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We propose a flexible hedonic methodology for computing house price indexes that uses

multiple imputation (MI) to account for missing data (a huge problem in housing data

sets). Ours is the first study to use MI in this context. We also allow for spatial corre-

lation, include interaction terms between characteristics, between regions and periods,

and between regions and characteristics, and break the regressions up into overlapping

blocks of five consecutive periods (quarters in our case). These features ensure that

the shadow prices are flexible both across regions and time. This flexible structure

makes the derivation of price indexes from the estimated regression equations far from

straightforward. We develop innovative methods for resolving this problem and for

splicing the overlapping blocks together to generate the overall panel results. We then

use our methodology to construct temporal and spatial price indexes for 15 regions in

Sydney, Australia on a quarterly basis from 2001 to 2006 and combine them to obtain

an overall price index for Sydney. Our hedonic indexes differ quite significantly from

the official index for Sydney published by the Australian Bureau of Statistics. We also

find clear evidence of convergence in prices across regions from 2001-3 (while prices were

rising), and divergence thereafter. We conclude by exploring some of the implications

of these empirical findings. (JEL. C43, E01, E31, R31)
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1 Introduction

Movements of house prices are of great interest to households, investors in the housing

market, and policy makers pursuing diverse goals such as monitoring and tracking

underlying inflation and maintaining social equity. Housing accounts for more than

50 percent of the private capital stock and 30 percent of household expenditure in the

US (see Englund, Quigley and Redfearn 1998) and around 60 percent of household

assets in Australia (see Hansen 2006). It is not surprising therefore that movements in

house prices can significantly impact on the economy. Indeed, Case, Quigley and Shiller

(2005) find that changes in house prices have a greater impact than changes in stock

market prices on household consumption. The importance of the housing market has

been clearly demonstrated by the recent economic turmoil in various countries (e.g., the

US, UK, Spain and Ireland) triggered by the subprime mortgage crisis in the US.

It is important, therefore, that movements in house prices and regional differences

are accurately measured. This is difficult since every house is different. Ideally what

is required is a quality adjusted index that compares like with like from one period (or

region) to the next. The most common approach taken by national statistical agencies

is to track the average or median price of houses sold. Such an index fails to make a

quality adjustment, and hence may be misleading when the mix of houses sold changes

over time or space, as may well be the case in times of stress when accurate measurement

is most urgently required.

One way to control for quality change is to use hedonic methods. Hedonic models

regress the price of a product on a vector of characteristics. Most applications of

hedonics focus on goods subject to rapid technological change, particularly computers

(see for example Berndt, Griliches and Rappaport 1995, Pakes 2003, Triplett 2004,

and Diewert, Heravi and Silver 2007). In a housing context, the characteristics can

include physical factors such as land area, the number of bedrooms and bathrooms,

and locational factors such as longitude, latitude, distance to the nearest shopping

center, etc. Within a regression framework, ‘pure price’ changes from one period to
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the next or one region to another can be captured after controlling for qualitative and

compositional changes. The implementation of hedonic regression methods requires

detailed information on the physical and locational attributes of the sales records. The

more information provided for each house sale, the better is the chance of capturing the

‘pure price’ change.

In this study, we propose a methodology for constructing hedonic price indexes

for housing on panel data sets that is very flexible. Our first task is to address the

fundamental problem of missing data. In our data set around 59 percent of sales obser-

vations are missing one or more of the core characteristics. Typically, observations with

missing information are simply deleted (the default setting in most statistical pack-

ages). List-wise deletion, however, can impart bias to the standard errors and the price

indexes themselves. We address this problem using multiple-imputation techniques de-

veloped by Rubin (1987) to fill in the gaps in the data set, prior to estimating the

hedonic model. Our study is the first to apply these state-of-the-art methods in a hous-

ing context. This in itself is an important contribution, given the pervasiveness of the

missing-data problem in housing data sets.

Location is an important factor in the housing market. It is necessary therefore

that the hedonic model takes account of spatial correlation in the price data. We do this

using methods developed by Anselin (1988). We also correct for heteroscedasticity by

using the fact that the errors can be expressed as a function of some of the explanatory

variables.

