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Abstract

We model a duopoly in which media compete in both the con-
sumer and the advertising markets. The advertisers’ payoffs depend
on the coverage in the consumer market, hence there are cross-market
externalities but no direct transfers are possible. At a (sunk) cost,
platforms select the quality they offer consumers, and the prices they
charge consumers and advertisers. Under well-defined conditions, the
pure strategy equilibrium of this game is unique and can be computed.
Generically, a mixed-strategy equilibrium is shown to always exist and
the distributions are completely characterised. Compared to an es-
tablished benchmark (Shaked and Sutton, (1982)), consumer prices
are distorted downward and so is the quality offered to consumers.
The introduction of advertising revenue enhances price competition
for consumers, and the necessary consumer discount relaxes the need
to provide quality. Hence quality (on the consumer side) and adver-
tising revenue are substitutes. Competition is shown to promote the
investment in quality, as contrasted to a monopoly. The market may
be preempted not as a result of an exogenous contraction, but as a
consequence of an expansion, of (advertising) demand.

1 Introduction

“The only thing advertisers care about is circulation, circulation,
circulation.”

Edward J. Atorino, analyst

Fulcrum Global Partners, New York

June 17, 2004 (The Boston Globe).

∗Department of Economics, USC. Email: roger@usc.edu
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The standard modus operandi for the media requires of them to satisfy two
constituencies: consumers on one side and advertisers on the other. Typi-
cally advertisers also prefer reaching as large an audience as possible, but
direct transfers to consumers are effectively impossible to implement. Unlike
a more classical multiproduct firm problem where consumer internalise the
benefits of each product in their consumption decision of the other one(s),
here each side fails to so. That is, there are complementarities that parties
cannot take advantage of. From this simple observation they can be con-
strued as platforms competing in a two-sided market. But unlike e-Bay, say,
whose only purpose is to facilitate transactions between buyers and sellers,
a medium also provides an information (or entertainment) good to attract
consumers. In this paper we develop a model of media competition in which
a) platforms select the quality of the consumer good, where quality is costly;
and b) competition cannot be reduced to the sole problem of attracting con-
sumers. That is, media compete non-trivially in both the consumer and the
advertising market. This construct can be extended to trading platforms or
stock exchanges as well but we will stay with the media reference throughout
for the purpose of exposition.

We compute the unique pure-strategy equilibrium of this game for a re-
stricted set of parameters. Quite naturally it is asymmetric – like Shaked
and Suton (1982). More generally a mixed-strategy equilibrium always ex-
ists and the distributions over the (subset of) actions are characterised and
are symmetric. Beyond the positive analysis, consumer prices are distorted
downward – as in any two-sided market problem – in order to take advantage
of the complementarity they exert on advertising demand. The main result
is that, when a pure-strategy equilibrium exists, the optimal quality level of
the top firm is lower than in the corresponding Shaked and Sutton (1982)
benchmark. Profit maximisation alone is sufficient for this phenomenon to
arise; that is, interference is not necessary. Quality and advertising become
substitutes in the platforms’ problem. Indeed, without advertising revenue,
a high quality is a means of extracting consumer surplus, at the cost of giv-
ing away market share to the competition. With ancillary revenue, every
consumer becomes more valuable because the platform can extract surplus
from advertisers, hence the substitution phenomenon. It is further estab-
lished that quality is declining in the magnitude of the advertising revenue.
As the value of advertising increases, the discount offered to consumers deep-
ens. Therefore the quality level required to induce the marginal consumer
to purchase from the high-quality platform decreases. Beyond a well-defined
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threshold, the quality difference becomes so narrow1 that the consumer mar-
ket is preempted. However this fails to be an equilibrium as the excluded
firm simply has to offer a marginally higher quality level to monopolise the
market. Then platforms play in mixed strategies. Thus ex post both mar-
kets are monopolised, not because there is too little surplus to extract, but
thanks to a large advertising market.

More formally, the model calls on Gabszewicz and Thisse’s (1979) (also
Shaked and Sutton’s (1982)) vertical differentiation construct on the con-
sumer side, however adding a convex, sunk cost of quality. Advertisers are
not strategic: their payoffs do no depend on what other advertisers do, but
they do derive some idiosyncratic benefit from advertising. This fits a frame-
work of informative advertising, or one where commodity producers do not
compete in this dimension2, as in Anderson and Coate (2005). Because ad-
vertisers care only about the market coverage of each medium – and not
to whom they advertise, vertical differentiation emerges endogenously on
that side. The game is played in three stages: first media platforms simul-
taneously select their quality level. In the second stage, having observed
each other’s quality, they set consumer prices. Last, knowing the consumer
market’s configuration (their marketshare) they choose advertising prices.
Consumers and advertisers purchase at most one unit of the good of interest
– this is called the single-homing assumption. This important detail will be
discussed at greater length later; in particular it implies that price compe-
tition is still vivid in the advertising market, unlike in Gabszewicz, Laussel
and Sonnac (2001).

The media industry carries a significant weight in industrialised coun-
tries, with worldwide advertising expenditure estimated at US$ 600 billion
in 2006 – approximately half of which were incurred in the United States.
Yet unlike other large sectors of the economy (such as automobile) or in-
dustries fraught with externalities (airlines or telecommunications), it has
not been the object of much academic research. According to Simon Wilkie,
former chief economist of the the FCC, regulators suffer from this lack of
interest on the part of economists. While this paper does not claim to be a
policy prescription, it may inform policy makers and actors in the industry.
In considering applications, the results seem to match the observation that
in most US cities either a single newspaper survives, or a very large one
dominates a (or a fringe of) small outlet(s)3. This lone (or dominant) news-

1and the corresponding consumer prices so low
2In fact competition between producers is entirely side-stepped
3Poynter Online, circulation rankings as of November 6, 2002. Only New York City

has more than one significant daily paper.
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paper is nonetheless quite inexpensive. While the static model we present
cannot capture the dynamic evolution of print media competition, its pre-
dictions correspond to these observations. Two scenarii may be drawn. In
the first one, a single newspaper remains at the end of a competitive process
that eventually drives out other players. Alternatively, an exogenous shock
affecting advertising profits disrupts the pure strategy equilibrium and leads
to exit, as observed in the recent past across the US. Thus some players may
be driven out not because of an exogenous market contraction, but because
of a(n) (advertising) market expansion.

The model analysed herein is too stark to claim being a faithful de-
scription of the media industry, however it does contribute to its study by
departing from much of the literature in three important ways. First quality
is costly, which fits much of the industry: better, more accurate informa-
tion requires more investment to retrieve and verify it, and better shows
do cost more to produce. Second, it ignores whatever disutility consumers
may suffer from advertising. This choice can be debated4, however what
should not be is that a (commonly used) convex disutility function (δ(qA))
reduces the value of the marginal advertiser from the perspective of the plat-
form. In other words, it modifies the rate of substitution between surplus
extraction from consumers and from advertisers. Introducing such disutility
would extend the range of parameters on which the pure-strategy equilib-
rium can be sustained, as it reduces the value of advertising to the platform.
It otherwise does not modify the results qualitatively. Last, the model pre-
sumes of single-homing on both sides, which can be rationalised through a
budget constraint imposed on consumers and a liquidity constraint on ad-
vertisers. This assumption has non-trivial implications. It defines a proper
subgame in the last stage, which multi-homing precludes; that is, there is
meaningful price competition between platforms in the advertising market.
In turn this hardens competition for consumers, in that a marginal increase
in consumer coverage yields different marginal benefits in the advertising
market, depending on the ranking of the platform in the consumer market.
It also renders the profit function bi-modal (hence not quasi-concave) at the
consumer pricing stage, with associated equilibrium existence concerns.

4In particular, such a disutility function may not be consistent with the framework of
informative advertising, in which the latter is necessary for consumer to discover goods.
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2 Literature

Rochet and Tirole (2002, 2004), Armstrong (2004) and Caillaud and Jullien
(2003) are the seminal references when it comes to studying two-sided mar-
kets. In this paper, consumers’ utility is not directly dependent on the num-
ber of advertisers. It may be affected indirectly by the price system. That is,
the externality is one-sided only. The works closest to ours are those of Gab-
szewicz, Laussel and Sonnac (2001), hereafter GLS, Ferrando, Gabszewicz,
Laussel and Sonnac (FGLS 2003), Gabszewicz and Wauthy (2006) and An-
derson and Coate (2005). GLS (2001) characterise pure-strategy equilibria
in a Hotelling model with multi-homing on the advertising side and en-
dogenous locations. In contrast, FGLS (2003) take the locations as fixed.
Gabszewicz and Wauthy (2006) do consider endogenous costless quality,
however in a rational expectation model with simultaneous price-setting in
the consumer and advertising market and with the option of multi-homing.
Anderson and Coate (2005) conduct a welfare analysis of the broadcasting
market; advertising may be underprovided, depending on its nuisance cost
and its expected benefit to advertisers. There is no direct competition be-
tween broadcasters for the advertisers business. Our results also contrast
the simple model developed by Thorson (2003), which she summarises as

Newsroom investment → Quality → Circulation → Revenue

and according to which a quality investment uniformly improves revenue.
Ellman and Germano (2005) disregard editorial independence and show that
competing newspapers may optimally select what to report in order to alle-
viate advertisers’ discomfort with the news content5. Along the same vein,
Strömberg (2004) shows that profit-maximising media report information
relevant to larger audiences, thereby providing incentives to political com-
petitors to distort their messages to please this subset of the population.
Crampes, Harichabalet and Jullien (2005) analyse the problem of entry in
the media market using a model where platforms derive revenues from both
consumers and advertising.

This work is also related to an older strand of the industrial organisation
literature. Building on the work of Gabszewicz and Thisse (1979), Shaked
and Sutton (1982) show that when firms compete in a vertical differentiation
model, their profits, prices and market shares are ranked according to their
quality choices. The equilibrium is unique and duopolists exhibit maximum

5The recent feud between the LA Times and Chrysler does lend some credence to this
thesis.
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differentiation to soften price competition. This model is slightly modified
to reflect ours, and used as a benchmark when comparing quality levels.

Throughout, obvious or longer proofs are collected in the Appendix,
which also contains a supplementary section on symmetric equilibria.

3 Introducing the model

There are two platforms, identified with the subscripts 1 and 2, and a contin-
uum of consumer of mass 1 with private valuation b for information (in the
common-language understanding of the word). The benefit b is distributed
on an interval

[
β, β

]
following the function F (β) and everywhere positive

density f (β). All consumers value quality in the sense of vertical differ-
entiation – there is no ambiguity for consumers as to what quality is. Let
θ ∈ Θ =

[
θ, θ
]

denote the quality parameter of each good. For simplicity, it
is assumed that one must purchase the medium to consume it: there is no
free viewing. A consumer’s net utility function is expressed as

u(b, θi, p
R
i ) = θib− pR

i ; i = 1, 2

when facing a price pR
i , where the superscript R stands for ‘reader’. Let pR =(

pR
1 , pR

2

)
, θ = (θ1, θ2), and consumers buy at most one medium. Suppose

further θ1 > θ2 without loss of generality. This induces the measure

DR
1

(
pR, θ

)
≡ Pr

(
θ1β − pR

1 ≥ max
{
0, θ2β − pR

2

})
(1)

on the part of readers; DR
1

(
pR, θ

)
is simply the number of subscribers. With-

out loss of generality, consumers will purchase from provider 1 over provider
2 as long as β ≥ max

{
β̂ ≡ pR

1 −pR
2

θ1−θ2
, β̃ ≡ pR

1
θ1

}
and have demand

DR
1

(
pR, θ

)
= min

{
1− F

(
pR
1

θ1

)
, 1− F

(
pR
1 − pR

2

θ1 − θ2

)}
while the demand for information good 2 is determined for values of the
parameter β ∈

[
pR
2

θ2
, β̂
]
, or zero, and expressed as

DR
2

(
pR, θ

)
= max

{
0, F

(
pR
1 − pR

2

θ1 − θ2

)
− F

(
pR
2

θ2

)}
Thus demand functions exhibit a kink at β̂ = β̃.

