.7% and 10.0%) and the Studentized range test

(5.2% and 10.6%) match the nominal values of 5%

and 10% very closely. For Model 4, where there is

misspecification in the error distribution, the powers

of the Studentized range test, 99.7% and 100.0%, are

very close to 100%, implying that the test is very

powerful in detecting lack of fit in the distribution

of et. The Portmanteau test has reasonably high rejec-

tion rates when the autoregressive order p2 is wrongly

assumed to be 2 for Model 5 though it has low power

for Model 4. When the discrepancy between the fitted

model and the true model is expanded by increasing

/3
(2) to 0.4 in Model 6, the powers of the Portmanteau

test rise to over 85%. This observation provides clear

evidence that the Portmanteau test is useful in detect-

ing misspecification of the autoregressive orders; the

larger the discrepancy, the higher is the power. In the

case where there is misspecification in both the orders

and the error distribution, as in Model 7, the power of

both tests can be well above 90%. Overall, this experi-

ment demonstrates that the Bayesian diagnostic test is

a useful device for examining the suitability of the

fitted threshold model. We can also develop the fol-

lowing decision rule according to the results of the

two tests in the following table.
7. Application to financial markets

7.1. Data and model description

The analysis undertaken in this article is based on

daily closing prices of five Asian and two U.S. stock

market indices: the Hang Seng Index of Hong Kong

(HSI); the Straits Times Industrial Index of Singapore

(STII); the Taiwan Stock Exchange Weighted Stock

Index (TWSI); the Korea Composite Price Index

(KCPI); the Nikkei 225 Index, Nasdaq Composite



Table 4

Summary statistics of the market index returns

Mean STD Skewness Kurtosis

HSI 0.048 1.781 �3.391 75.033

STII 0.023 1.447 �2.012 51.091

TWSI 0.044 1.995 �0.059 2.889

KCPI 0.038 1.799 �0.021 4.746

Nasdaq 0.046 1.388 �0.519 12.205

Nikkei 225 �0.004 1.371 �0.133 8.920

SP 500 0.043 1.048 �2.647 56.136
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Index (Nasdaq); and Standard and Poor’s 500 Index

(SP 500). The data, obtained from Datastream Inter-

national, run from January 4, 1985, to February 1,

2002, giving a total of 4455 return observations. All

subsequent analysis is performed on the daily log

returns, yt =(logpt� logpt�1)*100, where pt is the

price index at time t, with summary statistics in

Table 4. All seven returns series exhibit the standard

property of asset return data in that they have fat-

tailed distributions, as indicated by excess kurtosis.

Two-regime models are adopted to capture mean

and volatility asymmetry in the market returns. As it is

commonly observed that a GARCH(1,1) model is

sufficient to explain the conditional heteroscedasticity

(see Bollerslev, Chou, & Kroner, 1992), we take
Table 5

Posterior mean, 2.5th percentile (Lowlim) and 97.5th percentile (Uplim)

Singapore and TWSI of Taiwan

Hong Kong (HSI) Singapore (STII)