Flexibility is achieved through the inclusion of interaction terms between charac-

teristics, between regions and periods, and between regions and characteristics. The

interaction terms are statistically significant in almost all periods. The inclusion of all

these interaction terms ensures that there is no substitution bias in the resulting price

indexes.1 In addition, the regressions are broken up into overlapping blocks of five con-

secutive periods (quarters in our case). This allows the shadow prices to adjust over

time, and ensures that the results for earlier years do not change when a new year is

1Hill and Melser (2008b) show how fixed shadow prices can generate substitution bias.
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added to the data set. This criterion – sometimes referred to as temporal fixity (see Hill

2004) – is particularly important for national statistical offices and other organizations

that are required to compute indexes on an ongoing basis.

This flexible structure, however, makes the derivation of price indexes from the

estimated regression equations far from straightforward. The presence of so many in-

teraction terms implies that innovative methods are required to derive the price indexes

for each overlapping block. Further innovations are required to splice these overlapping

blocks together to generate the overall panel results. Our preferred method of splicing

does this without distorting any of the temporal indexes (which are generally considered

more reliable since they tend to be less affected by omitted variables bias).

We use our methodology to construct temporal and spatial price indexes for 15

regions in Sydney, Australia on a quarterly basis from 2001 to 2006 from a data set

consisting of 418,877 sales observations. We also consider how best to combine the 15

regional indexes to obtain an overall price index for Sydney.

Our empirical results raise some interesting issues. In particular, our hedonic

indexes suggest that the rise in house prices from 2001 to 2003 was not as large as

indicated by the official index published by the Australian Bureau of Statistics (ABS).

Conversely, we find that the fall in house prices since 2003 has been rather smaller than

indicated by the ABS index. The fact that the Sydney housing market peaked in 2003

also allows us to compare regional pricing patterns in a rising and falling market. We

find clear evidence of convergence in prices across regions while house prices were rising,

and divergence thereafter.

2 The Missing Data Problem

The data set used in this study contains information on the sales of dwellings across

191 postcodes in Sydney from the beginning of 2001 to the end of 2006, a period of

24 quarters. The data was purchased from a private housing data provider, Australian

Property Monitors, which obtains some of its information from the Office of the New
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South Wales Valuer-General and supplements this with additional data (such as miss-

ing information on the number of bedrooms and bathrooms). We have supplemented

further by purchasing information on coordinates (latitude and longitude) for the loca-

tion of each dwelling. The data set used contains around 418,877 sales records.2 Some

summary information on the number of observations and prices of dwellings are pro-

vided in Table 1. Houses and units account for 53 and 47 per cent of the observations,

respectively.

Insert Table 1 Here

The available information on physical attributes are type of dwellings, bedroom

count, bathroom count and lot size. The date of contract was recorded for each dwelling,

from which the quarter in which the sale took place was obtained. Detailed addresses

were available, which enabled us to identify locations of the dwellings on a Cartesian

space represented by longitudes and latitudes. In addition, the geographical area is

divided into 191 postcodes.

Insert Figure 1 Here

We use the postcodes to divide Sydney into 15 regions. These regions are the same

as those used by Residex, a private housing data provider, and also accord with our

own idea of Sydney housing sub-markets.3 The most number of sales in our data set

2The original data set had more observations. Some observations are excluded because they are

considered to be ‘outliers’ or ‘extreme observations’. For example, a 1 bed-1 bath small unit in the

suburb ‘Neutral Bay’ was recorded to be sold for 32,750,000 dollars in 2001, where the median price

for that suburb is 520,000 dollars. There are some extreme numbers, at both ends, with respect

to physical attributes such as bedroom and bathroom counts and lot size. Faced with the practical

difficulty in identifying ‘outliers’, especially in a multi-dimensional context, we have decided to exclude

1 per cent of the observations from both tails of the distribution of dwelling prices and lot size. Figure 1

provides the distribution of prices and natural logarithm of prices before and after exclusion of extreme

observations.
3Residex considers 16 regions. However, we do not have sales records for Residex’s Campbelltown

region. The Residex regions used, with postcode ranges in brackets, are: A=Inner Sydney (2000 to

2020), B=Eastern Suburbs (2021 to 2036), C=Inner West (2037 to 2059), D=Lower North Shore (2060

to 2069), E=Upper North Shore (2070 to 2087), F=Mosman-Cremorne (2088 to 2091), G=Manly-
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were recorded in the region Fairfield-Liverpool (42,564), whereas the least was recorded

in the region Mosman-Cremorne (10,848).

A large number of sales observations are missing information on core characteristics

– bedroom or bathroom counts or lot size. This is particularly a problem for the

present analysis because the hedonic approach is data-intensive and requires detailed

characteristics information in order to implement. The subset of data with information

on all the characteristics – bedroom and bathroom counts and lot size – consisted of

172,627 observations. Though this is still a very large data set, it is a reduction of

around 59 per cent. The exclusion of such a large portion of the data would result in a

loss of efficiency and, additionally, might lead to biased estimates.