Advertisers have a profit function A(y, x) separable in x, y; x ∈ {0, 1}
denotes advertising consumption and y is a (vector of) variable(s). These

6



include any other action a platform may undertake, such as hiring sales
personnel, R&D and so forth. Let ei denote the quality of platform i as
perceived by the advertisers. This plays the same role as θi on the consumer
side, but pertains to the advertisers decision. For any ŷ, they may choose
to purchase one unit of space at most at price pA

i if

ei (A(ŷ, 1)−A(ŷ, 0))− pA
i = eia− pA

i ≥ 0; i = 1, 2

that is, they derive an increase in (expected) profit a. In practice, while
producers routinely place their messages on different media, it is also true
that they are cash-constrained 6. The one unit limit can be interpreted as a
tight liquidity constraint. Announcers may value the benefit from advertis-
ing differently according to the parameter a, which is considered private and
distributed following G(α) on [α, α] with mass 1. It is quite natural to let

ei ≡ e
(
DR

i

)
, with

∂e(DR
i )

∂DR
i

> 0 and
∂2e(DR

i )
(∂DR

i )2 ≤ 0, and of course, e
(
DR

i

)
= 0

for DR
i = 0: the more consumers the advertiser can reach, the more they

value an ad, but this benefit is (weakly) concave. For example, following
Shaked and Sutton (1982), if one thinks of the parameter taste b as dis-
posable income, the value of the marginal consumer to advertisers is clearly
decreasing. The distribution G (α) is restricted to having a monotonically
increasing hazard rate. Like consumers, potential advertisers act as price
takers and there is no strategic interaction between them, nor between ad-
vertisers and platforms. The ranking of the platforms’ market shares in
the consumer market defines their relative quality in the advertising mar-
ket. Given prices pA =

(
pA
1 , pA

2

)
, a producer purchases from channel 1 over

channel 2 (without loss of generality), only if e1α−pA
1 ≥ max

{
0, e2α− pA

2

}
.

This decision rule generates the measure

Pr
(
e1α− pA

1 ≥ max
{
0, e2α− pA

2

})
≡ qA

1

(
pA, e

)
where e = (e1, e2), whence we derive demands

qA
1

(
pA, e

)
= min

{
1−G

(
pA
1

e1

)
, 1−G

(
pA
1 − pA

2

e1 − e2

)}
and

qA
2

(
pA, e

)
= max

{
0, G

(
pA
1 − pA

2

e1 − e2

)
−G

(
pA
2

e2

)}
6say because of risk aversion or credit markets imperfections
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We assume neither constraint on advertising space (the medium can always
print one more page, for example), nor that advertising affects readership7.
The cost of running adverts is set at zero. Quality however is costly to
provide and is modeled as an investment according to kθ2

i .
Platforms (say, magazine or television channels) first choose a quality

level. Given this quality, set prices first to consumers and, in a third stage, to
advertisers. Upon observing these prices, they choose whether to purchase.
The three-stage game is denoted Γ.

A platform collect revenues from both readers and advertisers, with
monies from either side perfectly substitutable. Ceteris paribus, a provider
simply cares about total revenue. For any medium i = 1, 2, the objective
function takes the form

Πi = DR
i

(
pR, θ

)
pR

i − kθ2
i + qA

i

(
pA, e

)
pA

i (2)

4 Equilibrium characterisation

Section 7.8 of the Appendix presents an analysis of symmetric equilibria in
general form, which arise when platforms select symmetric quality (either
because they are constrained by design, or as an equilibrium outcome), or
when consumer prices are fixed. While the latter situation occurs quite
naturally, say by mandate or simply because consumption cannot be mon-
itored8, there is no reason for platforms to limit themselves to symmetric
quality. Moving away from symmetry softens price competition and leads
to positive profits (Shaked and Sutton (1982, 1983), Tirole (1988)). In line
with the literature, we impose some structure by assuming a uniform dis-
tribution on the bounded supports of the private parameters β and α in
the consumer market and the advertising market, respectively. To prevent
exogenous market preemption (in the consumer market) we impose

Assumption 1 β − 2β > 0

This rules out the trivial case in which the low-quality platform necessarily
faces zero demand in the price game. Let e

(
DR

i

)
= e×DR

i for (non-trivial)
simplicity, which lets us interpret e as a scaling parameter. For the analysis
to remain tractable we restrict the range of equilibrium outcomes to those
were full (advertising) market coverage arises, that is

7Although we duly note restrictions on advertising time for free-to-air television, as
well as an obvious distaste for advertising on TV by viewers, for example

8as in the case of broadcasting
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Assumption 2 e ≤ 1 and α
α ∈

(
2,

2DR
i −DR

j

e(DR
i −DR

j )

)
where DR

i > DR
j and the demands are evaluated at equilibrium. This is not

without loss of generality, as shown by Wauthy (1996): coverage is an equi-
librium outcome. Wauthy (1996) shows it is optimal only in this range of

parameter values. The condition on e guarantees the interval
(

2,
2DR

i −DR
j

e(DR
i −DR

j )

)
to be non-trivial and well defined. As Assumption 1, it also prevents exoge-
nous preemption. Further discussion is postponed until after the analysis.
Also, the parameter k needs to be sufficiently large for the cost function to
have some bite; specifically,

Assumption 3 k >
(2β−β)2

18θ

to guarantee an interior solution in the benchmark case9. Taken together,
Assumptions 1 and 3 guarantee that the consumer market is covered in
equilibrium, which greatly simplifies the analysis. To see why, suppose there
is no externality and denote the equilibrium quality levels are given by θ0

1 =

1
2k

(
2β−β

3

)2

> θ0
2 = θ 10. The condition for a covered market is

β−2β

3 (θ0
1 −

θ0
2) ≤ βθ0

2 (see for example, Tirole, (1988)). Substituting for the values of

θ0
1, θ

0
2 and re-arranging, the market is covered for k ≥ 1

2θ

(
2β−β

3

)2(
β−2β

β−β

)
,

which is necessarily satisfied by Assumption 3. It follows that both firms
operate and the relevant demand functions in the consumer market are the
competitive ones. It will be obvious that it is satisfied in an equilibrium of
this game. We proceed in two steps, first focusing on agents’ behaviour in
the advertising market, which is not directly affected by quality choices. Let
α̂ = p̂A

1 −p̂A
2

∆e and e∆DR = e(DR
1 −DR

2 ) denote the difference in the platforms’
quality. The following lemma reflects these specifications.

Lemma 1 Suppose DR
1 ≥ DR

2 w.l.o.g. There may be three pure strategy
equilibria in the advertising market. When DR

1 > DR
2 > 0, the profit func-

tions write:

ΠA
1 = e∆DR

(
2α− α

3

)2

; ΠA
2 = e∆DR

2

(
α− 2α

3

)2

9to be developed in Section 5. In the absence of a sufficiently large parameter k the
Shaked and Sutton boundary result prevails, which renders across-model comparisons
meaningless.

10Refer section 5 for details of this equilibrium
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When DR
1 > DR

2 = 0, platform 1 is a monopolist its profits are:

ΠAM
1 = eDR

1

(
α

2

)2

For DR
1 = DR

2 , the Bertrand outcome prevails and platforms have zero ad-
vertising profits.

Up to the endogenous quality in the advertising market, this is exactly
the result of the classical analysis of vertical differentiation. Note that an
equilibrium resting on DR

i > DR
j = 0 may arise as a non-trivial equilibrium

in the advertising market: take for example θi = θj and pR
i < pR

j , which
may, or may not, be an out-of-equilibrium outcome in the consumer market.

Proof. The proof is standard and therefore omitted (it follows the proof
of Lemma 8, Section 7.8). The low-quality firm’s survival requires sufficient
heterogeneity among buyers, which is imposed by Assumption 2.

Thanks to Assumption 1, consumer demand for the information good
simply writes

DR
i = β −

pR
i − pR

j

∆θ
; DR

j =
pR

i − pR
j

∆θ
− β

for θi > θj and with ∆θ = θi − θj . When choosing its strategy in the con-
sumer market, each firm knows what to expect in the announcers’ market:
the platform that holds the larger market share in the consumer market will
enjoy high advertising profits and conversely. Following Lemma 1 the profit
function (2) rewrites as

Πi = pR
i DR

i (pR, θ)− k(θi) + ΠA
i

(
e∆DR(pR, θ)

)
(3)

on the equilibrium path. It is useful to bear in mind that when firm 1 is
dominant in the consumer market, ∆DR(pR, θ) = DR

1 (pR, θ) −DR
2 (pR, θ),

and conversely if firm 2 dominates.

4.1 Consumer price subgame

From Lemma 1 three distinct configurations may arise on the equilibrium
path. In the first case, platform i dominates the consumer market, in the
second one both share the consumer market equally and in the last one it is
dominated by firm j. The profit function (3) of each firm i = 1, 2 writes

Πi = pR
i DR

i (pR, θ)− kθ2
i +


ΠA

i , if DR
i > DR

j ;
0, if DR

i = DR
j ;

ΠA
i , if DR

i < DR
j .

(4)
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This function is continuous, but not quasi-concave and has a kink at the
profile p̃R of consumer prices such that DR

i = DR
−i. Thus the conditions

of Theorem 2 of Dasgupta and Maskin’s paper (1986a) are not met. Their
Theorem 5 is of limited use as it pertains to mixed strategies. In character-
ising the equilibrium of this subgame we face discontinuous best-response
correspondences owing the lack of quasi-concavity, which follows from the
externality generated by advertising revenue. Proceeding by construction it
is nonetheless possible to show that at least one equilibrium in pure strate-

gies always exists. Denote ∆θ = θ1 − θ2, A =
(

2α−α
3

)2
and A =

(
α−2α

3

)2
.

The space PR
i × PR

−i of action profiles (prices) can be divided into three
regions: region I such that DR

i > DR
−i, region II such that DR

i < DR
−i and

region III such that DR
i = DR

i . We begin with

Definition 1 For i = 1, 2, the platforms’ ‘quasi-best responses’ are defined
as the solution to the problem maxpR

i
Πi

(
pR

i , DR
i (pR, θ); ΠA

i (DR
i , DR

j )
)
, where

the profit function is defined by (4). Therefore, letting θ1 > θ2 w.l.o.g,

pR
1

(
pR
2

)
=


pR
1

(
pR
2

)
= 1

2

(
pR
2 + ∆θβ − 2eA

)
, if DR

1 > DR
2 ;

1
2

(
pR
2 + ∆θβ

)
, if DR

1 = DR
2 ;

pR
1

(
pR
2

)
= 1

2

(
pR
2 + ∆θβ + 2eA

)
, if DR

1 < DR
2 ;

and

pR
2

(
pR
1

)
=


pR
2

(
pR
1

)
= 1

2

(
pR
2 −∆θβ − 2eA

)
, if DR

1 < DR
2 ;

1
2

(
pR
1 −∆θβ

)
, if DR

1 = DR
2 ;

pR
2

(
pR
1

)
= 1

2

(
pR
2 −∆θβ + 2eA

)
, if DR

1 > DR
2 ;

While it is always possible to find some point where ‘quasi-best responses’
intersect (e.g. such that both play as if DR

1 < DR
2 ), it by no means necessar-

ily defines an equilibrium. Doing so assumes that in some sense platforms
coordinate on a particular market configuration, say, such that DR

1 < DR
2 ,

which may not been immune from unilateral deviation. After all this is a
non-cooperative game. To find the equilibrium, if it exists, we first need to
pin down the firms’ true best replies.

Lemma 2 Let θ1 > θ2 w.l.o.g. There exists a pair of actions (p̂1, p̂2) such
that the best response correspondences are defined as

pR
1

(
pR
2

)
=
{

pR
1

(
pR
2

)
, for p2 ≥ p̂2;

pR
1

(
pR
2

)
, for p2 < p̂2;

(5)
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and

pR
2

(
pR
1

)
=
{

pR
2

(
pR
1

)
, for p1 < p̂1;

pR
2

(
pR
1

)
, for p1 ≥ p̂1;

(6)

Lemma 2 thus defines the ‘true’ best-response of each player. It says that
platform 1, for example, prefers responding with pR

1

(
pR
2

)
for any prices

p2 ≥ p̂2 and switches to pR
1

(
pR
2

)
otherwise. Recall that consumer profits

and advertising profits are substitutes for the platforms. The best reply
correspondence is discontinuous at that point where platforms are indiffer-
ent between being the dominant platform and not, that is, between the
combination of prices

(
pR

i
(pR

j ), pA
i (pR

i
)
)

and
(
pR

i (pR
j ), pA

i (pR
i )
)
.