Mean Lowlim Uplim Mean L

/0
(1) �0.473 �0.721 �0.235 �0.234 �

/1
(1) �0.230 �0.333 �0.124 �0.001 �

w1
(1) 0.535 0.423 0.645 0.514

w2
(1) �0.080 �0.156 �0.003 �0.083 �

/0
(2) 0.052 0.015 0.088 �0.005 �

/1
(2) 0.085 0.047 0.122 0.191

w1
(2) 0.414 0.368 0.461 0.323

w2
(2) �0.009 �0.039 0.022 0.009 �

a0
(1) 0.343 0.200 0.519 0.459

a1
(1) 0.124 0.078 0.183 0.212

b1
(1) 0.848 0.764 0.911 0.745

a0
(2) 0.083 0.051 0.124 0.103

a1
(2) 0.074 0.049 0.102 0.141

b1
(2) 0.846 0.804 0.883 0.742

r1 �0.757 �0.840 �0.691 �0.836 �
m 5.241 4.523 6.076 4.975

w1 0.660 0.595 0.734 0.551

w2 0.295 0.239 0.355 0.283

w3 0.045 0.003 0.121 0.166
c1=c2=d1=d2=1. In addition, we assume p1=p2=1

and q1=q2=2. Allowing yt�1 in the conditional mean

helps account for possible autocorrelations in the

market returns. We also suspect that individual stock

market movement can be affected by external events

that are related to the economy worldwide. To reflect

the relationships among different financial markets, it

is reasonable to postulate that today’s market return is

also driven by past returns in other markets. With this

in mind, for HSI, STII, TWSI, KCPI and Nasdaq, we

set x1t to be the SP 500 return at time t and x2t to be

the Nikkei 225 return at time t. The above choices of

the exogenous variables are based on the global eco-

nomic scale of the US and Japan and their strong

influence on other countries’ economic growth. For

SP 500, we set x1t to be the FTSE 100 return of the

UK and x2t to be the Nikkei 225 return at time t.

Similarly, for Nikkei 225, we set x1t to be the SP 500

return and x2t to be the FTSE 100 return at time t.

In threshold modeling, it is crucial to select a

suitable threshold variable to determine the regimes.

Due to the temporal dependence among international

financial markets, the use of zt=yt as in Li and Li

(1996) and Brooks (2001) can be improved upon. In

our empirical study, we choose m =3 and the auxiliary
of the unknown parameters for the HSI of Hong Kong, STII of

Taiwan (TWSI)

owlim Uplim Mean Lowlim Uplim

0.591 0.245 �0.326 �0.856 0.310

0.140 0.164 �0.109 �0.267 0.063

0.403 0.640 0.356 0.200 0.533

0.173 0.006 0.061 �0.060 0.181

0.032 0.021 0.030 �0.014 0.077

0.156 0.225 0.078 0.040 0.118

0.286 0.357 0.164 0.112 0.213

0.016 0.034 0.050 0.011 0.088

0.282 0.676 0.526 0.216 0.858

0.140 0.301 0.077 0.037 0.122

0.621 0.840 0.914 0.864 0.955

0.069 0.151 0.040 0.016 0.068

0.103 0.186 0.078 0.058 0.102

0.675 0.795 0.896 0.869 0.921

0.902 �0.733 �1.263 �1.942 �0.828

4.328 5.754 5.364 4.565 6.363

0.474 0.685 0.695 0.487 0.921

0.231 0.462 0.104 0.003 0.290

0.002 0.253 0.201 0.006 0.333



Table 6

Posterior mean, 2.5th percentile (Lowlim) and 97.5th percentile

(Uplim) of the unknown parameters for the KCPI of Korea and

Nasdaq of the US

Korea (KCPI) US (Nasdaq)

Mean Lowlim Uplim Mean Lowlim Uplim

/0
(1) �0.174 �0.617 0.307 �0.127 �0.385 0.021

/1
(1) �0.070 �0.224 0.092 �0.124 �0.257 �0.011

w1
(1) 0.247 0.088 0.417 0.141 0.044 0.237

w2
(1) �0.058 �0.179 0.061 �0.056 �0.131 �0.004

/0
(2) �0.018 �0.052 0.017 0.097 0.058 0.172

/1
(2) 0.093 0.058 0.131 0.117 0.037 0.179

w1
(2) 0.093 0.053 0.135 0.070 0.014 0.122

w2
(2) 0.045 0.011 0.078 �0.025 �0.052 0.002

a0
(1) 0.558 0.333 0.738 0.052 0.015 0.096

a1
(1) 0.071 0.040 0.124 0.116 0.081 0.159

b1
(1) 0.896 0.790 0.952 0.879 0.835 0.915

a0
(2) 0.015 0.006 0.030 0.010 0.003 0.019

a1
(2) 0.081 0.062 0.102 0.098 0.070 0.130

b1
(2) 0.905 0.884 0.923 0.879 0.846 0.911

r1 �1.422 �1.654 �0.823 �0.331 �0.629 0.071

m 5.628 4.735 6.812 5.492 4.700 6.470

w1 0.857 0.520 0.978 0.669 0.181 0.935

w2 0.065 0.001 0.453 0.182 0.003 0.615

w3 0.078 0.003 0.371 0.148 0.007 0.346
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variables z1t=yt, z2t=x1t and z3t =x2t because we

