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Abstract 

We present a model of repeated, ascending price auctions for homogeneous goods 

with unobserved, stochastic entry. Bidders have unit demands; they exit if they win, and 

bid again if they lose. We show that, in equilibrium, entrants always bid in the next-to-

close auction and bidders always bid at the last minute. The more bidders present, the 

lower is the continuation value of future auctions, so bidders avoid revealing themselves 

until the end of the auction. Using a dataset of calculator auctions on eBay, we present 

evidence that losers of an auction bid again in future auctions.  Ordering the auctions by 

closing time, we show that last-minute bidding is not merely the result of bidders going to 

the next-to-close auction.  Instead, bidding is concentrated at the end of the period in 

which the auction is the next to close. 
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1. Introduction 

 

In the United States, eBay has become the dominant player in the online auction 

market, with sales of over $8 billion in 2007 (data from forbes.com).  An important 

feature of eBay is that auctions for identical products are held repeatedly, with many 

auctions overlapping and closing one after another. For example, in our dataset of 

auctions of Texas Instruments TI-83 Graphing Calculators, on average an auction closes 

every 33 minutes, and the elapsed time between auctions is much smaller during peak 

hours of the day when more users are actively bidding. The median time between 

closings is 14 minutes. The availability of auctions that close at a later date allows 

bidders who are outbid in one auction to bid again in another auction. Indeed, in our 

dataset, most losers bid again. The objective of this paper is to explore how the option to 

bid again conditional on losing can affect bids, the timing of bids, and prices in repeated 

auctions of homogenous goods. 

We study these issues using a simple model in which single units of a 

homogeneous good are sold in an infinite sequence of continuous-time, ascending-price 

auctions. Each auction lasts for one period, with a random number of new bidders 

arriving each period. Buyers have unit demands. Because more than one bidder may 

arrive during each period, there is also a stock of incumbent bidders waiting to obtain a 

unit. Each bidder has the same valuation for a single unit of the good. Thus, bidders are 

uncertain about the number of bidders but not about their valuations. Since losers bid 

again, bidders use the outcomes of past auctions to determine their expectations of the 

level of competition in the current and future auctions. We derive a symmetric 

equilibrium in pure strategies in which entrants never delay but always reveal themselves 

by bidding in the next-to-close auction. Entrants have an informational advantage over 

incumbents and, as a result, each auction is won by an entrant if there is one and by an 

incumbent otherwise.  A key feature of the equilibrium is that an incumbent’s bid is set at 

the level such that winning yields the same surplus as the expected surplus from waiting 

until all the other incumbents are “cleared out” and then winning the next auction with no 

competition.  The incumbents’ bids (and prices) are thus increasing in the total number of 
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incumbents, so that entrants prefer to conceal their presence until the very end of the 

auction, when it is too late for the incumbents to react.  

The main conclusions of the analysis are that the option for losers to bid again 

causes bidders to bid less than their true value and at the last minute. The markdown 

factor depends upon the number of competitors that bidders expect to face in subsequent 

auctions if they lose in the current auction. Entrants expect higher levels of competition 

than incumbents since they know that they themselves are competitors. As a result, 

entrants bid higher than incumbents and are more likely to win. This selection effect 

arises from differences in information and not differences in valuations. The last-minute 

bidding implies that bidders learn whether they are losers only at the end of an auction, at 

which point, they bid again in a subsequent auction. Thus, as a first approximation, a set 

of overlapping eBay auctions reduces to a sequence of second-price sealed bid auctions 

ordered by their closing times.  

Last-minute bidding (or “sniping”) in eBay auctions is well documented. 

However, we introduce a new and informative approach of studying bid submission 

times. Our dataset consists of every eBay auction of Texas Instruments TI-83 Graphing 

Calculators held between June 15th, 2003 and July 30th, 2003. The comprehensive nature 

of the dataset allows us to order these auctions consecutively according to their closing 

times and focus on the intervals in which each auction is next to close. We then show that 

last-minute bidding is not merely the result of bidders going to the next-to-close auction.  

Instead, bidding is concentrated at the end of the interval in which the auction is the next 

to close. The data also show that the assumption of unit demand is reasonable. 

The organization of the rest of the paper is as follows.  The next section describes 

eBay and some related literature.  We present the data in Section 3 and the model in 

Section 4.  Section 5 is the conclusion. 

 

 

2. Background and Related Literature 

 

EBay allocates items through auctions with proxy bidding, which is a mechanism 

that bids on behalf of the bidder up to a maximum bid specified by him.  At the end of the 



 4

auction, the bidder with the highest maximum bid wins the item at a price equal to the 

second highest maximum bid submitted.  The auction thus resembles an ascending 

second-price auction.  The seller sets the auction’s starting bid, which acts like a posted 

reserve price since it is observed by all potential buyers.  EBay also allows sellers to set a 

secret reserve price that is not observable to the bidders.  Potential buyers are informed 

by eBay via email and a posting on the website whether the reserve price is met or not.  

The seller selects the length of the auction: 1, 3, 5, 7 or 10 days.1  By choosing the 

starting date and length of the auction, the seller determines the precise day and time that 

it closes.  There is no extension of auction length at the end of eBay auctions. This “hard-

close” rule gives bidders an opportunity to delay their bid submissions and place their 

bids in the last minutes of the auctions.  In a second-price setting with independent 

private values, Vickrey (1961) shows that bidders have a weakly dominant strategy to bid 

their valuations at any time during the auction.  In practice, though, bidders on eBay tend 

to wait until the very end of the auction to submit their maximum bids.  

Most of the theoretical research on eBay auctions ignores the multi-auction 

structure of eBay and focuses on the single unit auction. Roth and Ockenfels (2002) and 

Ockenfels and Roth (2006) argue that late bidding could result from network congestion 

that prevents some of submitted maximum bids from being recorded.  When buyers all 

submit maximum bids at the end of the auction, the resulting spike in network activity 

decreases the probability that an individual maximum bid gets recorded.  Under certain 

conditions, buyers prefer to submit their maximum bids in the final seconds of the 

auction, in the hope that competitors’ maximum bids will not be recorded.  An earlier 

submission would trigger all other buyers to submit their maximum bids early too.  If the 

potential gain from reduced competition outweighs the risk of not getting in a maximum 

bid, then last-minute bidding is an equilibrium. 