Proof. First notice that playing a profile p̃R such that DR
1 = DR

2 can
never be a best reply. When DR

1 = DR
2 advertising profits ΠA

i are nil for
both platforms. So both players have a deviation strategy pR

i + ε in either
direction since ΠA

i > ΠA
i > 0, i = 1, 2 as soon as DR

i 6= DR
−i. Maximising

the profit function (4) taking p−i as fixed leaves us with two ‘quasi-reaction
correspondences’, for each competitor, depending on whether DR

1 > DR
2 or

the converse. Player i’s profit function can be rewritten Πi

(
pR
1 (pR

2 ), pR
2 ; ΠA

i

)
.

Depending on firm 2’s decision, platform 1’s profit is either

Π1 =

{
Π1

(
pR
1
(pR

2 ), pR
2 ; ΠA

i

)
= Π1

(
1
2

(
pR
2 + ∆θβ − 2eA

)
, pR

2 ; ΠA
i

)
, or;

Π1

(
pR
1 (pR

2 ), pR
2 ; ΠA

i

)
= Π1

(
1
2

(
pR
2 + ∆θβ + 2eA

)
, pR

2 ; ΠA
i

)
.

Define g1(pR
2 ) ≡ Π1

(
pR
1 (pR

2 ), pR
2 ; ΠA

i

)
− Π1

(
pR
1
(pR

2 ), pR
2 ; ΠA

i

)
. This quan-

tity is the difference in profits generated by firm 1 when it chooses one
‘quasi-best response’ over the other, as a function of the consumer price
set by firm 2. For pR

2 sufficiently low, g1(.) > 0. This function is contin-
uous and a.e differentiable, for it is the sum of two continuous, differen-
tiable functions. Using the definitions of equilibrium advertising profits (in

Lemma 1), it is immediate to compute dg1

dpR
2

= dΠA
1 (pR

1 ,pR
2 )

dpR
2

− dΠA
1 (pR

1
,pR

2 )

dpR
2

< 0,

and d2g1

d(pR
2 )2

= 0, whence there exists a point p̂R
2 such that g1(p̂R

2 ) = 0. At

p̂R
2 , Πi

(
pR
1
(p̂R

2 ), p̂R
2

)
= Πi

(
pR
1 (p̂R

2 ), p̂R
2

)
and platform 1 is indifferent between

these two profit functions, that is between either best response pR
1
(p̂R

2 ) or
pR
1 (p̂R

2 ). The same follows for platform 2, which defines p̂R
1 . Computing the

profit functions, it is immediate that

Π1

(
pR
1
(pR

2 ), pR
2 ; ΠA

i

)
≥ Π1

(
pR
1 (pR

2 ), pR
2 ; ΠA

i

)
⇔ pR

2 ≥ p̂R
2 ≡ −

(
∆θβ + e(A−A)

)
12



and

Π2

(
pR
1 , pR

2
(pR

1 ); ΠA
i

)
≥ Π2

(
pR
1 , pR

2 (pR
1 ); ΠA

i

)
⇔ pR

1 ≥ p̂R
1 ≡ ∆θβ − e(A−A)

An equilibrium has a flavour of rational expectations, in that platforms
must select actions that are consistent with each other (for example, both
must play as if DR

1 > DR
2 ), as well as compatible with an equilibrium. Such

a rationality requirement however is not necessary, as will soon be obvious;
instead we let media play a standard Nash equilibrium. Hence by definition,
for each firm, its action must be an element of the best reply correspondence
and these correspondences must intersect. We define a condition that cap-
tures both these features, and will show next that it is both necessary and
sufficient for an equilibrium to exist. From the ‘quasi-best responses’, an
equilibrium candidate is a pair of prices such that

(
p∗R1 , p∗R2

)
=
{

pR
1

(
pR
2

)
∩ pR

2

(
pR
1

)
, if DR

1 > DR
2 or;

pR
1

(
pR
2

)
∩ pR

2

(
pR
1

)
, if DR

1 < DR
2 ;

These actions may form an equilibrium only if their intersections are non-
empty. Together, the definitions of a best-response profile (relations (5)
and (6)) and of an equilibrium candidate sum to

Condition 1 Either
p̂R
1 ≥ p∗R1 and p̂R

2 ≤ p∗R2

or
p̂R
1 ≤ p∗R1 and p̂R

2 ≥ p∗R2

or both.

Consider an action profile p∗R satisfying this condition; from Lemma 2 each
p∗Ri is an element of i’s best response. Now, for it to be an equilibrium,
players must choose reaction functions that intersect. This is exactly what
Condition 1 requires. For example, the first pair of inequalities tells us that
player 1’s optimal action has to be low enough and simultaneously that of 2
must be high enough. When they hold, player 2’s reaction correspondence
is necessarily continuous until 1 reaches the maximiser p∗R1 , and similarly
for 1’s best reply. Then

Lemma 3 Condition 1 is necessary and sufficient for at least one equilib-
rium p∗R =

(
p∗R1 , p∗R2

)
to exist. When both inequalities are satisfied, the

game admits two equilibria.

13



When Condition 1 holds, the best-reply correspondences intersect in at least
one subset of the action profile space PR

1 × PR
2 . In this case, the Nash

correspondence pR
1 (pR

2 )× pR
2 (pR

1 ) has a closed graph and standard theorems
apply. The potential multiplicity of equilibria owes to the discontinuity of
the best-reply correspondences.

Proof. The profit function Πi i = 1, 2 is strictly concave in pR
i and

therefore quasi-concave. Since player i’s action set is PR
i ⊆ R, it is compact

and convex. For each platform this can be partitioned into two subsets
PR

i =
[
pR,min

i , p̂R
i

]
and P

R
i =

[
p̂R

i , pR,max
i

]
, on which the best-response

correspondences defined by (5) and (6) are continuous for each platform i.
Consider any equilibrium candidate

(
p∗R1 , p∗R2

)
. By construction it is defined

as the intersection of the ‘quasi-best responses’, which is not necessarily an
equilibrium. But when Condition 1 holds, following the definitions given
by equations (5) and (6), either p∗R1 ∈ pR

1
(pR

2 ) and p∗R2 ∈ pR
2 (pR

1 ), or p∗R1 ∈
pR
1 (pR

2 ) and p∗R2 ∈ pR
2
(pR

1 ) (or both, if two equilibria exist). Thus at the
point

(
p∗R1 , p∗R2

)
the reaction correspondences necessarily intersect at least

once, whence the Nash correspondence has a closed graph and the Kakutani
fixed-point theorem applies. To show necessity, suppose a pair

(
p∗R1 , p∗R2

)
is

a Nash equilibrium. By definition, pR
2

(
pR
1

)
∩pR

1

(
pR
2

)
6= ∅, and by Lemma 2,

either
(
p∗R1 , p∗R2

)
= pR

1

(
pR
2

)
∩ pR

2

(
pR
1

)
or
(
p∗R1 , p∗R2

)
= pR

1

(
pR
2

)
∩ pR

2

(
pR
1

)
, or

both if two equilibria exist. For the first equality to hold, the first line of
Condition 1 must hold, and for the second one, the second line of Condition 1
must be satisfied.

Let C =
[
2e
(
A + A

)]2 =
[
2e
(
(2α−α

3 )2 + (α−2α
3 )2

)]2
. Condition 1 pro-

vides us with a pair of easy-to-verify conditions in terms of prices. Thus we
can establish

Lemma 4 Existence. An equilibrium in pure strategies of the consumer
price subgame always exists. It is unique and located in region I.

There cannot exist a pair of alternative consumer prices
(
p∗∗R1 , p∗∗R2

)
com-

patible with a pair of quality choices (θ∗1, θ
∗
2) solving the platforms’ problem:

they fail the necessary condition laid out in Lemma 3.
Proof. The proof is somewhat lengthy – and therefore collated in the

Appendix, Section 7.1 – but simple. Candidate equilibria can be constructed
from the ‘quasi-reaction correspondences’ of Definition 1. By Lemma 3, it is
enough to verify that these candidates satisfy Condition 1 for them to form
a Nash equilibrium. One of them always does, while the other one never
can.

14



Figure 1: Best reply functions and unique equilibrium

The lack of quasi-concavity of the payoff functions induces discontinu-
ity of the best-reply correspondences. To paraphrase Dasgupta and Maskin
(1986a) however, this discontinuity is essential. Given sunk quality the
configuration 〈θ1 > θ2, D1 < D2〉 corresponding to the second line of Condi-
tion 1 can be interpreted as a need for advertising profits to be large enough
for a second equilibrium to exist. However it entails playing a weakly dom-
inated strategy for player 2: if she finds it attractive to reduce her price so
much, so must player 1. Thus the discontinuity set is not a trivial one –
it has certainly not measure zero. It follows that mixed strategies cannot
restore this second candidate equilibrium (Dasgupta and Maskin (1986a),
Theorem 5). Furthermore it implies that we need not call on the ratio-
nal expectation framework. Elimination of weakly dominated strategies is
sufficient to rule it out and play a less strenuous Nash equilibrium. This
is depicted in Figure 1. Now we are ready to collect these results and to
compute equilibrium consumer prices in this subgame.

Proposition 1 Consumer prices. Let θ1 > θ2 w.l.o.g. There may be two
possible configurations arising in the consumer price subgame. For each,
there exists a unique Nash equilibrium in pure strategies characterised as

• For ∆θ >
√

C
β−2β

pR∗
1 = 1

3

[
∆θ
(
2β − β

)
+ 2e

(
A− 2A

)]
pR∗
2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
2A−A

)]
• If ∆θ ≤

√
C

β−2β

pR∗
1 = ∆θβ

2 − 2eA
pR∗
2 = 0

Proof. Directly from Lemma 4, which establishes existence and unique-
ness of this equilibrium. In particular no such alternative equilibrium can
exist when ∆θ <

√
C

2β−β
. Consider such a situation, then the prices

pR
1 = ∆θβ

2 − 2eA
pR
2 = 0

15



do form an equilibrium for they satisfies Condition 1. But the pair

pR
1 = 0

pR
2 = −∆θβ

2 − 2eA

cannot be best responses to each other. At the price-setting stage, the cost
of quality is sunk. So with θ1 > θ2, there always exists some price pR

1 ≥ pR
2

such that consumers prefer purchasing from platform 1.
Consumer prices thus include a ‘discount’ as platforms engage in cross-

subsidisation. The lure of advertising revenue intensifies the competition for
consumers because they become more valuable than just for their willingness
to pay for the information good. But the intuitive reasoning whereby the
low-quality firm may find it profitable to behave very aggressively in order
to access large advertising revenue does not hold true (Lemma 4). Moreover,
unlike in the Shaked and Sutton (1982) model, β − 2β > 0 is not sufficient
to afford the low-quality firm some positive demand: ∆θ, defined in the first
stage, may be too narrow to sustain two firms. That is, the high-quality
platform may choose to act so as to exclude firm 2.