The critical question that needs to be addressed is why some of the characteris-

tics data are missing. The reason for missingness determines the way it impacts the

estimates and provides guidance to the types of statistical procedures that are needed

to arrive at estimates possessing desirable statistical properties. For example, while

list-wise deletion might be an efficient way of dealing with missing data under certain

situations, in other situations it might produce estimates that are biased, inefficient and

unreliable.

In modern missing data procedures, missingness is considered to be a probabilistic

phenomenon (see Schafer and Graham, 2002). Since in most cases missingness is be-

yond the researcher’s control, we might not know its specific distribution. The way to

proceed is to make assumptions on the randomness and how the missingness is related

to the values of the missing items themselves. Distributions of missingness are classified

according to the nature of their relationship with the values of the missing items. These

assumptions are usually ‘untestable’. However, investigation into the causes of missing

Warringah (2092 to 2109), H=North Western (2110 to 2126), I=Western Suburbs (2127 to 2145),

J=Parramatta Hills (2146 to 2159), K=Fairfield-Liverpool (2160 to 2189), L=Canterbury-Bankstown

(2190 to 2200), M=St George (2201 to 2223), N=Cronulla-Sutherland (2224 to 2249), Campbelltown

(2552 to 2570), O=Penrith-Windsor (2740 to 2777). Henceforth we refer to these regions by their

alphabetical prefixes.
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data might provide guidance in making realistic assumptions.

Adopting a generic notation, let us denote the complete data set by Ycom =

(Yobs, Ymis), where Yobs and Ymis refer to the observed and missing data, respectively.

Let R denote the indicator for missingness, taking the value of 1 if a characteristic obser-

vation is missing and 0 otherwise. Rubin (1976, 1987, p.53) defines three distributions

for missingness: missing at random (MAR), missing completely at random (MCAR)

and missing not at random (MNAR). These are described in equations (1), (2) and (3),

respectively:

P (R | Ycom) = P (R | Yobs), (MAR) (1)

P (R | Ycom) = P (R), (MCAR) (2)

P (R | Ycom) = P (R | Ymis). (MNAR) (3)

In a housing context, if the likelihood of the bedroom count being missing depends on

the bedroom count, then the missingness is MNAR. If the likelihood of the bedroom

count being missing depends not on its own value but on the value of other variables

(e.g., the period of sale or the suburb) then the missingness is MAR. If the likelihood

of the bedroom count being missing does not depend on any of the variables then the

missingness is MCAR.

The MCAR assumption is the easiest to handle. Since the missing data values are

simple random samples of all data values, the common procedure of list-wise deletion

provides unbiased estimates.4 However, standard errors are generally larger, resulting

in inefficient estimates because in a reduced sample less information is utilized. If

missingness has a MAR distribution, the reduced sample is not a simple random sample

of the complete data set and, therefore, estimation might be biased.5 For a similar

4This procedure is also known as ‘case deletion’ or ‘complete case analysis’ and is the default

procedure for most statistical modelling in different statistical packages.
5Under MAR, missingness is related to the observed values of some other variables. Missingness

is MCAR conditional on those variables. Therefore, the data set with complete information is not a

simple random sample of the whole data set.
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reason, though with greater force, list-wise deletion produces biased estimates under

MNAR (see Allison 2002).

We assume here that the missing data have a MAR distribution. This is for a

simple reason, which applies to many other data sets. The data set has become better

over time because of an improved data collection process and by collectors being more

careful about the quality of the data. This means that the probability of missingness

depends on the ‘time of sale’ – an important determinant for the price of dwellings.

Table 2 provides support for this hypothesis. While 69.6 percent of the sales records

missed at least one characteristic in 2001, the percentage declined steadily over the

years and reached 31.3 percent in 2006. This improvement can be seen individually for

each of the core characteristics.

Insert Table 2 Here

Additionally, correspondence with the data provider revealed that characteristics

information are available more for observations belonging to richer than poorer suburbs.

Table 2 shows that regions with higher median dwelling prices (see Table 1) tend to have

less missing data than regions with lower median prices. For instance, F is the most

and O is the least expensive region, and the missing data in the sales records of these

regions amounts to 40.8% and 68.4%, respectively. In order to check on this further, we

identified five least and most expensive postcodes in terms of median dwelling prices.