believe that the factors appearing in the mean equation

can also have strong impacts on the dynamic structure

of yt. For example, if yt is the HSI return at time t and

d =1, then z1t�1=yt�1, z2t�1=x1t�1 and z3t�1=x2t�1,

representing the HSI, SP 500 and Nikkei 225 returns

at time t�1, respectively, fix the time series proper-

ties of yt. Similarly for yt denoting the SP 500 return

at time t and d =1, z1t�1=yt�1, z2t�1=x1t�1 and

z3t�1=x2t�1, representing the SP 500, FTSE 100

and Nikkei 225 returns at time t�1, together define

the regime of yt. The combined effect of three past

market changes, which is quantified by the weighted

average of the three market returns, determines the

switching between regimes. It is interesting to see

how the weights w1, w2 and w3, are distributed so

that we understand more of how the market return

dynamic reacts to past market movements.

To complete the model specification, we assume et
to be t-distributed rather than standard normal as in Li

and Li (1996) and Brooks (2001). This distributional

assumption matches the empirical evidence in the

GARCH literature better and allows us to produce

more reliable volatility and VaR forecasts. In sum-

mary, the working model considered in this section is

yt¼
/ 1ð Þ
0 þ / 1ð Þ

1 yt�1 þ w 1ð Þ
1 x1t�1 þ w 1ð Þ

2 x2t�1 þ at; zt�dVr1;

/ 2ð Þ
0 þ / 2ð Þ

1 yt�1 þ w 2ð Þ
1 x1t�1 þ w 2ð Þ

2 x2t�1 þ at; zt�dNr1;

(

ht ¼
a 1ð Þ
0 þ a 1ð Þ

1 a2t�1 þ b 1ð Þ
1 ht�1; zt�dVr1;

a 2ð Þ
0 þ a 2ð Þ

1 a2t�1 þ b 2ð Þ
1 ht�1; zt�dNr1;

(

zt ¼ w1z1t þ w2z2t þ w3z3t; z1t ¼ yt; z2t ¼ x1t;

z3t ¼ y2t; ð14Þ

where et ~ tm, the standardized t-distribution with

mean 0, variance 1 and degrees of freedom m. The
probability density function of et is given in Eq. (13).

7.2. Estimation results

To implement our MCMC sampling scheme, we

choose the same prior as in the simulation experiment

except that h =10, that is, we keep at least 10% of the

observations in each regime. A total of 50,000 itera-

tions are performed with the first 10,000 warm-up

iterates discarded. Based on the posterior mode of d,
a time delay of one day is selected for the indices.

Tables 5–7 present the posterior mean, 2.5th and

97.5th percentiles of the other parameters. Concerning

the autoregressive coefficients, /1
(1) and /1

(2) are of

opposite signs except in Nikkei 225. This result is in

agreement with Li and Lam (1995). With SP 500 being

the only exception, all values of w1
(1) and w1

(2) are

positive, indicating that the previous day’s SP 500

return has a positive effect on the direction of other

markets’ movements. According to the posterior 95%

confidence interval of w1
(1) and w1

(2), the impact of

FTSE 100 on the mean level of SP 500 is negligible.

Similarly, from the sizes of w2
(1) and w2

(2), we observe

that the Nikkei 225 return has only aminor influence on

the mean returns. Therefore, the common dominant

characteristic of the US market is reflected in the

mean equations.

Comparing the variance equations in the two

regimes, we can see that a0
(1) is substantially greater

than a0
(2). In addition, the persistence parameter in the

lower regime is higher than that in the upper regime,

i.e. a1
(1)+b1

(1)Na1
(2)+b1

(2), in most cases. The only

exception is KCPI, which has persistence parameters



Table 8

Studentized range test statistics and Portmanteau test statistics (with

p-values in parentheses) obtained from modeling various marke

returns

Studentized range test Portmanteau tes

HSI 7.100 13.91 (0.18)

STII 7.656 3.87 (0.95)

TWSI 6.836 34.37 (0.00)

KCPI 6.343 8.90 (0.54)

Nasdaq 5.935a 4.15 (0.94)

Nikkei225 6.526 11.94 (0.29)

SP500 6.195a 23.51 (0.01)

a Indicates that the Studentized range statistic lies outside the 95%

confidence interval.