4.2 First-stage actions

In the first stage, platforms face the profit function (4), which they each
maximise by choice of their quality variable θi. That is, each of them solves

Problem 1

max
θi∈[θ,θ]

pR∗
i DR

i

(
θ,pR∗)+ ΠA

i

(
e,∆DR(pR∗, θ)

)
− kθ2

i

subject to
θ−i ∈ ΘN

−i

and

β̂ =
pR

i − pR
j

θi − θj
∈
[
β, β

]
(7)

where pR∗ is the relevant equilibrium price profile characterised in Proposi-
tion 1, and pR∗

i the corresponding price chosen by platform i. ΘN
−i denotes

the set of best responses of player i’s opponents. The second constraint
does not limit quality choices per se but is a natural restriction guaran-
teeing that platforms’ demands remains bounded by the market size11. It

11observe that θi → θj ⇒ β̂ →∞
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can be rearranged as a pair of inequalities: ∆θ
(
2β − β

)
+
√

C ≥ 0 and
∆θ
(
β − 2β

)
−
√

C ≥ 0. Only the second one is constraining. On the equi-
librium path the objective function of Problem 1 reads

Π1 =


1
9

(
∆θ(2β − β)2 + B1 + C

∆θ

)
− kθ2

1, if ∆θ >
√

C
β−2β

;

1
9

(
∆θ(2β − β)2 + B1 +

√
C(β − 2β)

)
− kθ2

1, if ∆θ ≤
√

C
β−2β

(8)
where B1 = (2β − β)2e

(
2A−A

)
+ 3e

(
β + β

)
A (is constant in θ). The

second line of the definition of Π1 rules out the artificial case of firm 1 facing
a demand larger than the whole market (profits are bounded). It is derived
by taking C

∆θ as fixed at its lowest value, that is, where ∆θ =
√

C
β−2β

. For

platform 2, profits are

Π2 =


1
9

(
∆θ(β − 2β)2 + B2 + C

∆θ

)
− kθ2

2, if ∆θ(β − 2β) >
√

C;
0, ∆θ(β − 2β) ≤

√
C and θ2 = 0;

−kθ2
2, ∆θ(β − 2β) ≤

√
C and θ2 > 0;

(9)
with B2 = (β − 2β)2e

(
A− 2A

)
+ 3e

(
β + β

)
A. A major difficulty may

arise in solving this problem. Both platforms’ profit functions are the dif-
ference of two convex functions, which may be concave or convex. Sec-
tion 7.2 of the Appendix studies the profit function Π1(θ1, θ2) in the de-
tails necessary to support our results. In particular it identifies a threshold

Cf ≡
[

(2β−β)2

27k − θ

]2(
(2β−β)2

3

)
such that the function remains well behaved

if C does not exceed Cf . Otherwise, the necessary first-order condition fails
to hold entirely. Indeed, for C ≥ Cf , the high-quality medium would like
to pick θ +

√
C

β−2β
, where Π1(., .) reaches is maximum. At that point its rival

is excluded (∆θ is low enough) and it still extracts as much surplus from
consumers as it can without losing its status as monopolist. But then firm
2 can ‘leap’ over it and become the monopolist at a negligible incremental
cost. Intuitively, when advertising returns are large enough every consumer
becomes very valuable to both platforms. Consequently the profit function
Π1(., .) is linearly increasing up to θ1 = θ +

√
C

β−2β
. For C < Cf the func-

tion Π1(., .) remains increasing, but now concave, on the portion beyond
θ1 = θ +

√
C

β−2β
as well, where it admits a maximiser. This is illustrated in

Figure 2, where the higher curve corresponds to the case of C > Cf . The
solid lines represent the first line, and the dashed ones the second line, of (8).
To overcome this problem, Assumption 2 is strengthened and turned into
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Figure 2: Profit functions for different values of advertising

Assumption 4 e < ē ≡ min
{

1,

(
(2β−β)2

27k − θ

)
β−2β

2(A+A)

}
12.

in order to study the optimal action profile in pure strategies. Assumption 4
guarantees that when θ̂1 solves the first-order condition, (θ̂1 − θ)(β − 2β) >√

C, so that both media operate. If this restriction is met we can claim

Lemma 5 Let θ1 > θ2 w.l.o.g. and Assumption 4 hold. Optimal actions
consist of θ∗2 = θ and θ∗1 = θ̂1, where θ̂1 uniquely solves

(2β − β)2 = 18kθ1 +
C

(∆θ)2
(10)

Both platforms operate.

We label the term C
(∆θ)2

the ‘market share effect’: it acts as an incentive to
reduce quality and is similar to that arising in standard Bertrand competi-
tion. In condition (10), firm 1 trades off the marginal benefit of quality (the
left-hand side) not only with its marginal investment cost but also with the
marginal advertising revenue that it must forego because of higher consumer
prices induced by higher quality (the RHS). For a positive k the low-quality
firm cannot deviate by ‘leaping’ over its rival and offering a slightly higher-
quality good. Given that it markets a lesser good, platform 2 selects θ to
mitigate the price war. This is the Differentiation Principle at work, but
here it is subsumed by the ‘market share effect’.

Proof. The proof is collected in the Appendix, Section 7.3. For C not
too large the FOC binds at zero and the maximiser of Π1 exists. Because its
profit function is locally decreasing from θ2 = θ on (by Claim 4), the only
deviation for platform 2 would consist in ‘leaping’ over firm 1 and become
the high-quality firm. But this cannot be profit-maximising when the FOC
holds.

Collecting the results from Lemmata 1 and 5 and Proposition 1, and
letting platform 1 be the high-quality medium w.l.o.g., we can finally state

12this arises from the condition (θ̂1 − θ)(β − 2β) > (θf
1 − θ)(β − 2β) ≥

√
C, where

θf
1 =

(2β−β)2

27k
is defined in Section 7.2
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Proposition 2 Equilibrium characterisation. Suppose Assumption 4
holds. The game Γ admits exactly one equilibrium in pure strategies in which
both platforms operate and choose different qualities. It is characterised by
the triplet of profiles

(
θ∗,p∗R,p∗A

)
defined by Lemma 5, Proposition 1 and

Lemma 1, respectively.

Proof. Suppose θ1 > θ2. Since each proper subgame admits a unique
Nash equilibrium by Lemma 5, Proposition 1 and Lemma 1, the equilibrium
of the game Γ must be unique.

Proposition 2 can be appended with the obvious

Corollary 1 If a Nash equilibrium of Γ exists, platforms may also play in
non-trivial mixed strategies.

for which the intuition is that of the Battle of the Sexes. Further we note

Remark 1 Unlike the situtation where C ≥ Cf , in which platforms should
select symmetric qualities with probability zero13, the case θ1 = θ2 may arise
with positive probability following Corollary 1. Recall that when a pure-
strategy equilibrium exists, firms randomise over the set {θi, θ

∗
i } instead of

a continuous support. Each event carries a mass-point. Thus Proposition 9
(in the Appendix) is relevant to the case of endogenous quality, however only
when a pure-strategy equilibrium exists.

That aside, when C ≥ Cf (Lemma 6 in the Appendix, Section 7.3), it is
not immediate that the game admits a mixed strategy equilibrium, for the
payoff correspondences are not upper-hemicontinuous and their sum is not
necessarily so either. Nonetheless it is possible to show that

Proposition 3 When α
α ∈

(
2,

2DR
i −DR

j

e(DR
i −DR

j )

)
a mixed-strategy equilibrium of

the game Γ always exists.

The proof and discussion of this statement can be found in the Appendix,
Section 7.4. Furthermore, let Hi(θj) be the probability distribution i assigns
to j’s play, and ΘM

j the relevant support

Proposition 4 In a mixed-strategy equilibrium

1. the distributions H1(θ2),H2(θ1) are symmetric;

2. θi ∈
[
θ +

√
C

β−2β
, θc

i

]
= ΘM

i , such that Πi(θc
i , .) = 0; and

13refer Section 7.4 in the Appendix.
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3. Hj(θi) = kθ2
i

Πi(θi>θj)+kθ2
i
≥ 0, ∀θi ∈ ΘN

i

Noticeably ΘM
j ⊂ Θj . It is obvious from the profit function (9) that playing

any θj ∈
(

θ, θ +
√

C
β−2β

)
is strictly dominated by selecting the lower bound.

But that play guarantees zero profit when C ≥ Cf , so it is always weakly
better to play at least θ +

√
C

β−2β
.

Proof. Please refer to the Appendix, Section 7.5.

Having characterised the equilibria of the game, we want to understand
the impact of the externality e(.) on players’ behaviour and on the break-
down of the equilibrium. This discussion is the object of the next section.

5 The role of externalities

The results of the preceding analysis are first contrasted with earlier ones
established in the literature. We then investigate the impact of advertising
profits on the behaviour of quality by computing some comparative statics.
Last we compare the level of quality provided in our duopoly to that arising
in a monopoly, with and without externality.

5.1 Quality distortion and advertising revenue

An important goal of this paper is to understand the behaviour of quality
when information providers have access to a substitute source of revenue.
To study this problem it is useful to first establish a benchmark. The major
reference in the vertical differentiation literature is Shaked and Sutton’s 1982
paper, where however costs are completely ignored. It is immediate to adapt
their model, and easy to show below that this second source of revenue acts
as a substitute for quality for the platforms. Indeed

Proposition 5 Quality distortion. In any pure-strategy equilibrium of
the game Γ, quality is lower than it would be absent advertising.

Advertising income puts emphasis back on market share – while the intro-
duction of differentiation had the opposite effect. This leads to more intense
price competition for consumers, and the discount extended by the platforms
increases in the advertising profits (as shown in Propositions 1 and 6). Lower
consumer prices uniformly relax the need to provide costly quality: at lower
prices, the marginal consumer demands a lesser product to make a purchase.
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An intuition for the exact trade-off can be sketched as follows: given any
quality, in the second stage firms must offer a discount to consumers – quality
is sunk by then. The extent of that discount, given fixed quality, is deter-
mined by profits to be collected on the advertising market. In the quality-
setting stage, the high-quality firm can further increase this discount by
lowering quality: its consumer price is p∗1 = 1

3

[
∆θ(2β − β) + 2e(A− 2A)

]
,

while that of its rival is p∗2 = 1
3

[
∆θ(β − 2β) + 2e(2A−A)

]
. Taking θ2 fixed,

for each dθ1 firm 1 can decrease its consumer price by more than firm 2 can.
Proof. In the Shaked and Sutton (1982) model the game admits a

unique equilibrium, as shown in the Appendix, Section 7.6. In the first

stage players select θ0
2 = θ and θ0

1 = 1
2k

(
2β−β

3

)2

< θ. Firm 1’s first-order

condition in this problem reads
(

2β−β

3

)2

−2kθ0
1 = 0 while that of Problem 1

is
(

2β−β

3

)2

− 2kθ̂1 = C
(3∆θ)2

> 0. Therefore θ̂1 < θ0
1.

If quality were interpreted as accuracy of reporting, this model implies
that it is optimal for newsmedia to under-invest in said accuracy. Thus
a contraction of the quality spread need not result from exogenous con-
straints, nor from outsiders’ intervention (interference), but from players’
profit-maximising behaviour. This phenomenon resembles that observed in
other industries such as software or game development: a widely used oper-
ating system need not provide the same intrinsic quality as a more marginal
one because it supports so many applications.

Proposition 5 suggests that firms’ behaviour depends very essentially on
the externality e(.). Things break down when C(e), the sum of marginal
advertising profits per unit of quality, becomes too large14. Recalling the
definitions of θ0

1, θf
1 and Cf , we can rearrange θf

1 = 2
3θ0

1. Following Assump-
tion 4, there exists some threshold e < ē and θ∗1 ∈

(
2
3θ0

1, θ
0
1

)
. Thus with

advertising externalities a pure strategy equilibrium requires more consumer
heterogeneity15 to exist than in the classical Shaked and Sutton (1982) case.
In summary,

Corollary 2 Taxonomy Let θ1 > θ2 w.l.o.g. and α
α ∈

(
2,

2DR
i −DR

j

e(DR
i −DR

j )

)
,

For e = 0, k > 0 The equilibrium is that of Problem 2 (adapted from Shaked
and Sutton (1982)) with both firms operating;

14recall the condition (θ∗1 − θ)(β − 2β) >
√

C
15a larger difference β − β

21



For e > 0, k = 0 Maximum differentiation obtains with both firms having
positive demand;

For ē > e > 0, k > 0 The equilibrium is characterised by Proposition 2;

For 1 > e > ē, k > 0 Proposition 4 applies.

Note that the case e > 0, k = 0 yields the same differentiation result as
Shaked and Sutton (1982) and Gabszewicz, Laussel and Sonnac (2001 and
2002). A positive externality, single-homing and costly quality are necessary
to Proposition 5 and its Corollary 2. Intuitively, with free quality, why
choose anything but the one that allows the largest surplus extraction from
consumers? When the externality is powerful (e > ē)no equilibrium (in pure
strategies) exists.

Proof. For lines 1 and 3 the proof follows directly from Propositions 2
and 5, as well as the analysis of Π1(., .) in Section 7.2. When k = 0, because
quality is a sunk cost in the original model, nothing is altered until platforms’
have to choose their quality variable. That is, the analysis of the third and
second stages remains valid. In the first stage, they now face profit functions

Π1 =


1
9

[
∆θ(2β − β)2 + B1 + C

∆θ

]
, if ∆θ >

√
C

β−2β
and ;

1
9

[
∆θ(2β − β)2 + B1 + C√

C
β−2β

]
, if ∆θ ≤

√
C

β−2β
.

and

Π2 =


1
9

[
∆θ(β − 2β)2 + B2 + C

∆θ

]
, if ∆θ >

√
C

β−2β
and ;

1
9

[
∆θ(β − 2β)2 + B2 + C√

C
β−2β

]
, if ∆θ ≤

√
C

β−2β
.