These are shown in Table 3. Table 3 shows that missingness varies substantially between

these two sets of postcodes.

Insert Table 3 Here

As mentioned earlier, the assumption on the distribution of missingness is not

directly testable since missing data are unrecoverable. However, as discussed above,

Tables 1, 2, and 3 provide some evidence that missingness depends on some of the other

variables in the data set and, therefore, that the MAR assumption may be appropriate.6

Little and Rubin (1987) argue that using explicit models is better than informal

6Collins, Schafer and Kam (2001) demonstrate that an erroneous MAR assumption often only has

a minor impact on the estimates and inferences.
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procedures such as editing and mean substitution in handling missing data. The current

literature recommends two general approaches developed by Rubin (1976, 1987): max-

imum likelihood (ML) and Bayesian multiple imputation (MI).7 Schafer and Graham

(2002, p.173) in reviewing various old and new procedures for handling missing data

summarized the situation as follows:

Although other procedures are occasionally useful, we recommend that researchers apply

likelihood-based procedures, where available, or the parametric MI methods described in

this article, which are appropriate under general MAR conditions . . . ML and MI under

the MAR assumption represent the practical state of the art.

In this study, we follow the MI approach. In MI each missing value is filled in

by m > 1 simulated values prior to statistical analysis. Since the early 1990s, the MI

approach has gained prominence mostly because of rapid improvement in computing

power enabling generation of thousands of simulated values in a short time, and the

development of new Bayesian simulation methods in the late 1980s (see Schafer 1997).

In the case of an arbitrary missing data pattern, a Markov Chain Monte Carlo (MCMC)

approach that assumes multivariate normality can be used to impute missing values.

Implementation involves two steps: the imputation I-step and posterior P-step. The two

steps are iterated long enough so that the distribution of the simulated data converges

to a stationary distribution. The I-step draws Y
(t+1)
mis from p(Ymis | Yobs, θ(t)) where

θ(t) is the estimated parameter at the tth iteration.8 The P-step draws θ(t+1) from

7The ML and MI approaches have the same optimal properties; they produce estimates that are

consistent and asymptotically efficient as well as asymptotically normal when the data are MAR. The

advantage of MI over ML is that it can be applied to virtually any kind of data and any kind of model

(see Allison 2002). However, the MI approach also has its limitations – it produces different results

each time it is applied to the data, though the difference is expected to be minor.
8One has the option of using informative or non-informative priors. In this study we have used

non-informative priors. The initial estimates, θ(1), are the means and covariance matrices obtained

from Yobs. Rubin (1996) recommends the use of as many variables as possible (which are expected

to be correlated) when doing multiple imputation. We use dwelling price, period of sale, postcode

address, dwelling type, bedroom and bathroom counts, lot size and the longitude and latitude of each

observation.
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p(θ | Yobs, Y (t+1)
mis ). The two steps are iterated n times creating a Markov chain

(Y
(1)
mis, θ

(1)), (Y
(2)
mis, θ

(2)), . . . , (Y
(n)
mis, θ

(n)).

The process is continued until convergence is attained at a stationary distribution

p(Ymis, θ | Yobs). Once the convergence is attained, we can simulate an approximately

independent draw of the missing values. A detailed description of the method is avail-

able in Schafer (1997).9 Repetition of the above process m times creates m imputed

data sets.

The parameter estimates obtained from m imputed data sets can be combined

using Rubin’s (1987) methodology. Rather than combining the imputations for each

missing observation prior to estimating the hedonic model, Rubin’s approach requires

us to estimate the hedonic model separately for each imputed data set and only then

combine the results.

Let Q̂j and Ûj be the estimated regression coefficients and standard errors of the

regression coefficients obtained from the jth imputed data set. The overall estimate is

the average of the m estimates:

Q̄ = m−1
m∑
j=1

Q̂(j).

The variance of Q̄ is:

V = Ū + (1 +
1

m
)B,

where Ū = m−1∑m
j=1 U

(j) is the within imputation variance, m the number of imputed

data sets, and B = (m− 1)−1∑m
j=1(Q̂

(j) − Q̄)2 the between imputations variance. For

hypothesis testing, Rubin (1987) recommends the following statistic:

S = V −1/2(Q̄−Q),

9We implement MI using a proc mi routine in-built in the SAS 9.1 software. See Yuan (2000)

for a detailed discussion of various options and how SAS implements MI. For other implementa-

tion options with step-by-step instructions, see the resource webpage maintained by J. W. Graham

(http://methodology.psu.edu/resources.html).
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where Q denotes the value of Q̄ assumed under the null hypothesis. Rubin shows that

S has a t distribution with v = (m − 1){1 + Ū/[(1 + m−1)B]}2 degrees of freedom.