Bajari and Hortacsu (2003), Ockenfels and Roth (2006), and Rasmusen (2006) 

show that last-minute bidding can arise in a single-unit auction if valuations have a 

common component. In this environment, an early bid might reveal positive information 

about the bidder’s estimate of the object’s value.  That signal would cause other bidders 

to bid more aggressively and raise the final price paid by the winner. One interpretation 

                                                 
1 While the data were collected, 1-day auctions were not an option for the sellers in eBay. 
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of our result is that the continuation value for losers introduces a common component to 

the valuations of the bidders. Barbaro and Bracht (2005) suggest that last-minute bidding 

is a best response to dishonest actions – “shill bidding” and “squeezing” – by the sellers 

or sellers’ accomplices. A shill bid is a high maximum bid that a seller submits in her 

own auction under a false name.  She thus can learn the value of the highest legitimate 

maximum bid.  Then the seller cancels the shill bid and replaces it with another just 

below the highest legitimate maximum bid.  In that way, any potential gain for the buyer 

is squeezed from him by the seller.  Waiting until the very end of the auction to submit a 

maximum bid is a way to prevent shill bidding. 

The main difficulty in studying eBay auctions as a sequence of single unit 

auctions is that losing bids are observable. Since rivals can exploit this information in 

subsequent auctions, bidders have an incentive to “hide” their types, which often leads to 

non-existence of equilibria in monotone bid strategies. (See Milgrom and Weber (2000).)  

Wang (2006) gets around the problem by focusing on a model with only two goods. In 

the second auction, bidding one’s valuation is a weakly dominant strategy, and so 

information about opponents’ type does not affect bidding strategies. He shows that last-

minute bidding in the first auction is the outcome of the unique symmetric sequential 

equilibrium in undominated, monotone strategies.  Zeithammer (2006) studies an infinite-

horizon model of sealed-bid, private-value auctions when future auctions arrive 

randomly.  His model is similar to ours in several respects, but he assumes that bidders 

have no memory and therefore cannot learn from outcomes of past auctions. He does 

provide evidence that bidders lower their bids in response to higher arrival rates of close 

substitutes.2   

Empirical studies of bidding in eBay auctions that take a structural approach also 

focus on the single-unit auction.  Lewis (2007) and Bajari and Hortascu (2003) argue that 

the prevalence of late bidding justifies modeling eBay auctions as a second-price sealed-

bid, common-value auction. Gonzalez, Hasker, and Sickles (2004), Canals-Cerda and 

Pearcy (2006), and Ackerberg, Hirano, and Shahriar (2006) adopt the independent private 

                                                 
2 Other papers looking at sequential auctions include Ashenfelter (1989), Gale and Hausch (1994), 
Jeitschko (1999), Katzman (1999), McAfee and Vincent (1993), Milgrom and Weber (2000), and Pitchik 
and Schotter (1988). These papers either study the two-good case in which bidders have a dominant 
strategy in the second auction or assume that losing bids are not observable. 



 6

values model.3  The first study assumes that entry is exogenous and that the number of 

potential bidders is constant across auctions.  The latter two studies assume that the 

number of bidders is the stochastic outcome of a Poisson process.  Bidders are assumed 

to bid upon arrival if their valuations exceed the standing high bid.4  The sale price in all 

three studies is determined by the second-highest valuation among the set of potential 

bidders, which plays a key role in identifying the underlying distribution of valuations.  

Consequently, all three studies assume that the bidder’s continuation value conditional on 

losing is zero or, more generally, a constant that does not depend upon the level of 

competition (and therefore on auction outcomes).  Our results suggest that this 

assumption is quite strong and unlikely to hold in thin markets.  

 

3. Data and Analysis 

 

 In this section we establish three stylized facts that motivate our modeling 

assumptions:  last-minute bidding occurs, buyers have unit demand, and losers in an 

auction bid again in future auctions with positive probability.  We also demonstrate three 

features consistent with the predictions of our model: new entrants are both more likely to 

bid at the last minute and more likely to win the auction than incumbents, and item prices 

increase with the number of losing bidders from recent previous auctions. 

 

Data 

Our dataset consists of information collected on Texas Instruments TI-83 

Graphing Calculator auctions featured on eBay.  The advantages of studying the TI-83 

are a high volume of auctions and the relatively homogeneous nature of the product.  The 

data cover every auction between June 15th, 2003 and July 30th, 2003.  Private auctions, 

in which information about the bidders is not available, and so-called “Dutch auctions” of 

multiple units are excluded from our dataset.  We also exclude “Buy-It-Now” auctions, in 

                                                 
3 Interestingly, Canals-Cerda and Pearcy find that, in their dataset of paintings, last-minute bidding is not 
nearly as prevalent as in other datasets. The reason may be that the paintings are heterogenous, so that 
losers are less likely to bid against each other in subsequent auctions. 
4 However, they do not assume that bidders bid their valuations upon arrival, so that they can account for 
bidders that bid multiple times in an auction. 
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which a buyer can pre-empt the auction by paying a posted price selected by the seller.5  

During the time that our data were collected, eBay’s website did not reveal whether or 

not an auction ended in a transaction.  We assume that all auctions that attracted a bid 

ended with a sale, and that the winner was the buyer with the highest standing bid. 

The sale prices for TI-83 calculators in retail stores in the summer of 2003 were 

between 80 and 100 dollars for new items and between 40 and 60 dollars for used ones.  

The final prices of the auctions we have in our dataset differ substantially – some items 

are new, some are used, and some come with additions like cases or operating manuals.  

However, our dataset also contains auctions offering these additions without the 

calculator, or more than one calculator bundled together.  In order to be more consistent 

with the items being offered in our dataset we keep only the auctions that have a 

transaction price between 20 dollars and 110 dollars. 