The FOC of the first line of Π1 identifies a minimiser of Π1. That is, firms
will necessarily play the second line. Then we are back to Shaked and
Sutton’s model of maximum differentiation.

5.2 The behaviour of quality

Since e(DR
i ) = e×DR

i we continue to parametrise the value of the advertising
market for platforms by e, as in Assumption 4. Thus the magnitude of the
term C ≡ (2e(A + A))2 is governed by e only, which can be construed as
a measure of market size for the advertisers, for example. When a pure
strategy equilibrium exists, we have
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Proposition 6 Comparative statics. Let θ1 > θ2 w.l.o.g. At an equilib-
rium

(
θ∗,p∗R,p∗A

)
a. dθ2

de = 0, but dθ1
de < 0 and d2θ1

de2 < 0

b. dpA
1

de >
dpA

2
de > 0 and dpR

1
de <

dpR
2

de < 0

c. dDR
1

de = −dDR
2

de > 0

d. dΠ1
de > 0 and d2Π1

de2 < 0

The effect of e on Π2 is ambiguous.
Proof. The proof is somewhat lengthy, but straightforward and rele-

gated to the Appendix, Section 7.7. It is necessary to first characterise the
behaviour of θ1 with respect to the parameter e, on which all other results
depends.

The presence of a second source of revenue not only depresses the qual-
ity of the consumer good, it does increasingly so as the advertising market
becomes more valuable. Price competition is correspondingly more intense
in the consumer market, but less in the advertising market – where differ-
entiation is endogenous. As advertising revenues’ weight increases, every
consumer becomes more valuable to both platforms, so the consumer dis-
count deepens – and does so faster for the high-quality firm. It finds it easier
to enlarge its market share and therefore to become an increasingly better
platform for advertisers.

5.3 Gabszewicz et al. (2001 and 2002)

Our results stand in contrast to those obtained by these authors. In their
horizontal differentiation setup, Gabszewicz et al. (2001) find (mutually
exclusive) pure strategy equilibria in which platforms either play at the ex-
trema or converge to the centre. Identical qualities in the present model
leads to a mixed-strategy equilibrium, with one firm exiting ex post (by
Proposition 9 in the Appendix). A pure strategy equilibrium always exists
in their setup, thanks to a well-behaved profit function. This rests on both
costless quality and ‘multi-homing’. The latter results in no price compe-
tition in the advertising market, hence each platform acts as a monopolist
on its audience – it is a bottleneck to advertisers. Technically no proper
subgame is defined at the advertising pricing stage, so the payoff function
remains quasi-concave (advertising profits are simply increasing in consumer
market share). Therefore the best-response correspondence in the consumer
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pricing subgame remains continuous. In contrast, ‘single-homing’ enhances
competition for consumers: there is a higher premium to being the domi-
nant platform. Not only does one additional consumer bring more revenue
from both sides, it does so at a higher rate for all infra-marginal consumers
as well. Had we allowed for ‘multi-homing’ in this game, the unique equi-
librium would also be symmetric. Costly quality necessarily leads to an
interior solution and introduces a smooth trade-off between surplus extrac-
tion from consumers and extraction from advertisers. For high values of e,
this trade-off is extreme, and combined with the asymmetric nature of the
equilibrium, leads to the low-quality firm being excluded. In their 2002 pa-
per the authors impose single-homing in a similar model, however keeping
differentiation fixed. Unlike in our construct, multiple (asymmetric) equilib-
ria may arise in theirs. When platforms are symmetric at the price-setting
stage, playing either of pR

2

(
pR
1

)
or pR

2

(
pR
1

)
is perfectly reasonable and does

not involve dominated strategies, unlike in the present paper.

5.4 Comparison to the monopoly case

A question of interest is whether competition fosters the provision of qual-
ity in this economy. In the externality-free environment, the answer to
this question is unambiguously positive: with a uniform distribution it is
straightforward to show that the monopolist selects price pM = θβ

2 and

quality θM = 1
2k

(
β
2

)2
, and it is immediate to verify that θM < θ0

1 when
Assumption 1 holds. Given that quality θ∗1 decreases in equilibrium when
the externality e is introduced, it is not a priori obvious that this statement
remains true in our duopoly. When the medium is a monopolist the profit
function for the advertising market writes ΠA = eD

(
α
2

)2 (directly from

Lemma 1). Total profits are ΠM = pR
(
β − pR

θ

)
+ e

(
β − pR

θ

) (
α
2

)2 − kθ2,

whence pR∗ = 1
2

(
θβ − e(α

2 )2
)

< pM . Substituting we can finally write the
monopolist’s profit function as ΠM = 1

4θ

[
θβ + e

(
α
2

)]2−kθ2, with first-order
condition (

β

2

)2

−
( e

2θ

)2
(

α

2

)4

= 2kθ (11)

which may not necessarily hold for all values of e. Suppose it does, we can

define the function e(θ) ≡ 2θ

{(
2
α

)4 [(β
2

)2
− 2kθ

]} 1
2

. The maximiser θe of

this function must satisfy ∂e(.)
∂θ = 0 (the SOC can easily be verified), and
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takes value θe =

(
β
2

)2

( 2
α)4

k
[
1+2( 2

α)4
] . Thus the largest value of e such that the first-

order condition holds is eM = 2
(

2
α

)2 (
β
2

)2

( 2
α)4

k
[
1+2( 2

α)4
]
{(

β
2

)2
− 2

(
β
2

)2

( 2
α)4[

1+2( 2
α)4

]
} 1

2

,

which is always positive. From now on we suppose that e ≤ eM . The

optimality condition (11) admits two solutions; rewrite it as
(

β
2

)2
= ϕ(θ)

with ϕ′(θ) = 2k −
(

α
2

)4 ( e2

2θ3

)
, which may be positive or negative. Since

ϕ′(θ) ≥ 0 for the SOC to be satisfied, the maximiser is unique and identi-
fied by the larger of the two roots of the first-order condition. Let θ∗∗ =
arg maxΠM (θ), θ∗∗ < θM immediately from (11). That is, (exogenously) re-
ducing advertising opportunities would increase quality. This claim departs
from Anderson (2004), whose (monopoly) broadcasting model shows that a
binding cap on advertising quantity leads to lower (costly) quality. That is,
increasing advertising volumes helps improve quality. In that model, adver-
tising is the only source of revenue: no surplus is extracted from consumers.
In the present paper, consumer revenue and advertising revenue are sub-
stitutes. If advertising were capped, the platform would offer consumers a
smaller discount and would therefore have to increase its quality.

To evaluate quality across all market structures, we have to call on nu-
merical estimations of the optimality conditions (10) and (11). With the
parameter values α = β = 3/2, α = β = 1/2, k = 1/4 they yield the
following results

Parameters θ∗∗ θM θ∗1 θ0
1

e = 1/4 1.12 9
8 1.37 2

(
5
3

)2
e = 1/2 1.09 1.3
e = 3/4 1.04 1.15
e = 8/10 1.03 1.08

On the proviso that an equilibrium in pure strategies exists, competition
uniformly improves quality for a small enough externality. More precisely,

Proposition 7 Suppose both (10) and (11) hold. There exists some e∗ such
that for e < e∗, θ∗∗ < θM < θ∗1 < θ0

1 and for e > e∗, θ∗∗ < θ∗1 < θM < θ0
1.

When e becomes large enough the lure of advertising profits leads the high-
quality platform in the competitive environment to drop its quality below the
monopoly level θM . Thus the introduction of advertising revenue can reduce
quality below the level provided even in the most distortionary environment.
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5.5 Market coverage

Under Assumption 4, both firms operate and the market is fully covered.
More precisely, e < ē not only ensures that both platforms are viable, but
also that full market coverage is the unique equilibrium outcome in the
advertising market. Given market coverage in advertising, Assumption 3
guarantees market coverage in the consumer market. Under these restric-
tions, the formulation of advertising profits (Lemma 1) and of the demand
functions DR

1 , DR
2 are valid and represent the only equilibrium configuration

that can arise in this game. This is no longer true absent those constraints,
as established by Wauthy (1996). He extends the now standard Gabszewicz
and Thisse (1979) model (or Shaked and Sutton (1982)), and shows market
coverage to be an endogenous choice on the part of the firm. With a broader
parameter space, the low-quality firm may optimally choose to not cover the
market, that is, to not select the lowest quality possible16. The difficulty
we face in relaxing Assumption 4 is twofold. First, it implies that the profit
functions defined by Lemma 1 are no longer the correct ones to use; oth-
ers (well defined by Wauthy (1996)) have to be called for. In other words,
the solution (θ∗1, θ

∗
2) computed in this paper likely bears no resemblance to

the new one. Second, the reaction functions pR
i (pR

j ) become fourth-order
polynomials and it is impossible to compute the cut-offs p̂R

i (pR
j ).

6 Conclusion

This paper has developed an analysis of platform competition when the pro-
duction of a good is necessary to entice one of the parties onto the platform,
and where firms compete on both sides of the market. Specifically, players
compete for consumers by choice of quality (in the sense of vertical differ-
entiation) and prices. Using the language of the media industry, given an
audience that determines their perceived quality by advertisers, they com-
pete in prices in the advertising market. That is, vertical differentiation
arises endogenously in the advertising market. Because of the assumption
of inelastic demand, audience size not only induces a ranking in the advertis-
ing market, but also a premium to being the better platform for advertisers
(as in the standard vertical differentiation models). This exacerbates the
competition for consumers.

In equilibrium maximum differentiation does not obtain, in departure
from the standard literature. It is hampered because too costly in terms

16obviously some consumers do not purchase in this case
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of market share. Indeed, the opportunity for additional revenue from each
consumer renders them more valuable. Platforms therefore engage in cross-
subsidisation, and lower prices relax the need for better quality to induce a
consumer to purchase the more expensive good. Qualities can come so close
to each other that the low-quality platform becomes strictly dominated, at
which point the equilibrium breaks down. It would face zero demand, not
because of exogenous parameters, but because of firm 1’s actions.

Three additional ingredients are necessary to these results: costly qual-
ity, here modeled as an investment, an externality from one side of the
platform to the other and ‘single-homing’. In particular, the externality
itself is not sufficient and would lead to maximal differentiation, however
with a different distribution of profits. The model lends support to popular
claims of reduction in newsroom investment following the takeover of media
by professional management. No ingerence is required for this phenomenon
to arise: profit-maximising behaviour is sufficient, for it turns quality and
advertising first into substitutes.

The results we report owe in part to the simple structure chosen, and
in particular to the assumption of complete market coverage. When it is
no longer assumed that markets are covered, lower prices resulting from
the cross-subsidisation contribute to expanding market size; that is, they
improve trade. In this case welfare analysis becomes more sensible. Im-
portantly, media operate in conglomerates and strive to segment consumer
markets (using real or perceived correlation between media and commodity
consumption) to better serve their advertisers. These important character-
istics are so far left out.

7 Appendix

The Appendix contains the lengthier or obvious proofs of the propositions
developed in the main text, as well as two propositions that rest on some
exogenous restrictions on the players’ behaviour.

7.1 Proof of Lemma 4

First construct a candidate equilibrium as follows. Suppose that platform
maximise ΠH

1 = pR
1 DR

1 (pR, θ)−kθ2
1+ΠA

1 and ΠH
2 = pR

2 DR
2 (pR, θ)−kθ2

2+ΠA
2 ,

respectively. Solving for the first-order conditions laid out in Definition 1
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yields
p∗R1 = 1

3

[
∆θ
(
2β − β

)
+ 2e

(
A− 2A

)]
p∗R2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
2A−A

)]
From equilibrium prices it is straightforward to compute consumer demand:
DR

1 = 1
3

[
(2β − β)2 +

√
C
]

and DR
2 = 1

3

[
(β − 2β)2 −

√
C
]
, hence the re-

striction DR
2 > 0 provided ∆θ >

√
C

β−2β
and

p∗R1 = ∆θβ
2 − e2A

p∗R2 = 0

otherwise. When DR
i = 0 i = 1, 2, pR

j is determined by platform j’s reaction
correspondence only. Thus it easy to verify that the first line of Condi-
tion 1 is satisfied and that

(
p∗R1 , p∗R2

)
indeed constitutes an equilibrium by

Lemma 3. This equilibrium always exists because p̂R
1 ≥ p∗R1 and p̂R

2 ≤ p∗R2

are always satisfied. Indeed, either both hold when both platforms are ac-
tive, for ∆θ

(
β + β

)
+ e

(
A + A

)
≥ 0 is always true, or p∗R2 = 0 > p̂R

2

and p̂R
1 > p∗R1 can be immediately verified when only firm 1 is active.