Table 7

Posterior mean, 2.5th percentile (Lowlim) and 97.5th percentile

(Uplim) of the unknown parameters for Nikkei 225 of Japan and

SP 500 of the US

Japan (Nikkei 225) US (SP 500)

Mean Lowlim Uplim Mean Lowlim Uplim

/0
(1) �0.270 �0.457 �0.079 �0.144 �0.398 0.189

/1
(1) �0.213 �0.319 �0.107 �0.116 �0.250 0.004

w1
(1) 0.345 0.260 0.430 �0.039 �0.130 0.055

w2
(1) 0.116 0.020 0.209 �0.058 �0.120 0.000

/0
(2) 0.026 �0.003 0.056 0.050 0.026 0.073

/1
(2) �0.027 �0.065 0.013 0.026 �0.011 0.063

w1
(2) 0.221 0.184 0.257 0.016 �0.015 0.046

w2
(2) 0.079 0.043 0.116 �0.008 �0.027 0.011

a0
(1) 0.265 0.191 0.351 0.143 0.071 0.212

a1
(1) 0.092 0.061 0.128 0.042 0.019 0.072

b1
(1) 0.898 0.854 0.934 0.939 0.889 0.974

a0
(2) 0.020 0.013 0.028 0.010 0.004 0.017

a1
(2) 0.046 0.029 0.066 0.028 0.013 0.052

b1
(2) 0.886 0.864 0.905 0.935 0.915 0.953

r1 �0.629 �0.668 �0.595 �0.712 �0.855 �0.476

m 6.104 5.128 7.316 5.017 4.286 5.910

w1 0.757 0.695 0.784 0.844 0.627 0.958

w2 0.188 0.142 0.218 0.084 0.002 0.301

w3 0.055 0.015 0.139 0.072 0.004 0.131
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of similar magnitude. Based on the above results,

higher average volatility is evident when bad news

(zt�d b r1) arrives. As established from a1
(i) +b1

(i),

i =1,2, it takes markets longer to digest bad news

than good news. In other words, the effect of the

current ht on future volatility diminishes at a slower

rate in the lower regime. It is interesting to note that in

TWSI, Nasdaq and Nikkei 225, a1
(1)+b1

(1)N0.99, sig-

nifying highly persistent volatility.

Regarding the distribution of et, all degrees of free-

dom are less than 7. This suggests the existence of

leptokurtosis and that it is more appropriate to use a

fat-tailed error distribution than a normal. Also, it

makes sense to have all threshold values negative.

Most of the thresholds range from �0.9 to �0.6.

While Nasdaq has the largest r1, which is not signifi-

cantly different from zero, TWSI andKCPI’s values are

comparatively small. In the upper regime, the model

structure does not change until the threshold variable

drops more than the borderline given by r1. The nega-

tive threshold value accounts for the baseline market

variation in that a small negative return in zt is still

regarded as normal. In contrast, abnormal situations

that make zt smaller than the negative cut-off r1 con-

firm the dbad newsT regime.
The relative importance of zit in governing the

change in the regimes is studied through the weights.

From the Bayesian estimation results, all w1 are

greater than 0.5, implying that the domestic return yt
is the most important determinant for the regimes.

However, most of the weights deviate significantly

from 1, demonstrating that fixing zt=yt subjectively

can lead to misleading results and inaccurate volatility

forecasts. Comparing w2 and w3 in HSI, STII and

Nasdaq, the SP 500 return is more important than

the Nikkei 225 return in setting up the regimes

whereas in TWSI, Nikkei 225 is more important.

Similarly, SP 500 plays a more relevant role than

FTSE 100 in defining the Nikkei 225 threshold vari-

able. We also find that w1N0.8 in both KCPI and SP

500 where the auxiliary variables z2t and z3t have only

small effects on zt. In these two indices, the threshold

model with zt =yt may provide a reasonable approx-

imation to our general model.