There are 1,817 unique auctions completed in the 6-week period.  We observe 

4,404 bidders who submit a total of 13,240 maximum bids.6  Moreover, we observe 192 

unique auctions that did not receive any bids or were cancelled.  We exclude those 

auctions.  We collect the following information for each TI-83 auction: auction number, 

starting bid, number of bids, auction length, winning bid, minimum bid and number of 

bidders.  Table 1 presents a brief description of these variables, and Table 2 provides 

descriptive statistics.  The winning bid is the price that the winner pays at the end of the 

auction.  This price is the maximum bid of the second-highest bidder plus the bid 

increment.  The calculators sell for a bit more than $58 on average, with a standard 

deviation around $17.  The average starting bid set by the seller is just above $15, and the 

lowest submitted bid is a little below $19 on average.  The average auction lasts 5.5 days 

and attracts 14 bids.  The average number of bidders is 7, with standard deviation equal to 

3.  We note that the ratio of standard deviation to mean is significantly higher for the 

number of bidders than for the sale price, a difference consistent with our assumption that 

there is more uncertainty about the number of bidders than about their willingness to pay. 

                                                 
5 The Buy-It-Now option in such an auction disappears as soon as a maximum bid above the reserve price 
is submitted, and the auction becomes indistinguishable from one that never had the Buy-It-Now option.  
Therefore, our dataset likely includes some wiped-out Buy-It-Now auctions. 
6 We detected 229 bids without any bidder ID.  Fortunately, most of these bids do not affect the outcomes 
of the particular auctions. 
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We also use a subset of our data to follow the behavior of individual bidders.  We 

choose a 4-day window, July 5 through July 8, 2003, in the middle of the dataset and 

identify all the bidders active in that window.  We then track their outcomes forward and 

backward in time.  By choosing a window in the middle of the range of dates, we can 

avoid truncation problems and observe bidders’ entire histories.  The window, consisting 

of a Saturday through a Tuesday, includes both weekends and weekdays, in order to 

capture any day-effects.  We use this subset to study how buyers react after winning or 

losing an auction.  There are 720 unique bidders who submit at least one maximum bid in 

the 4-day period.  In total, those bidders submit 8,186 bids over the entire six-week 

sample.   

 

Analysis 

First we look at last-minute bidding.  We introduce a new and informative 

approach of studying bid submission times.  Many auctions on eBay have ending times 

that are fairly close together.  If buyers submit their bids in whichever auction ends next, 

then that closeness may generate the appearance of last-minute bidding without any 

strategic intent by buyers to delay their bids.  For example, if each auction ends one 

minute after the previous auction, and bidders participate only in the next auction to 

close, then all bidding will be in the last minute.  To distinguish that effect from true last-

minute bidding (where buyers wait until competitors can no longer respond), we arrange 

the auctions sequentially by their closing times and look at bidding behavior during the 

interval when an auction is the next to close.  We find evidence of both sorts of bidding. 

A search for “TI-83 calculator” on eBay yields a list of auctions sorted by closing 

time, with the next auction to close listed at the top.  There is thus a natural tendency for 

buyers to participate in soonest-ending auction.  To see how close together auctions end, 

we define for each auction in our sample the closing interval.  The closing interval of an 

auction is the time period during which that auction is the next to close; that is, the time 

from when the previous auction closes to when the current auction closes.  In Tables 3 

and 4 we present descriptive statistics on the lengths of the closing intervals.  On average, 

the closing times for auctions are 33 minutes apart, with a minimum of 0 (that is, less 

than one minute) and a maximum of almost 12 hours.  The median length of a closing 
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interval is 14 minutes.  Many of the auctions in our dataset close soon after the previous 

one ends.  For more than 6 percent of the auctions, the closing interval is less than one 

minute long.  Moreover, almost one third of the auctions have 5 minutes or less between 

their closing times. 

The prevalence of very short closing intervals may create misleading measures of 

last-minute bidding.  In response, we examine the distribution of bid times relative to the 

length of the closing interval.  The histograms in Figure 1 show the submission times of 

maximum bids, measured as the fraction of the auction’s closing interval remaining.  For 

example, if an auction’s closing interval is two minutes long, then a bid submitted 30 

seconds before the end is recorded as being submitted at time 0.25.  In auction with a 20-

minute closing interval, time 0.25 corresponds to 5 minutes from the end.  Each bin in the 

histograms represents 2 percent of the length of the closing interval.  The first histogram 

includes all the auctions in our dataset.  Subsequent histograms exclude auctions with 

closing intervals below 1, 3, and 5 minutes, respectively. 

The histograms show a spike at time 1, just when the previous auction ends.  

Overall, 5 percent of bids are submitted before 2 percent of the closing interval has 

elapsed.  (The first 2 percent of the median 14-minute closing interval is the first 17 

seconds.)  That spike becomes smaller, though, in the other histograms, as we look at 

auctions with longer closing intervals.  The histograms also show a larger spike in the 

first bin, the last 2 percent of the closing interval.  In all four cases between 20 and 25 

percent of maximum bids are submitted after 98 percent of the closing interval has 

elapsed.  Thus, although some late bidding seems to be driven merely from buyers 

arriving in the soonest-ending auctions, we also find evidence that some buyers wait until 

the very end of auctions to participate: last-minute bidding is not an illusion resulting 

from closely-spaced auctions. 

Figure 2 breaks down the histograms of Figure 1 according to whether or not the 

bidder has participated in an earlier auction in the dataset.  In all four cases, entrants are 

more likely to submit a maximum bid in the last 2 percent of the closing interval than are 

incumbents.  Entrants are also less likely to submit a maximum bid during the first 2 

percent of the interval. 
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Next, we look at the decisions made by bidders after winning or losing an auction.  

Table 5 breaks down the 720 buyers in the sub-sample according to how many auctions 

they win in the entire six-week period.  The table shows that 365 of the bidders win at 

least one auction, and together those 365 win 508 auctions.  Among the 365 winners, 310 

(85 percent) win a single auction.  It appears, then, that the assumption of unit demand is 

reasonable for most bidders. 