Another candidate equilibrium
(
p∗∗R1 , p∗∗R2

)
can be constructed by letting

platform 1 play as if ΠL
1 = pR

1 DR
1 (pR, θ) − kθ2

1 + ΠA
1 and platform 2 as if

ΠL
2 = pR

2 DR
2 (pR, θ)− kθ2

2 + ΠA
2 , whence

p∗∗R1 = 1
3

[
∆θ
(
2β − β

)
+ 2e

(
2A−A

)]
p∗∗R2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
A− 2A

)]
with DR

1 = 1
3

[
(2β − β)2 −

√
C
]

and DR
2 = 1

3

[
(β − 2β)2 +

√
C
]
, therefore

DR
1 > 0 if ∆θ >

√
C

2β−β
. Notice that an equilibrium such that

p∗R1 = 0
p∗R2 = −∆θβ

2 − e2A

cannot exist, for these prices are not best response to each other. At the
price setting stage the cost of quality is sunk, so for θ1 > θ2 there always
exists some price pR

1 ≥ pR
2 such that consumers prefer purchasing from

platform 1. Then when both firms are active Condition 1 holds as long
as ∆θ

(
β + β

)
− e

(
A + A

)
≤ 0. Given that ∆θ ≥

√
C

2β−β
, take the lower

bound and substitute into the second line of Condition 1. Recalling
√

C =
2e(A + A),

e(A + A)

(
2(β + β)

β − 2β
− 1

)
> 0, ∀β ≥ 0
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which violates the second pair of inequalities of the necessary Condition 1.
So the second candidate can never be an equilibrium. For completeness,
Condition 1 is also sufficient to rule out deviations from the pairs

(
p∗R1 , p∗R2

)
and

(
p∗∗R1 , p∗∗R2

)
. The SOC of the profit function (4) is satisfied at prices

p∗Ri and p∗∗Ri ∀i, ∀pR
−i, there cannot be any local deviation. Consider now

deviations involving inconsistent actions, that is, such that both platforms
maximise either pR

i DR
i (pR, θ)− kθ2

i + ΠA
i or pR

i DR
i (pR, θ)− kθ2

i + ΠA
i . Since(

p∗R1 , p∗R2

)
always exists, the first line of Condition 1 always holds. It

immediately follows from (5) and (6) that pR
1

(
pR
2

)
∩ pR

2

(
pR
1

)
= ∅ and

pR
1

(
pR
2

)
∩ pR

2

(
pR
1

)
= ∅ as well.

7.2 Analysis of the high-quality firm’s profit function

In the sequel θ1 > θ2 without loss of generality. The profit function Π1(., .)
is obviously continuous for θ1 < θ +

√
C

β−2β
or the converse. Furthermore,

assume e < ∞, then

Claim 1 The function Π1 is continuous for ∆θ =
√

C
β−2β

Proof. For ease of notation, let Π1 = ΠL
1 for all ∆θ ≥

√
C

β−2β
and

Π1 = ΠR
1 otherwise. These are the definitions of Π1(θ1, θ) to the left and

the right of the point such ∆θ =
√

C
β−2β

for any pair (θ1, θ2). To the left

platform 1 is a monopolist whose profits ΠL
1 are necessarily bounded. The

function is defined as ΠL
1 : Θ1 × Θ2 ⊆ R2 7→ R, therefore Theorem 4.5

in Haaser and Sullivan (page 66) applies: a mapping from a metric space
into another metric space is continuous if and only if the domain is closed
when the range is closed. So ΠL

1 (θ1, θ2) is continuous at ∆θ =
√

C
β−2β

, and

is necessary the left-hand limit of the same function ΠL
1 . Now consider a

sequence θn
1 such that ∆θ >

√
C

β−2β
converging to

√
C

β−2β
from above for some

fixed θ2 . This sequence exists and always converges for Θ1 ⊆ R is complete.
As e < ∞ and A and A are necessarily bounded, C is finite so there is some
n and some arbitrarily small δ such that ΠR

1 (θn
1 , θ2)−ΠL

1 (θ2 +
√

C
β−2β

, θ2) < δ.

That is, lim
θn
1→θ2+

√
C

β−2β

ΠR
1 (θn

1 ) = ΠL
1 (θ2 +

√
C

β−2β
, θ2). Hence Π1 is continuous

for ∆θ =
√

C
β−2β

.

Π1(., .) being the difference of two convex functions its exact shape is
affected by that of these two primitives. Indeed, when C becomes large
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enough, it is no longer well behaved.

Claim 2 There exists some Cf such that Π1(., .) admits a binding first-
order condition for C ≤ Cf only. When C > Cf , its maximum is reached
at the kink: θ1 = θ +

√
C

β−2β
.

Proof. Seeking first-order conditions of Π1(., .) with respect to θ1 yields

∂Π1

∂θ1
=



(
2β−β

3

)2

− 2kθ1 = 0, for ∆θ ≤
√

C
β−2β

;(
2β−β

3

)2

− C
(3∆θ)2

− 2kθ1 = 0, for ∆θ >
√

C
β−2β

and C ≤ Cf ;(
2β−β

3

)2

− C
(3∆θ)2

− 2kθ1 < 0, for ∆θ >
√

C
β−2β

and C > Cf ;

(12)
When binding, the second line of system (12) can be rearranged as

(
2β − β

)2 =
φ(θ1), with slope φ′(θ1) = 18k− 2C

(∆θ)3
. Since ∆θ > 0, this FOC has at most

two solutions: one where φ′(θ1) < 0 and the other with φ′(θ1) > 0. The
SOC requires φ′(θ1) ≥ 0 for the FOC to identify a maximiser, so there ex-
ists a unique local maximiser of Π1, denoted θ̂1. Let θ0

1 be the (unique)
maximiser of the first line of system (12). It is immediate that θ̂1 < θ0

1 and
consequently θ0

1 − θ2 ≤
√

C
β−2β

, θ1 ∈ BR1(θ2) can never be true. That is, the

two statements of the first line of (12) cannot be simultaneously satisfied:
firm 1 would not play the first line of (8), but the second one. We rewrite:

∂Π1

∂θ1
=

(
2β − β

3

)2

− 2kθ1 > 0; for ∆θ ≤
√

C

β − 2β

Recall that the profit function is continuous, so it does not jump any-
where. Because Π1 is monotonically increasing below θ̂1 and the SOC is
monotonic beyond θ̂1, it is concave for C ≤ Cf and θ̂1 is a global max-
imiser. The binding first-order condition defines a function C(θ1, θ2) ≡
(∆θ)2

[
(2β − β)2 − 18kθ1

]
, whence dC(.)

dθ1
= 0 ⇔ θf

1 =
(2β−β)2

27k . Substituting

back into C(θ1, θ2) gives the cut-off value Cf ≡
[

(2β−β)2

27k − θ2

]2(
(2β−β)2

3

)
.

When C > Cf , the first-order condition (12) is everywhere negative, hence

dΠ1
dθ1
|
θ1<θ+

√
C

β−2β

> 0

dΠ1
dθ1
|
θ1>θ+

√
C

β−2β

< 0
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While this profit function is not differentiable for ∆θ =
√

C
β−2β

, it has been

established that it is nonetheless continuous for any such pair (θ1, θ2). It is
monotonic on either side of ∆θ =

√
C

β−2β
, so that θ̂1 such that ∆θ =

√
C

β−2β
, is

the unique maximum of Π1(θ1, θ2) given some fixed θ2.
Last in this section we examine the behaviour of the quality variable θ1

when the first-order condition (12) does bind.

Claim 3 Let θ̂1 solve
(
2β − β

)2 − C
(∆θ)2

− 18kθ1 = 0, then dθ̂1
de < 0 and

dθ̂1
dk < 0.

Proof. Differentiate the first-order condition (12); after some manipu-
lations we can write

dθ∗1
de

=
8∆θe(A + A)

2
(
2e(A + A)

)2 − 18k(∆θ)3

dθ∗1
de ≥ (≤)0 ⇔ 2C − 18k(∆θ)3 = −(∆θ)3φ′(θ1)|θ1=θ∗1

≥ (≤)0 so that dθ∗1
de < 0

(assuming the SOC holding strictly at θ∗1, otherwise dθ∗1
de is not defined and

we need to consider the left derivative). The second statement is similar:
differentiate the first-order condition of (8) to find 2C(∆θ)−3 dθ1

dk − 18θ1 −
18k dθ1

dk = 0, which is rearranged as dθ1
dk = 18θ1(∆θ)3

2C−18k(∆θ)3
. The denominator is

exactly the SOC of (8), which we know to hold, multiplied by (∆θ)3.

7.3 Proof of Lemma 5

First off the following simplifies the analysis and lets us focus on platform
1’s problem.

Claim 4 In any pure-strategy Nash equilibrium (θ∗1, θ
∗
2) such that θ∗1 > θ∗2,

θ∗2 = θ necessarily.

Proof. Assume the FOC (12) binds so that θ∗1 = θ̂1. Computing the
slope of the profit function Π2 yields

dΠ2

dθ2
=

{
−(β − 2β)2 + C

(∆θ)2
− 2kθ2 < −2kθ2, if ∆θ(β − 2β) >

√
C;

−2kθ2, if ∆θ(β − 2β) ≤
√

C.

whence it is immediate that dΠ2
dθ2
|θ2>θ < dΠ2

dθ2
|θ < 0.

Next delineate an impossibility. When C is said to be ‘large’ the profit
function Π1(., .) is no longer well behaved, as shown in Section 7.2. This
leads to
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Lemma 6 Let θ1 > θ2 w.l.o.g. and C ≥ Cf ≡
[

(2β−β)2

27k − θ2

]2(
(2β−β)2

3

)
,

a Nash equilibrium in pure strategies cannot exist.

Proof. Follows directly from Claims 4 and 2 in Section 7.2. Any pair(
θ2 +

√
C

β−2β
, θ2

)
cannot be an equilibrium because firm 2 can ‘jump’ and

assume the monopolist’s role at incremental cost kε2.
In line with the previous section of the Appendix, firm 1’s first-order

condition reads
(
2β − β

)2− C
(∆θ)2

−18kθ1 = 0 and admits a unique maximiser

θ̂1. This analysis does not yet identify an equilibrium of this game but only
platform 1’s behaviour, taking that of firm 2 fixed. Suppose firm 1 plays
θ̂1; by Claim 4, platform 2 cannot increase its quality to any θ2 ∈

(
θ, θ̂1

)
.

So the pair
(
θ̂1, θ

)
is an equilibrium as long as firm 2 cannot ‘jump’ over

firm 1 and become the high-quality firm. It will necessarily do so if platform
1 turns out to be a monopolist. To guarantee firm 2 operates we need
(θ̂1 − θ)(β − 2β) >

√
C – Assumption 4 must holds. When firm 2 does

operate, the smallest ‘leap’ it can undertake is such that θ̃2 ≥ θ̂1 + ε. Hence
the no-deviation condition is Π2

(
θ̂1, θ

)
≥ Π2

(
θ̂1, θ̂1 + ε

)
, or

(θ̂1 − θ)(β − 2β)2 + B2 + C
(θ̂1−θ)

≥ B1 +
√

C(β − 2β)− 9k(θ̂1 + ε)2

(θ̂1 − θ)
[
(β − 2β)2 + (2β − β)2

]
− 18kθ̂2

1 + B2 ≥ B1 +
√

C(β − 2β)− 9k(θ̂1 + ε)2

(θ̂1 − θ)
[
(β − 2β)2 + (2β − β)2

]
− 9kθ̂2

1 + B2 ≥ B1 +
√

C(β − 2β)

using the FOC (2β − β)2 − 18kθ̂1 − C
(θ̂1−θ)2

= 0 and the fact that kθ̂1θ =

kθ2 = 0 (by assumption). Noting θ̂1−θ >
√

C
β−2β

, this condition is generically

satisfied.