7.3. Model diagnostics and selection results

To perform the diagnostic checking for the seven

data series, we produce ût, t=1389,. . ., 4388 using

Eq. (10) and compute v̂t =U�1(ût). To apply the

Studentized range test and the Portmanteau test,

3000 v̂t were obtained. The 95% confidence interval

(6.336,8.111) of the Studentized range test is gener-

ated by simulations under the null hypothesis that v̂t is

i.i.d. N(0,1). Table 8 displays the model checking

results. We find no sign of inadequacy in HSI, STII,

KCPI or Nikkei 225. Though the current models for

TWSI, Nasdaq and SP 500 are not completely satis-

factory, they are certainly useful in understanding the
t

t
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asymmetric behavior in these indices and their struc-

tural relationships with other indices.

To investigate how our proposed model performs

relative to the threshold GARCH model in Li and

Li (1996) and Brooks (2001), we perform a model

comparison using the Bayesian method in Section

5.2. The model in Eq. (14) is named the full model F,

and Li and Li’s (1996) model is denoted L. T and W

denote submodels of F with w1=1 and w2=w3=0,

and with normally distributed errors. The logarithm

of the posterior odds ratio of F vs. T, F vs. W and F

vs. L are given in Table 9. All PORFL have a

magnitude of at least 1040, implying that the super-

iority of F to L is obvious. Clearly, F is better than

W for the same reason. As F and W differ only in

the distribution of et, very strong evidence is pro-

vided in support of the use of t-distributed innova-

tions instead of normal innovations. Furthermore, we

test whether the weighted average formulation zt ¼P3
i¼1 wizit is significantly better than zt =yt provided

that et is t-distributed. The fact that all PORFT are

greater than 30 except in KCPI signifies strong or

even decisive evidence in favor of F over T. The

exception of KCPI is reasonable as it has the largest

value of w1 among the seven indices. The change of

regime in KCPI is mainly governed by its past

returns. Overall, the value of auxiliary variables

and t innovations is confirmed.

7.4. Forecast evaluation

Using the Bayesian prediction methods described

in Section 4, we generate volatility and VaR forecasts

for t =n +1, the first trading day of November 2001.
Table 9

Logarithm of the posterior odds ratio of F vs. T, F vs. W and F vs. L

for the seven indices, where F stands for the full model with

unknown wi and t-distributed errors, T is the submodel of F with

w1=1 and w2=w3=0, W is the submodel of F with normally

distributed errors and L stands for the model in Li and Li (1996)

F vs. T F vs. W F vs. L

HSI 5.4 169.0 189.1

STII 14.4 226.9 335.4

TWSI 3.5 118.6 103.5

KCPI �1.3 104.6 92.2

Nasdaq 4.3 150.5 156.2

Nikkei 225 16.3 114.3 141.1

SP 500 7.6 191.0 188.3
There are altogether 40000 MCMC iterates of

ffiffiffiffiffiffiffiffiffi
h
i½ �
nþ1

q
and yn+1

[i] simulated from the predictive distributions

p
ffiffiffiffiffiffiffiffiffi
hnþ1

p
jy1;nð Þ and p hnþ1jy1;nð Þ, respectively. Figs. 1

and 2 show sketches of the distributions constructed

by standard kernel methods. In Fig. 1, we can observe

that the predictive distributions of volatility are

roughly symmetric, except in TWSI and KCPI, and

little positive skewness is revealed. Point estimates of

the volatility
ffiffiffiffiffiffiffiffiffi
hnþ1

p
, obtained by the posterior mean of

p
ffiffiffiffiffiffiffiffiffi
hnþ1

p
jy1;nð Þ, are 1.64, 1.03, 1.87, 1.59, 2.19, 1.49,

and 1.35 for HSI, STII, TWSI, KCPI, Nasdaq, Nikkei

225 and SP 500. While we find Nasdaq the most

volatile, STII has the smallest variation. Indeed, the

order of the indices is STIIbSP 500bNikkei

225bKCPIbHSIbTWSIbNasdaq with respect to

the volatility
ffiffiffiffiffiffiffiffiffi
hnþ1

p
. The predictive distributions of

yn+1 in Fig. 2 demonstrate no evidence of asymmetry.