We also track the 720 bidders from the first auction that they participate in.  

Figure 3 shows that 135 of the 720 win (W) their first auction.  Of those initial winners, a 

large fraction (110/135) exit (E) eBay’s website – the dataset contains no future bids for 

them.  Of the 585 bidders who lose (L) their first auction, most (429) bid (B) in at least 

one subsequent auction.  Of those 429, 366 lose their second auction, and 316 of those 

366 bid again.  Of the 63 who win on their second try, 53 exit.  We conclude that, to a 

first approximation, buyers have unit demands, and losers of an auction try again in 

subsequent auctions.  We also note that entrants (participating in their first auction) win 

22% more frequently than incumbents - 135/720 vs. 63/429. 

Finally, to explore how the presence of incumbents affects bidding behavior, for 

each auction in our sample (except the first ten) we construct a variable I, equal to the 

number of bidders who submitted a maximum bid in at least one of the previous ten 

auctions, but who did not win an item.  The mean number of such incumbents is 62.8.  

We regress winning bids on I (plus day-of-the-week and time-of-day dummies).  Out of 

concern that the number of incumbents I may be endogenous (if the entry rates of buyers 

are correlated across time, then I will be correlated with the expected number of new 

bidders), we instrument for I using the length of the closing interval and the elapsed time 

of the past ten auctions.7  The results are presented in Table 6.  Two-stage least-squares 

regression yields a positive and statistically significant coefficient: the coefficient is 

0.697, with a standard error of 0.317.  That is, an additional incumbent increases the 

expected price in an auction by $0.70, or 1.2% of the mean price.  A log specification 

                                                 
7 To be precise, we define the elapsed time variable for auction n as the time from when auction n – 11 
closes to when auction n – 1 closes.  Elapsed time is likely to be positively correlated with the number of 
losing bidders since more bidders arrive when the time interval covered by the ten auctions is longer.  If the 
arrival rate of sellers is more or less exogenous, though, elapsed time is likely to be uncorrelated with the 
number of entrants in the current auction. 
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yields very similar results.  We conclude that auction prices are higher when the stock of 

bidders who lost recent auctions is greater. 

 

 

4. Model 

 

We study the following simplified version of the eBay auction setting. 

 

Environment 

 There is an infinite sequence of auctions, each of a single unit of a homogeneous 

good.  All buyers are risk-neutral, their utility is quasilinear in wealth, and they discount 

the future at a rate δ ∈ (0, 1) per period.  In each period, a maximum of two new buyers 

enter.  Each entry occurs with independent probability p.  A buyer exits only after he has 

obtained a unit of the good. We discuss the implications of this assumption and the 

consequences of relaxing it in the next section. Each buyer wants one unit of the good, 

and values that one unit at V > 0.  All buyers are expected-utility maximizers.  The 

structure is common knowledge, although a buyer’s arrival is not observed by other 

buyers until he participates in an auction. 

 Auctions are held consecutively, one per period.  Within each period, an auction 

is a continuous-time, first-price auction with proxy bidding (described below).  Auction t 

runs from time t to time t + 1, for t ∈ {1, 2, …}.  The assumption that the auctions do not 

overlap is not important.  What matters is that they have different ending times.8  The 

(publicly observed) reserve price in each auction is the same and is normalized to zero.9 

 The auctions use a proxy-bidding program.  A buyer who chooses to participate 

enters a “maximum bid” b, and the program bids on his behalf up to that level.  If b 

exceeds h, the previous high maximum bid, then the program automatically enters a bid 

of h plus a small, discrete increment ε.  We assume that the minimum bid increment ε is 

                                                 
8 In the equilibrium that we construct, each active bidder participates in each auction.  Papers looking at 
selection of buyers across different sellers include Bajari and Hortascu (2003), Dholakia and Soltysinski 
(2001), McAfee (1993), Peters and Severinov (2006), and Stryszowska (2004). 
9 Actual eBay auctions have both a public “starting bid” and a hidden “reserve price,” as described in 
Section 2. 
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vanishingly small.  In particular, we assume that a buyer is indifferent between paying r 

for the good and paying r + ε, as long as r < V, but is unwilling to pay V + ε.  If two or 

more buyers enter the same maximum bid b > h at the same time, then the tie is broken 

randomly with equal probabilities:  the program records a bid of b for one of the buyers 

and b − ε  for the other(s).  If a buyer with maximum bid b has the current high bid h, and 

another buyer enters a maximum bid b′  between h and b, then the program automatically 

enters a new bid of b′  for the first buyer and a bid of b ε′ −  for the second.  Having 

entered a maximum bid, a buyer can neither retract it nor revise it downward, although he 

can increase it at any time before the end of the auction.  When the auction ends, the item 

is awarded to the buyer with the highest bid at a price equal to his bid.  That outcome is 

publicly observed. 

 Throughout, we distinguish between a buyer’s maximum bid (the price that he 

gives the program) and his bid (which the program makes on his behalf as a function of 

the maximum bids of all bidders, and the order in which they were entered).  Bids are 

publicly observed, but maximum bids are private information (except to the extent that 

they are revealed by bids).  Thus, the auction is first-price in bids, but it resembles a 

second-price auction in maximum bids. 

 Each buyer observes the history of bids and outcomes in all auctions so far.  Thus, 

if new entrants always submit a maximum bid in the first available auction, then the 

number of incumbent buyers (those who have bid in previous auctions but have not yet 

won an item) is common knowledge. 

 A pure strategy for a buyer tells him whether and at what amount to enter a 

maximum bid, as a function of time, the observed history, and his own previous actions.  

A buyer cannot enter a maximum bid in an auction before that auction begins, or take any 

action before he himself enters.  Mixed strategies are defined straightforwardly. 