7.4 Discussion and Proof of Proposition 3

The assertion of Proposition 3 holds trivially by Corollary 1 when Assump-
tion 4 holds. The balance focuses on the case where it fails.

Denote θ̃ = θ+
√

C
β−2β

from now on. As briefly alluded to in the main text,

it is not immediate that the game Γ admits a mixed strategy equilibrium,
for the payoffs are not everywhere continuous. To see why, first define by θc

1

the threshold such that Π1(θc
1, θ) = 0 when θ1 > θ2. This point exists and

exceeds θ̃1 because dΠ1
dθ1
|θ1>θ̃1

< 0 and the cost function is convex. Obviously
neither platform will want to exceed that threshold, so we may as well
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restrict the set of pure actions over which firms randomise to be [θ, θc
i ] ⊆

Θi, i = 1, 2. Next observe that any distribution over this set must assign zero
mass to any θi ∈ (θ, θ̃) by Claim 4: any action in this interval is dominated
by either θ or θ̃. For [θ̃, θc

i ] large enough (and θ2 ≥ θ̃) there may be outcomes
such that ∆θ >

√
C

β−2β
, in which case both platforms are active, or ∆θ ≤

√
C

β−2β
,

in which case only the high-quality firm operates. Take θ1 > θ2 > θ and
suppose ∆θ >

√
C

β−2β
and Π1 > Π2 > 0. Let θ2 increase, both Π1 and Π2

vary smoothly. But while limθn
2 ↑θ1 Π1 = Π1 > 0, limθn

2 ↓θ1 Π1 = −kθ2
1, and

similarly for firmm 2. Both payoff functions are discontinuous at the point
θ1 = θ2. In this case neither the payoffs nor their sum are even upper-
hemicontinous. Following Dasgupta and Maskin’s (1986a) Theorem 5, it
is first necessary to characterise the discontinuity set. If it has Lebesgue
measure zero, a mixed strategy equilibrium does exist. Consider the case
where θ1 ≥ θ2 w.l.o.g. and define Υ0 =

{
(θ1, θ2)|θ1 = θ2, θi ∈ [θ̃i, θ

c
i ] ∀i

}
, the

set on which the payoffs are discontinuous. Further define the probability
measure µ(θ1, θ2) over the set ΘN = [θ̃1, θ

c
1] × [θ̃2, θ

c
2]. It is immediate that

Υ0 has Lebesgue measure zero, so that Pr ((θ1, θ2) ∈ Υ0) = 0. Note that
excluding the set Υ0 is remarkably convenient, for we do not know whether
an equilibrium of the price subgame even exists (refer Section 7.8). Through
this construct we can side-step this problem entirely. Next we claim

Lemma 7 Suppose θ1 = θ2 = θ, an equilibrium in mixed strategies exists
in the consumer price subgame.

The reader may recall that existence of a pure strategy Nash equilibrium
is ruled out by Proposition 9 when θ1 = θ2. In addition, a mixed strategy
equilibrium in prices is not guaranteed to exist for all values of θ1 = θ2. Here
it holds because θ1 = θ2 = θ implies no ex post loss for either party. As
each platform’s payoffs are bounded below at zero and only one of them can
operate (except at pR

1 = pR
2 ), their sum is almost everywhere continuous,

except for the set of pairs (pR
1 = pR

2 ), which has measure zero.
Proof. Let θ1 = θ2 = θ. The sum of profits Π = Π1 + Π2 is almost

everywhere continuous. Either Π = Π1 > 0 ∀pR
1 < pR

2 , or Π = Π2 > 0 ∀pR
1 >

pR
2 , both of which are continuous except at pR

1 = pR
2 , where Π = Π1 +

Π2 = 0. But the set Ψ =
{
(pR

1 , pR
2 )|pR

1 = pR
2 , (pR

1 , pR
2 ) ∈ R2

}
has Lebesgue

measure zero. Theorem 5 of Dasgupta and Maskin (1986a) directly applies
and guarantees existence of an equilibrium in mixed strategies.

Therefore the pair θ1 = θ2 = θ may be part of an equilibrium of the
overall game. Then Proposition 3 asserts that a mixed strategy equilibrium
of the game Γ exists.
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Proof. We only need showing that the payoff functions Πi i = 1, 2 are
lower-hemicontinuous in their own argument θi. Without loss of generality,
fix θ1 > θ2. We know that Π1 is continuous for any θ1 > θ2 (refer Sec-
tion 7.2). From Claim 4 it is immediate that Π2 is continuous for θ1 > θ2.
Last, for i = 1, 2

Πi =
{

0, if θ1 = θ2 = θ;
−kθ2

i , if θ1 = θ2 > θ.

that is, Πi, i = 1, 2 is l.h.c. Since (θ2, θ1) s.t θ2 = θ1 ∈ Υ0, Theorem 5
in Dasgupta and Maskin (1986a) can be applied, whence an equilibrium in
mixed strategies must exist.

7.5 Proof of Proposition 4

Playing θi = θ may be interpreted as a decision to not enter the market, with
the caveat that profits may non zero even if θi = θ. Following the approach
of Sharkey and Sibley (1993), a mixed-strategy equilibrium is a probability
ν ∈ (0, 1) of entry and, conditional on entry, a distribution H−i(θi) over
payoff realisations for θi ∈

[
θ̃i, θ

c
i

]
∪ {θ}. In the present context, taking θ2

as given, the profits of the dominated firm are not fixed at the entry cost,
nor even monotonic in the choice of θ1 by the dominant firm. Indeed, while

Π2

(
θ|∆θ ≤

√
C

β−2β

)
≤ 0, Π2

(
θ|∆θ >

√
C

β−2β

)
may be positive or negative,

depending on the level of θ2. Write the expected profit of firm 1 as

Eθ2 [Π1] = (1− ν)Π1(θ̂, θ) + ν [1−H2(θ′1)] Π1

(
θ1 < θ2,∆θ <

√
C

β−2β

)
+ν [H2(θ′1)−H2(θ′′1)] Π1

(
θ1 < θ2,∆θ >

√
C

β−2β

)
+ν [H2(θ′′1)−H2(θ′′1)] Π1

(
θ1 > θ2,∆θ <

√
C

β−2β

)
+ν [H2(θ′′′1 )−H2(θc

1)] Π1

(
θ1 > θ2,∆θ >

√
C

β−2β

)
where H2(θ1) = Pr(θ1 > θ2) is the probability 2 assigns to the event θ1 > θ2.
With probability (1 − ν) platform 1 does not enter, with probability ν it
does but is not the dominant firm (the first two terms weighed by ν). The
equilibrium conditions for firm 1 write

Π1(θc
1, θ) = 0

Eθ2 [Π1] = Π1(θc
1, θ)

(1− ν)Π1(θ̂1, θ) = Π1(θc
1, θ)

(13)
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The first line in system 13 asserts that 0 is the profit the platform can
expect if playing the highest quality level for sure, in which case 2 should
not enter. The next one requires that expected profits from playing any θ1 ∈[
θ̃1, θ

c
1

)
∪{θ} cannot exceed those achieved if playing θc

1 with certainty. The
third line states the medium must be indifferent between expected payoffs
when its opponent does not enter and being the dominant firm for sure. It
necessarily implies ν = 1. Given that no firm plays θ, the support of the
distribution H2(θ1) is

[
θ̃1, θ

c
]
≡ ΘM

1 , with no mass at θ. Furthermore, for
any θ2 (fixed), it is true that

0 <
dΠ1

dθ1
|
θ1<θ+

√
C

β−2β

< −dΠ1

dθ1
|
θ1>θ+

√
C

β−2β

whence Π1

(
2(θ̃1), θ) < 0 and therefore θc

1 < 2(θ̃1). The support of the

distributions Hi(.), i = 1, 2 cannot exceed
√

C
β−2β

in length. Thus H2(θ′1) −
H2(θ′′1) = H2(θ′′′1 )−H2(θc

1) = 0 and expected profits rewrite

Eθ2 [Π1] = [1−H2(θ1)] Π1(θ1 < θ2) + H2(θ1)Π1(θ1 > θ2) = 0

Therefore
H2(θ1) = − Π1(θ1 < θ2)

Π1(θ1 > θ2)−Π1(θ1 < θ2)

Noting that Π1(θ1 < θ2) = −kθ2
1 < 0, H2(θ1) ≥ 0 and H2(θc

1) = 1.

7.6 Elements of Proof of Proposition 5 – unique subgame
perfect equilibrium of the Shaked and Sutton model

In the Shaked and Sutton (1982) model there exists a unique equilibrium in
the price subgame. In the first stage of the game, firms solve

Problem 2
max
θi∈Θi

p∗i Di − kθ2
i

subject to
θ−i ∈ ΘN

−i

for i = 1, 2 and with demand D1 = 1
3

(
2β − β

)
, D2 = 1

3

(
β − 2β

)
and

prices p1 = ∆θ
3

(
2β − β

)
, p2 = ∆θ

3

(
β − 2β

)
, respectively. This problem

is concave ∀i, and, given equilibrium prices p∗i ∀i, has obvious maximisers
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θ0
2 = θ and θ0

1 = 1
2k

(
2β−β

3

)2

with θ0
1 < θ thanks to k >

(2β−β)2

18θ
. These

individually optimal maximisers also form a Nash equilibrium, for although
Π1

(
θ0
1, θ

0
2

)
> Π2

(
θ0
1, θ

0
2

)
∀k > 0 17, it is also true that

Claim 5 @ θ̃2 > θ0
1 such that Π2

(
θ0
1, θ̃2

)
≥ Π2

(
θ0
1, θ

0
2

)
.

Proof. Consider a deviation θ̃2 = θ0
1+ε, ε arbitrarily small. We can compute

firm 2 profit from this deviation as Π2

(
θ0
1, θ̃2

)
= ε

(
2β−β

3

)2

− kθ̃2
2 < 0 and

the marginal profit
(

2β−β

3

)2

− 2k(θ0
1 + ε) < 0.

This completes the equilibrium characterisation of the benchmark model.

7.7 Proof of Proposition 6

Uniqueness of the subgame-perfect equilibrium renders the comparative stat-
ics exercise valid. For the first line, recall that θ∗2 = θ is a strictly dominant
strategy when an equilibrium exists, whence θ∗2 is independent of e. Item
(b) is stated and proven in Section 7.2. To show concavity, differentiate dθ∗1

de
once more and rearrange to find

d2θ∗1
de2

=
8
(
A + A

)
[−(∆θ)3φ′]2

[
dθ∗1
de

e
(
(∆θ)318k + 2C

)
−∆θ

(
φ′ + 4C

)]

Since φ′ ≥ 0 it is immediate that d2θ∗1
de2 < 0. Next (c) obtains from the

definitions of equilibrium advertising prices together with items (b): dpA
1

de =(
(β + β) + 4e

∆θ−e
dθ∗1
de

(∆θ)2

)√
A >

(
(β + β) + 4e

∆θ−e
dθ∗1
de

(∆θ)2

)√
A = dpA

2
de > 0. As-

certaining the behaviour of consumer prices (d) is equally simple: dpR
1

de =
1
3

[
dθ∗1
de (2β − β) + 2(A− 2A)

]
< 1

3

[
dθ∗1
de (β − 2β) + 2(2A−A)

]
= dpR

1
de < 0.

For (e), call on the definitions of consumer demands; in particular, we can
17We can readily compute these profits with closed form solutions: Π1 > Π2 ⇔(
2β−β

3

)2
[

1
2k

(
2β−β

3

)2

− θ

]
>

(
β−2β

3

)2
[

1
2k

(
2β−β

3

)2

− θ

]
, which can be re-arranged as

θ0
1

[
1
2

+ 2
3

ββ

β
2−β2

]
> θ, and always holds
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compute dDR
1

de = 2
3∆θ (A + A)

(
1− e

dθ∗1
de

∆θ

)
> 0, and the rest of the statement

is obvious. To show (f), differentiate the profit function, which yields

dΠ1

de
=

1
9

[
dθ∗1
de

(2β − β)2 +
dB1

de
+

8e(A + A)2∆θ − C
dθ∗1
de

(∆θ)2

]
− 2kθ∗1

dθ∗1
de

Collecting the terms and recalling the definition of the FOC of (8), this
rewrites dΠ1

de = dB1
de + 8e(A+A)2

∆θ > 0. That Π1 is concave is obvious, too.