From the simulated sample yn+1
[i] , we forecast the first

percentile of yn+1 to be �4.31, �2.82, �4.90, �4.08,

�5.41, �3.78 and �3.47 for HSI, STII, TWSI,

KCPI, Nasdaq, Nikkei 225 and SP 500. As these

percentile estimates, or 1% VaR predicted values,

are directly related to the variation in markets, it is

not surprising to see that the order of the indices with

respect to the magnitude of the percentiles is the same

as that for volatility. In particular, the largest 1% VaR

tells us that Nasdaq drops by more than 5.41% with a

probability of 0.01.

To gauge the forecasting performance, we evaluate

out-of-sample volatility forecasts in a testing period

using a rolling sample approach. Parameter estimates

are calculated in our learning period and a one-step-

ahead forecast of ht is produced. The next one-step-

ahead forecast is then obtained by shifting the whole

learning period forward by one day so that the num-

ber of observations for estimation is kept unchanged.

The learning period starts with the first 4388 daily

returns and our testing period contains the last 67

returns. The forecasted volatility at time t is denoted

ĥt using our heteroscedastic model. We calculate root

mean square error (RMSE) and mean absolute error

(MAE) for the forecast errors ( yt
2� ĥt), t=n +1,. . .,

n +67. The two measures for evaluating the forecast-

ing performance are presented in Table 10. The order

of indices using the RMSE is SP 500bHSIbNikkei

225bSTIIbNasdaqbTWSIbKCPI, while that using

the MAE is SP 500bSTIIbHSIbNasdaqbNikkei

225bTWSIbKCPI. In terms of the two measures,
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Fig. 1. The one-step-ahead predictive distribution of volatility, p
ffiffiffiffiffiffiffiffiffi
hnþ1

p
jy1;nð Þ, for the seven market indices, where t =n +1 is the first trading day

of November 2001.
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the model forecasts the best in SP 500 and the worst

in TWSI and KCPI. We observe in Table 4 that the

standard deviations of TWSI and KCPI are the largest

and the smallest is for SP 500. The relationship

between forecast errors and variation in market

returns is worth further exploration in future research.
8. Concluding remarks

A threshold heteroscedastic model is proposed to

capture the mean and variance asymmetries in financial

markets. The main feature of this model is that it allows
the threshold variable to be formulated with auxiliary

variables. This avoids subjectively choosing the thresh-

old variable and enables the relative importance of the

auxiliary variables to be examined after model fitting.

Simultaneous estimation of time delay, threshold

values and other parameters is feasible via our

MCMC sampling methods. We also perform Bayesian

diagnostic checking for the threshold heteroscedastic

model. Simulations show that the Bayesian approach

can provide accurate estimates for the unknown para-

meters and a reliable scrutiny of the fitted model.

Several observations from the real data applica-

tion are worth while highlighting. First, there is
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strong evidence that the error distribution is lepto-

kurtic. Modeling the threshold model with normal

error as in Li and Li (1996) and Brooks (2001) can
Table 10

Forecast evaluation based on 67-day returns

RMSE MAE

HSI 2.841 2.032

STII 3.725 1.850

TWSI 6.444 4.392

KCPI 7.541 4.959

Nasdaq 4.058 2.669

Nikkei 225 3.667 2.754

SP 500 1.580 0.946
result in substantial bias in the VaR and volatility

forecasts. Second, besides clear mean asymmetry, a

dominant positive effect of the SP 500 return on the

conditional mean is discovered. This supports the

argument that international market index returns are

driven by US market movements. In contrast, Nikkei

225 has minor influence on the mean equation.

Third, higher average volatility and more persistent

volatility are found in the lower regime. Therefore,

the arrival of bad news in general makes the markets

more volatile and bad news also has a more pro-

longed effect on return volatility than good news.

Finally, we can see from the weights associated with

the auxiliary variables that the domestic return is the
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major determinant of the regimes. However, both SP

500 and Nikkei 225 do impact the dynamic structure

of the domestic market returns. Further research is

necessary on how to select important auxiliary vari-

ables when forming the threshold variable.
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