 

 

Outcomes 

 We construct a symmetric, sequential equilibrium in pure strategies.  In particular, 

in equilibrium a buyer entering in period t submits a maximum bid at the end of auction t, 

so that the number of incumbent buyers is common knowledge.  After entering, a buyer 
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participates in every auction until he wins an item.  (We note that this feature of the 

equilibrium is a simplification relative to the pattern observed in the data.  Although, as 

demonstrated in the previous section, losing bidders in our dataset usually participate 

again in subsequent auctions, they typically do not bid in the next auction to close.)  As a 

preliminary, we define the function S(n), n ∈ {1, 2, … }, recursively as 
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In the equilibrium to be constructed, S(n) will be the expected (undiscounted) surplus for 

an incumbent at the beginning (i.e., before the number of new entrants is known) of a 

period in which the total number of incumbents is n.  We also define the maximum 

bidding functions bi(n) and be(n) for incumbents and entrants, respectively: 

 
 (1) 0ib = , ( ) ( 1)ib n V S nδ= − −  for n ≥ 2, and )2()( += nbnb ie . 

 

A buyer who obtains an item at price bi(n) gets surplus δS(n – 1).  With that notation, we 

can state our results.  Proposition 1 describes the equilibrium. 

 

Proposition 1:  For any auction t, let nt be the number of buyers who i) have submitted a 

maximum bid in a previous auction, and ii) have not yet obtained an item.  Let jt be the 

number of buyers who i) submit a maximum bid before the end of auction t, and ii) have 

not entered a maximum bid in a previous auction.  Then the following strategies and 

beliefs for each auction t constitute a sequential equilibrium: 

 At the end of auction t, at time t + 1, an incumbent submits a maximum bid of 

( )i
t tb n j+  if he has previously submitted a maximum bid, and a maximum bid of 

( 1)e
t tb n j+ +  otherwise. 
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 An entrant waits until the end of the auction to submit a maximum bid.  He 

submits a maximum bid of ( )e
t tb n j+ , unless he himself is one of the jt early bidders, in 

which case he submits a maximum bid of ( 1)i
t tb n j+ − . 

 Beliefs (about the number of buyers) at histories reachable in equilibrium are 

given by Bayes’ rule.  Off-equilibrium, a buyer is believed to be present from the time 

that he submits a maximum bid until he wins an item.  (A history in which a buyer who 

was supposed to submit a maximum bid has not yet done so is indistinguishable from a 

history in which that buyer did not arrive, and thus in on the equilibrium path.) 

 

In equilibrium, nt will equal the number incumbents, and jt will always be zero, 

since time-t entrants reveal their types at the end of auction t.  Each auction is won by an 

entrant, if there is one.  Conditional on there being no entrant, an incumbent is indifferent 

between winning at a price equal to his maximum bid ( )i
tb n  or waiting until the next 

auction, in which there will be one fewer incumbent.  The expected surplus S(nt), then, 

can be interpreted as the expected payoff that the incumbent would get from by waiting 

until the first auction in which i) there are no other incumbents left, and ii) no new buyers 

enter; and then winning that auction, uncontested, for price zero (+ ε).  As the number of 

incumbents n rises, the expected wait until that first uncontested auction increases, and 

the expected discounted surplus falls.  Thus, S(n) is decreasing (exponentially) in n. 

Note that the value of the parameter d is strictly between 0 and 1, and that its limit 

as the discount factor δ approaches 1 is 1.  The same is true of the expression a/(1 – cd).  

For any fixed number of incumbents n, as buyers become more patient, the expected 

discounting of the time before the first uncontested auction becomes negligible, and the 

expected surplus S(n) approaches V.  That is, 

 

1
lim ( )S n V
δ→

=  for n ∈ {1, 2, … }. 

 

For any fixed discount rate δ less than 1, lim ( ) 0n S n→∞ = . Thus, in thick markets, bids 

are very close to V.  
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An entrant’s maximum bid be(n) is set at the price that makes him indifferent, if 

there is a second entrant, between winning at that price and proceeding to the next 

auction, in which there will be n + 1 incumbents, including himself.  If there is a single 

entrant, then he wins the auction at a price of bi(n).  That outcome yields him surplus 

δS(n – 1), which is strictly greater than δS(n), the surplus that he would expect from 

losing the auction and proceeding to the next, where there will be a total of n incumbents 

(himself, plus the n previous incumbents, minus the winner).  That is, in equilibrium a 

single entrant has an advantage, in the sense that his surplus from winning the first 

auction strictly exceeds the expected continuation payoff.  One way to interpret this 

advantage is as the payoff to being better informed than the incumbents about the number 

of buyers – an entrant, knowing that there are at least n + 1 buyers, expects a lower 

continuation value than the incumbents and thus is willing to submit a higher maximum 

bid. 

In principle, a period-t entrant need not submit a maximum bid in auction t.  In 

that case, he would be a “hidden” incumbent in the next auction, and so would have an 

informational advantage.  The other buyers would underbid (since both maximum 

bidding functions be(n) and bi(n) are strictly increasing in n), and the hider could win the 

auction at a below-equilibrium price.  However, as will be shown in the proof of 

Proposition 1 below, that advantage is outweighed in expectation by the advantage 

provided in equilibrium to a lone entrant.  Thus, all entrants reveal themselves; that 

revelation simplifies the structure of the equilibrium considerably. 

 

Proof of Proposition 1:  First, we show that if the proposed equilibrium strategies are 

followed, then the expected surplus to an incumbent, given nt, at time t is given by the 

function S(nt), as claimed.  Suppose that there is a single incumbent at the beginning of 

an auction; that is, n = 1.  With probability  

 

 2
0 (1 )p p≡ − , 

 



 16

there are no entrants, and he wins the auction at price zero.  If there is a single entrant, 

then the incumbent loses the auction and continues to the next auction, in which n is still 

1.  That event has probability  

 

 1 2 (1 )p p p≡ − . 

 

Finally, if there are two entrants (probability  

 

 21
2 4 (1 )p q≡ − ), 

 

then the incumbent loses the auction, as does one of the entrants, and in the next auction 

n increases to 2.  Letting f(2) be the expected continuation payoff in an auction with 2 

incumbents, the incumbent’s expected payoff at the start of the auction is thus given by 

 

 0 1 2(1) (1) (2)f p V p f p fδ δ= + + . 