7.8 Analysis and presentation of symmetric equilibria

In this section we study a constrained version of the problem, that of sym-
metric equilibria. Given the profit function (2), the following result will be
useful throughout. Suppose without loss of generality that firm 1 is the
high-quality platform for advertisers, that is e1 > e2.

Lemma 8 For any quality profile (θ1, θ2) and any pair of action (pR
1 , pR

2 ),
there are three pure strategy equilibria in the advertising market. When
e2 > 0,

pA
1 (θ, pR) = c +

1−G(α̂)
g(α̂)

∆e > pA
2 (θ, pR) = c +

G(α̂)−G(pA
2

e2
)

e2g(α̂)− g(pA
2

e2
)∆e

e2∆e

When e1 > e2 = 0, platform 1 is a monopolist. The equilibrium is a pair of
prices such that

pAM
1 − c

pAM
1

=
1
ηA

> pA
2 = 0

The third equilibrium entails e1 = e2, whence

pA
1 (θ, pR) = pA

2 (θ, pR) = c

Equilibrium prices, quantities and profits are functions of the actions chosen
in the consumer market, which are summarised by the externality variable
e(DR

i ). In the first equilibrium quantities are qA
1 (θ, pR) = 1 − G(α̂) >

qA
2 (θ, pR) = G(α̂)−G

(
pA
2

e2

)
and necessarily advertising profits ΠA

1 (θ, pR) >

ΠA
2 (θ, pR) > 0. In the monopoly case, they read qAM

1 (θ, pR) = 1−G
(

pAM
1
e1

)
>

qA
2 = 0, and obviously ΠAM

1 (θ, pR) > ΠA
2 (θ, pR) = 0. In the symmetric equi-

librium, qA
1 = qA

2 = 1
2

(
1−G

(
c
e

))
and necessarily ΠA

1 (θ, pR) = ΠA
2 (θ, pR) =
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0. The number of equilibria in this subgame follows the number of permu-
tations of the leadership role.

Proof. The symmetric equilibrium obtains directly from Bertrand com-
petition when e1 = e2. Suppose e1 > e2 = 0 – for whatever reason. Platform
2 has no customers in the advertising market since v2 ≤ 0 and therefore
qA
2 = 0. Consequently firm 1 optimally prices in the advertising market

using the monopoly pricing rule

pA
1 − c

pA
1

=
1
ηA

where ηA denote the price elasticity of demand. The reverse obtains when
e2 > e1 = 0. In an equilibrium where both firms are active and e1 > e2 > 0
we necessarily have pA

1 > pA
2 . If not, αe1 − pA

1 > αe2 − pA
2 for any α and

qA
2 = 0. We also have

Claim 6 In equilibrium, 1−G(α̂) > G(α̂)−G
(

pA
2

e2

)
.

Proof. By contradiction. Suppose that in equilibrium (at prices p̂A
i , i =

1, 2), 1 − G(α̂) ≤ G(α̂) − G
(

p̂A
2

e2

)
. The necessary first-order conditions for

both firms imply

g(α̂)
∆e

(p̂A
1 − c) ≤

g(α̂)
∆e

−
g
(

p̂A
2

e2

)
e2

 (p̂A
2 − c)

which is obviously impossible when p̂A
1 > p̂A

2 .
The fact that ΠA

1 > ΠA
2 follows directly. Furthermore, ΠA

2 > 0 since
p̂A
2 > c and firm 2 faces strictly positive demand. This concludes the proof

of the Lemma.

7.8.1 Symmetric equilibria

This section presents a fairly intuitive result when platforms are constrained
in their actions. Such constraints may owe to technological limitations, as
in Proposition 8, below or be somewhat more arbitrary (but nonetheless
plausible), as in Proposition 9, further. Both are impossibility results, the
first one resting on quite a familiar empirical observation.

Proposition 8 Fix pR
1 = pR

2 = 0. A pure strategy equilibrium does not
exist. If a mixed-strategy equilibrium exists, platforms set their advertising
price as if each were a monopolist.
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The conditions of this proposition and the results are a stylised version of the
problem faced by free-to-air broadcasters, where access to the good cannot
be controlled by the providers. Proposition 8 helps rationalising the giving
away of free goods by media platforms that are naturally constrained in
their pricing (for example local radio stations).

Proof. Given pR
1 = pR

2 = 0, consumer demand is given by

DR
i =


1, if θi > θj ;
1
2 , if θi = θj ; and
0, if θi < θj .

for i 6= j, i = 1, 2, whence platform i faces payoffs

Πi =


ΠAM − k(θi), if θi > θj ;
−k(θi), if θi = θj ;
0, if 0 = θi < θj ; or
−k(θi), if θ < θi < θj .

following directly from Lemma 8, and where ΠAM denotes monopoly prof-
its in the advertising market when demand in the consumer market is
DR

i (0, θi) = 1. In particular, suppose θi = θj such that ΠA
i (e, θi) ≥ 0

and one of the platforms charges k(θi), j can offer k(θi) − ε and become a
monopolist in advertising. Thus

Claim 7 When consumer prices are identical a pure strategy equilibrium
cannot exist.

Proof. Given pR
i = pR

j = 0, θi > θj implies that i is a monopolist and
j faces negative payoffs for θj > θ. Suppose θi = θj ; then ei = ej and
any price advertising price k(θi) leading to ΠA

i (e, θi) ≥ 0 is dominated by
k(θi) − ε, and j is a monopolist. There exists some quality level θ̃, such
that ΠAM

i (θ̃i, p
A
i ) = 0. At this point firm j should not enter, but then i

deviate slightly to θ̃i− ε and make a positive profit. Hence no pure strategy
is deviation proof.

A symmetric equilibrium in mixed strategies of this game is a pro-
file

(
σA, σθ

)
of distributions over price and quality parameter

(
pA

i , θi

)
i=1,2

.
Since no dominated strategy can be part of a mixed strategy equilibrium,
the set of pure strategies over which platforms randomise can be restricted
to the subsets

[
θ, θ̃
]
, where θ̃ = k−1

(
ΠAM

)
, and pA

i as defined in Lemma 8.
It is easier to first deal with the advertising market.

Claim 8 Irrelevance. In any symmetric, mixed-strategy equilibrium plat-
forms will behave as strict monopolists in the advertising market.
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Proof. The proof follows directly from the fact that firms necessarily
play a mixed strategy equilibrium. Since θi ∈

[
θ, θ̃i

]
∀i, each event has

probability zero and one platform will be a monopolist in the advertising
market with certainty. It will therefore not face competition in this market
and behave regardless of what its opponent does.

Thus σA is necessarily degenerate and the only source of uncertainty is
the choice of quality. It is not the object of this paper to characterise σθ,
the existence of which is not certain.

Given symmetric consumer prices, platforms can only choose symmetric
strategies in the remaining variables: they lose an instrument to compete
and must follow the Bertrand logic of competition, however in quality. But
this costly quality is a sunk cost by the time the pricing decision must be
made in the advertising market. Therefore marginal-cost pricing in advertis-
ing cannot include the cost of producing the information good, which they
also fail to recover from consumers. Symmetric qualities necessarily lead
to the Bertrand result in advertising, whence the quality investment in the
consumer market is necessarily too costly. However, if an equilibrium can be
sustained in mixed strategies, players can foresee that only one of them will
remain. So they select their distributions anticipating the monopoly rent in
the advertising market. The behaviour of the opponent becomes irrelevant;
it is as if there were no competition in the advertising market18. More
precisely, the restrictions imposed on the game necessarily lead players to a
subgame where only one of them will survive.

Next we lay out a proposition analysing the price subgame when quality
θi is (arbitrarily) restricted to be symmetric. This kills differentiation and
leads to an outcome that somewhat mirrors Bertrand competition. Here
it takes an extreme form owing to the positive externality afforded by the
advertising market: firms’ competition is intensified in the consumer mar-
ket. Duopolists each maximise the profit function (2) by choice of prices{
pR

i , pA
i

}
i=1,2

, in the last two stages, given some fixed quality level. We
can think of this situation as a degenerate version of the game without the
quality-setting stage, or as some case where quality turns out to be sym-
metric in the first stage.

18This result is extremely sensitive to the choice of cost function. With marginal cost
increasing in quality – as opposed to an investment cost– the sunk-cost problem vanishes.
Instead, marginal-cost pricing in advertising can include the marginal cost of quality. Thus
it is as if platforms where setting prices to marginal cost on both sides of the market. The
externality is then neutralised and we refer to this phenomenon as independence.
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Proposition 9 Fix θi = θj. An equilibrium in pure strategies in the price
subgame does not exist. If a mixed-strategy equilibrium exists, platforms set
prices as if each were a monopolist in the advertising market.

If platforms are symmetric in the consumer market (identical quality and
prices), they necessarily are so in the advertising market as well. But with
costly quality, there is a limit to incurring losses in the consumer market:
they may not be covered by advertising profits. Thanks to randomisation,
it is optimal for firms to price as if they were a monopolist in the advertising
market: indeed, either they are a monopolist, or they are absent altogether.
Irrelevance strikes again: competition in the advertising market is ignored
at the consumer price-setting stage.

Proof. Using the result of Lemma 8, given a profile (e1, e2) and assuming
a covered market, the payoffs in the advertising market read

(ΠA
1 ,ΠA

2 ) =


(ΠA

1 ,ΠA
2 ), if e1 > e2;

(ΠA
1 ,ΠA

2 ), if e1 < e2;
(0, 0), if e1 = e2;
(ΠAM

1 , 0), if e1 > e2 = 0;
(0,ΠAM

2 ), if 0 = e1 < e2.

where ΠAM
i denotes monopoly profits when firm j reaches no consumer.

This can arise when θi = θj but pR
i < pR

j , for then ej = 0. For any firm i,
total profits are

Π1 = pR
i DR

i

(
θ, pR

)
− k(θi) +


ΠA

i ;
ΠA

i ;
0;
ΠAM

i .

Whoever ends up with a larger market share in the consumer market nec-
essarily dominates in the advertising market.

Claim 9 When θ1 = θ2, a pure strategy equilibrium cannot exist.

Proof. Note that for any θ1 = θ2 in the consumer market any firm
playing pR

j > pR
i surrenders a monopoly position in the advertising market.

It is obvious that any price pR
i ≥

k(θi)
1
2
DR

i

, ∀i is dominated by k(θi)
1
2
DR

i

− ε, for then

j becomes a monopolist in the advertising market at the cost ε. Suppose
θ1 = θ2 = θ. Both engage in this form of Bertrand competition for the
monopoly privilege in advertising until reaching some price pR

i
such that
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Π1 = pR
i
DR

i (θ,pR) + ΠAM
i = 0 ∀i. At this point, j should play some

pR
j > pR

i
and stay out, which is costless. But then pR

i = pR
j − ε > pR

i
becomes a best response. Thus there is no pure-strategy equilibrium. If
θ1 = θ2 > θ, ∃ pR

i
3 Π1 = pR

i
DR

i (θ,pR)− k(θ) + ΠAM
i = 0 ∀i as well. But

at that point, either pR
i

< pR
j and j realises Πj = −k(θ) < 0, or pR

i
= pR

j and
Πi = Πj = −k(θ) < 0 since Bertrand competition prevails in advertising as
well. So j has a strict incentive to plays pR

j < pR
i
. Following this logic,

∃ p̌R
i 3 Π1 = p̌R

i DR
i (θ,pR)− k(θ) + ΠAM

i = −k(θ) ∀i. If j plays pR
j = p̌R

i ,
Πi = Πj < −k(θ) while for any pR

j > p̌R
i , Πi(pR

j , p̌R
i ) = Πj(pR

j , p̌R
i ) = −k(θ).

But then again pR
i = pR

j − ε > p̌R
i becomes a best response. Therefore no

pure-strategy can exist.
Irrelevance also works here, of course. An equilibrium in mixed strategies

of this game is a profile
(
σR, σA

)
of distributions over prices

(
pR

i , pA
i

)
i=1,2

,
where σA is degenerate. The only source of uncertainty affecting the payoffs
is the choice of consumer price pR

i .
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