 

Solving for f(1) yields 

 

 0 2

1 1
(1) (2)

1 1
p pf V f

p p
δ δ
δ δ

= +
− −

.             (1) 

 

Similarly, we can calculate the expected payoff f(n) when there are n incumbents at the 

beginning of the auction.  If there are no entrants, then one of the n incumbent high types 

wins at price ( ) ( 1)ib n V S nδ= − − , and the others proceed to the next auction, when the 

number of incumbents will be n – 1.  If there is one entrant, then the entrant wins, and 

there are still n incumbents in the next auction.  If there are two entrants, then one of 

them wins, and the next auction has n + 1 incumbents.  The expected payoff to an 

incumbent, then, is given by 
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 ( )11
0 1 2( ) ( 1) ( 1) ( ) ( 1)n

n nf n p S n f n p f n p f nδ δ δ δ−= − + − + + + . 

 

Solving for f(n) yields 

 

 ( )0 11 2

1 1
( ) ( 1) ( 1) ( 1)

1 1
n

n n
p pf n S n f n f n

p p
δ δδ δ
δ δ

−= − + − + +
− −

.         (2) 

 

Combining Expressions 1 and 2 gives a second-order difference equation whose solution 

is f(n) = S(n) for n ∈ {1, 2, … }, which was to be shown.  Note that the function S(n) 

satisfies the following condition: 

 

 0 1 2( ) ( 1) ( ) ( 1)S n p S n p S n p S nδ δ δ= − + + + ,            (3) 

 

 

where for the sake of convenience S(0) is defined as V
δ

. 

Next, we show that the proposed strategies are best responses.  First, consider an 

incumbent who has already revealed his presence, and let the total number of incumbents 

(including those who have submitted a maximum bid for the first time during the course 

of the current auction) n ≥ 1 be given.  Such a buyer is indifferent over when to submit 

his maximum bid, since his presence is already known, and thus is willing to submit at 

the end of the auction.10  Submitting any maximum bid up to be(n) (or submitting no 

maximum bid) in the current auction yields the same expected continuation payoff, S(n).  

A maximum bid above be(n) wins the auction for sure, at price be(n) if there is at least one 

entrant and at price bi(n) otherwise, yielding 

 

( )0 1 2( 1) ( 1)p S n p p S nδ δ− + + + .             (4) 

 

                                                 
10 Introducing a small probability that incumbents exit exogenously between auctions would make 
incumbents strictly prefer to bid at the last minute, as we discuss in the next section. 
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Since ( )S ⋅  is decreasing, the value of Expression 4 is less than the value of Expression 3.  

Finally, by submitting a maximum bid equal to be(n) the incumbent wins the auction at 

price bi(n) if no new buyers enter.  If m {1,2}∈  buyers enter, then the incumbent wins at 

price be(n) with probability 1
1m+

, and otherwise proceeds to the next auction with 

1n m+ −  other high-type incumbents.  Thus, a maximum bid of be(n) yields 

 

 ( )1 1
0 1 22 2( 1) ( ) ( 1) ( 1)p S n p S n S n p S nδ δ δ δ− + + + + + , 

 

which similarly is less than Expression 3. 

 Second, consider an entrant when there are n ≥ 1 high-type incumbents.  Since 

submitting a maximum bid before the end of the auction causes other buyers to raise their 

maximum bids, he prefers to submit at the last minute, if he submits a maximum bid at 

all.  If he does submit a maximum bid in auction t, he cannot do better than submitting 

be(n).  Call ( )eS n  the expected payoff from submitting be(n) (or any higher maximum 

bid), where 

 

 ( ) (1 ) ( 1) ( 1)eS n p S n p S nδ δ= − − + + .                       (5) 

 

If a second buyer enters (probability p), the entrant gets surplus ( 1)S nδ +  either from 

winning the current auction at price be(n) or proceeding to the next auction with n other 

incumbents.  If there is no second entrant (probability 1 p− ), the entrant wins the auction 

at price bi(n).  Submitting a maximum bid strictly between bi(n) and be(n) yields the same 

payoff, ( )eS n .  A maximum bid less than bi(n) means proceeding to the next auction, and 

thus yields  

 

 (1 ) ( ) ( 1)p S n p S nδ δ− + + , 

 

which is less than Expression 5.  A maximum bid of exactly bi(n) yields 
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 ( )1
1 1(1 ) ( 1) ( ) ( 1)n

n np S n S n p S nδ δ δ
+ +

− − + + + , 

 

which is also less than ( )eS n .  When n = 0, be(0) is an optimal maximum bid, since the   

payoff from submitting any positive maximum bid is 

 

 (0) (1 ) (1)eS p V p Sδ= − + . 

 

 Thus, an entrant’s choice is between entering a maximum bid of be(n) or “hiding” 

by submitting no maximum bid.  Let ( )hS n  denote the expected continuation payoff to a 

“hidden” incumbent (that is, one who arrived in a previous auction but did not reveal his 

presence) from submitting the equilibrium maximum bid be(n + 1), with the number of 

other incumbents n given.  (We show below that that maximum bid is optimal.)  That 

maximum bid ensures that the hidden incumbent will win the auction, at price be(n) if 

there is at least one entrant and at price bi(n) otherwise.  Thus, the value of ( )hS n  is 

given by 

 

 
( )

( )
0 1 2

0 1 2

(0) (1), and

( ) ( 1) ( 1) for 1.

h

h

S p V p p S

S n p S n p p S n n

δ

δ δ

= + +

= − + + + ≥
           (6) 

 

We claim that for any tn , ( )eS n  is greater than 1( ) |h
t tE S n n+⎡ ⎤

⎣ ⎦ , and so therefore an 

entrant’s best response is to enter a maximum bid of be(n) rather than to “hide.”  (The 

proof of Lemma 1 is in the appendix.) 

 

Lemma 1:  1( ) ( ) |  for all 0.e h
t t tS n E S n n n+⎡ ⎤> ≥⎣ ⎦  
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All that remains is to demonstrate that submitting a maximum bid of be(n + 1) is optimal 

for a “hidden” incumbent when there are n other incumbents.  First, we show that if he 

submits a maximum bid at all, be(n + 1) is optimal.  (As with an entrant, he prefers to 

submit at the end of the auction.)  Submitting any maximum bid strictly higher than be(n) 

yields expected continuation payoff ( )hS n , as defined in Expression 6.  Suppose that n ≥ 

1.  Then submitting a maximum bid of be(n) yields 

 

 ( )1 2
0 1 2 3 3( 1) ( 1) ( 1) ( 2) ,p S n p S n p S n S nδ δ δ δ− + + + + + +  

 

and a maximum bid strictly between bi(n) and be(n) yields 

 

 0 1 2( 1) ( 1) ( 2).p S n p S n p S nδ δ δ− + + + +  

 

Since ( )S ⋅  is decreasing, both values are less than ( )hS n .  A maximum bid of bi(n) 

yields 

 

 ( )1 1
0 1 21 1( 1) ( ) ( 1) ( 2),n np S n S n p S n p S nδ δ δ δ

+ +
− + + + + +  

 

and any maximum bid below bi(n) yields S(n + 1); both values are less than ( )hS n .  

Thus, be(n + 1) is an optimal proxy bid. 

 If n = 0, the argument is similar.  Any maximum bid higher than be(n) yields 

(0)hS .  Maximum bids equal to be(n) and below be(n) yield, respectively, 

 

 ( )1 2
0 1 2 3 3( ) (1) (1) (2)Hp V R p S p S Sδ δ δ− + + +  and 

 

 0 1 2( ) (1) (2),Hp V R p S p Sδ δ− + +  
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both of which are below (0)hS . 

 To see that a hidden incumbent expects to do better by submitting a maximum bid 

of be(n + 1) than by waiting, recall that the proof of Lemma 1 shows that 

 

 1( ) ( ) |  for all 0.h h
t t tS n E S n n nδ +

⎡ ⎤≥ ≥⎣ ⎦  

 

The law of iterated expectations, together with the fact that a hidden incumbent must 

eventually submit a maximum bid in some auction to make any surplus, then implies that 

submitting a maximum bid of be(n + 1) is optimal.     Q.E.D. 

 

 

5. Concluding Remarks 

 

We have presented a model of sequential auctions of identical goods with 

stochastic entry in which losing bidders bid again. The equilibrium is fully revealing: 

entrants reveal their presence in the same period that they arrive.  In general, full 

revelation is difficult to obtain in sequential auctions because of the information leakage 

problem.  A bidder may be reluctant to submit a high bid in auction t, because if he loses 

his competitors will deduce that he has a high valuation and thus bid more aggressively in 

auction t + 1.  Our infinite-horizon model focuses on bidders learning about the number 

of rivals rather than about their valuations.  In equilibrium, the bidding advantage given 

to an entrant outweighs the future benefit from convincing competitors that he is absent, 

and thus he is willing to reveal himself. 

The equilibrium has several features of empirical interest.  First, bids depend upon 

the state of competition.  When the number of buyers is high, the chances of winning a 

unit at favorable prices fall, and bidders bid more aggressively.  This result may seem 

obvious, but in many of the theoretical and empirical models of eBay auctions, bidders 

are assumed to bid their value independently of the number of rivals.  Second, entrants in 

an auction are more likely to win than incumbents.  This selection effect arises from the 

fact that the entrant is better informed than incumbents about the number of competitors, 
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and not because of differences in valuations.  Third, entrants bid at the last minute.  The 

last-minute bidding is driven by two factors: uncertainty about the number of bidders 

present and the possibility that losing bidders will compete again in future auctions.   

Because the presence of an additional competitor reduces the expected surplus from 

waiting until the next auction, incumbent bidders bid more aggressively if they know an 

entrant has arrived.   Therefore, entrants wait until the end of an auction, when it is too 

late for other bidders to react, to reveal themselves by submitting a maximum bid.   

Incumbents bid in every auction until they win and they are indifferent as when to 

bid during an auction.  These results follow from the assumption that bidders do not exit 

except by winning.  If we introduced a probability of exogenous exit, then incumbents 

would have private information about their participation in much the same way that 

entrants have.  The private information would give incumbents an incentive not to reveal 

themselves until the last minute.  In fact, incumbents would have an incentive to pretend 

to exit, lowering their rivals’ expectations of the number of bidders and bids in 

subsequent auctions, and then bid in the next auction.  

We conjecture that if we add a very small probability of exit, then the new 

equilibrium will involve a very small probability of an incumbent hiding in each auction 

conditional on not exiting.  In other words, incumbents play a mixed strategy in which 

they are indifferent between bidding at the last minute in the current auction and waiting 

until the next auction to bid.  The intuition is that the rivals’ belief that an incumbent has 

exited after not bidding would have to very low in order to balance the gain from hiding 

(in the form of slightly lower competitors’ bids in the future) and the cost of missing a 

chance to win the product for a low price in the current auction (if other incumbents 

choose to hide).11  So our equilibrium may be robust in the following sense: if there is 1 

percent chance of exit, then incumbents bid with 99 percent probability instead of 100 

and are certain to bid at the last minute.  Confirming this conjecture is beyond the scope 

of this paper.12  More generally, allowing bidders to exit would be an interesting 

extension of our model.  

                                                 
11 This kind of “low probability of behavioral type implies low probability of mimicking” result is standard 
in reputation models.  See, for example, Mailath and Samuelson’s (2006) chapter 17. 
12 One technical complication is that the tractable second-order difference equation in Expressions 1 and 2 
would become of order n + 2: each of two entrants might arrive, and each of n incumbents might exit. 
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As Roth and Ockenfels (2002) show, last-minute bidding behavior is sensitive to 

the details of auction closing rules.  In our model, as in Roth and Ockenfels, last-minute 

bidding depends on the hard closing rule.  With a soft close (meaning that the auction is 

extended whenever a maximum bid is submitted near the closing time), rivals always 

have a chance to respond to the information revealed by a late bid, and entrants cannot 

effectively conceal themselves.  Another interesting topic for future research is to try to 

extend our model to correspond to the rules of other online auction sites, such as 

Amazon.com or ubid.com. 
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Appendix 
 
Proof of Lemma 1:  First, note that because  

 

 2
0 (1 ) (1 )p p p= − < −  

 

 and ( )S ⋅  is decreasing, ( ) ( )e hS n S n> .  We conclude the proof by showing that  

 

 1( ) ( ) |  for all 0 :h h
t t t tS n E S n n nδ +⎡ ⎤≥ ≥⎣ ⎦  

 

If 2tn ≥ , then substituting using Expression 6 and collecting terms yields 

 

 

1 0 1 2

2 2
0 0 1 2

2 2
0 1 1 1 2

2 2
0 2 2 1 2

( ) | ( 1) ( ) ( 1)

( ) ( 2) ( ) ( )

( 1) ( ) ( 1)

( ) ( ) ( 2)

h h h h
t t t t t

t t

t t

t t

E S n n p S n p S n p S n

p S n p p p S n

p p S n p p p S n

p p S n p p p S n

δ δ δ δ

δ δ

δ δ

δ δ

+⎡ ⎤ = − + + +⎣ ⎦
⎧ − + +
⎪⎪= + − + + +⎨
⎪
+ + + +⎪⎩

 

 

[ ]
[ ]
[ ]

0 0 1 2

1 0 1 2

2 0 1 2

( 2) ( 1) ( )

( ) ( 1) ( 2)

( ) ( 1) ( 2)

t t t

t t t

t t t

p p S n p S n p S n

p p S n p S n p S n

p p S n p S n p S n

δ δ δ δ

δ δ δ δ

δ δ δ δ

⎧ − + − +
⎪⎪= + + + + +⎨
⎪+ + + + +⎪⎩

 

 
( )0 1 2( 1) ( 1)

( ).

t t
h

t

p S n p p S n

S n

δ δ= − + + +

=
 

 

Similarly, if 1tn = , then 

 



 27

 [ ]
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[ ]

1 0 1 2

0 0 1 2

1 0 1 2

2 0 1 2

( ) | 1 (0) (1) (2)
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[ ] ( )0 0 1 2 1 2( )( ) (1) (2)

(1),

H
h

p p p V R p S p p S

S

δ δ δ= + − + + +

<
 

 

and if 0tn = , then 

 

 1 0 1 2( ) | 0 ( ) (0) (1)

(0).

h h h
t t

h

E S n n p p S p S

S

δ δ δ+
⎡ ⎤= = + +⎣ ⎦

<
 

 

Thus, 

 

 1( ) ( ) |  for all 0.h h
t t tS n E S n n nδ +

⎡ ⎤≥ ≥⎣ ⎦      Q.E.D. 
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FIGURES AND TABLES 
 

Table 1: Definitions of variables 

Variables Explanation 

Auction number ID of the auction 

Winning bid Maximum recorded bid of each auction 

Starting bid Starting price of the auction that is set by the seller 

Minimum bid Minimum recorded bid of each auction 

Auction length (hr) Length of the auction measured in hours 

Number of bids Total number of bids at the end of the auction 

Number of bidders Total number of bidders at the end of the auction 

I Total number of unsuccessful bidders in previous 10 auctions 

 

Table 2: Descriptive statistics for TI-83 calculators 

Variable 
Num. 

of Obs. 
Mean Median 

Std. 

Dev. 
Min Max 

Winning bid 1817 58.21 53.09 17. 7 20 107.52 

Starting bid 1817 15.07 9.99 15.96 0.01 99.99 

Minimum bid 1817 18.74 12 16.65 0.01 99.99 

Auction length 

(hr) 1817 135.3 168 46.25 72 240 

Number of 

bids 1817 13.7 13 7.04 1 54 

Number of 

bidders 1817 7.29 7 3.02 1 18 

I 1807 62.83 62 13.14 12 115 
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Table 3: Summary statistics for the closing intervals 

Variable 
Num. of 

Obs. 
Mean Median 

Std. 

Dev. 
Min Max 

Closing 
Interval 

(minutes) 
1816 33.59 14 64.92 0 714 

 
 
 
Table 4: Distribution of closing intervals with various lengths 

Minutes in the 
Closing Interval  Frequency Percent (%) Cumulative (%) 

0 112 6.17 6.17 

1 132 7.27 13.44 

2 79 4.35 17.79 

3 84 4.63 22.41 

4 69 3.80 26.21 

5 62 3.41 29.63 

6-10 238 13.1 42.73 

11-30 538 29.63 72.36 

>30 502 27.64 100 
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Table 5: Number of bidders and number of auctions that they won 

Number of wins Number of bidders Percentage 

0 355 49% 

1 310 43% 

2 39 

3 9 

4 2 

5 1 

6 1 

10 1 

15 1 

49 1 

8% 

 
 

Table 6: Regression of winning bid on number of incumbents 

2SLS 
Winning Bid OLS 

First-stage regression IV regression 

I 0.1531*** 
(0.0337) ---- 0.6972** 

(0.3169) 

Closing Interval ---- 0.0086* 
(0.0046) 

0.0074 
(0.0097) 

Elapsed Time ---- 0.0075*** 
(0.0016) ---- 

Constant 45.9101*** 
(5.6704) 

49.7893*** 
(3.2217) 

16.6457 
(17.7278) 

R-squared 0.0391 0.1452 ---- 
Wald Chi-squared (31) ---- ---- 61.58 
Number of Observations:                                                      1806 

Notes: *** indicates significance at 1% level.  ** indicates significance at 5% level.  * indicates 
significance at 10% level.  Hour and day dummies were also included as regressors. 
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Figure 1: Bid submission times in the closing intervals 

 
 

Figure 2: Bid Submission times in the closing intervals, by incumbent status 
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Figure 3: Bidder behavior in consecutive auctions 
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