The degrees of freedom varies from m− 1 to infinity depending on the rate of missing

information. When the degrees of freedom are large, the variance is precisely estimated

and hence not much is gained by increasing the number of imputed data sets m.

3 The Estimated Hedonic Model

3.1 Specification of the hedonic model

The hedonic method dates back at least to Court (1939), and was revived by Griliches

(1961). The conceptual basis of the approach was laid down by Lancaster (1966) and

Rosen (1974). The two main approaches which have been used in practice are the time-

dummy method and the hedonic imputation method (see ILO 2004 and Triplett 2004).

Our focus here is on improving and extending the former method.10

For the purpose of illustration, we specify a relatively straightforward panel ver-

sion of the time-dummy method. Here we pool across all the regions and periods in

the sample and estimate the region-time specific fixed effects and shadow prices of

characteristics.11

ln(pkth) = α +
T∑
τ=2

K∑
κ=1

δκτbκτh +
C∑
c=2

θczch + εκτh for h = 1, . . . , Hkt,

k = 1, . . . , K

t = 1, . . . , T (4)

In (4), k = 1, . . . , K are the regions, t = 1, . . . , T are the periods and c = 1, . . . , C

are the characteristics. The dependent variable is the natural logarithm of the price

10The hedonic imputation method is discussed in detail in Hill and Melser (2008a, 2008b).
11This method was first proposed by Aizcorbe and Aten (2004), who refer to it as the time-

interaction-country product dummy method. Hill and Melser (2008b) refer to it as the region-time

dummy method.
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of an observation belonging to region-period kt. The dummy variable bkth takes the

value 1 if the observation h is from region-period kt, and zero otherwise. zch denotes

a characteristic or attribute of a dwelling. In a housing context, typically most of

the characteristics take the form of dummy variables. The primary interest lies in the

coefficients δkt which measure the region-period specific fixed effects on the logarithms

of the price level after controlling for the effects of the differences in the attributes of

the dwellings. The advantage of this region-time-dummy model is that the price index

Pjs,kt between region-periods js and kt is derived directly from the δkt coefficients as

follows:

P̂js,kt = exp(δ̂kt − δ̂js). (5)

In fact, it can be shown that this index is a biased estimate of the desired population

parameter due to the fact that we are taking a nonlinear transformation of a random

variable (see Garderen and Shah 2002). A better approach, following Kennedy’s (1981)

suggestion, is to use the adjusted index, P̃js,kt, which will be approximately unbiased:

P̃js,kt = exp

[
δ̂kt − δ̂js −

Var(δ̂kt) + Var(δ̂js)

2

]
. (6)

We find that the difference between P̂js,kt and P̃js,kt in practice is small. The price

indexes are the same up to four decimal places. Hence, in the more complicated models

that follow, to simplify matters we do not make this correction.

As can be seen, the indexes P̂js,kt are derived from simple transformations of the

estimated region-period dummy variables. This simplicity comes at a price. The region-

period dummies and dwelling characteristics enter the hedonic function additively. In

other words, the function exerts a restriction on the potential interactions between

region-periods and the characteristics set. For example, if bedroom counts is a charac-

teristics then the shadow price of, say, two bedrooms is forced to be the same between

two regions. In a temporal context it constrains the value of two bedrooms to re-

main the same over time. Without explicitly testing the significance in the difference

in explanatory power, imposition of such restrictions seems unwarranted. In addition

to the standard problems of misspecification, Hill and Melser (2008b) show how these
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restrictions can introduce systematic bias into the results.

Our objective here is to construct a flexible version of the region-time-dummy

hedonic model that allows for interactions between characteristics, between character-

istics and region-periods, and that allows the shadow prices of characteristics in each

region to evolve over time. While the interaction between region-period dummies and

characteristics complicates the derivation of indexes through the involvement of more

parameters, we show how the region-period price indexes can still be obtained in a

reasonably straightforward way.

Our generalized version of the region-time-dummy model takes the following form:

ln(pkth) = α +
T∑
τ=2

βτqτh +
K∑
κ=2

γκrκh +
K∑
κ=2

T∑
τ=2

δκτbκτh +
Mκ∑
m=2

ηκmdκmh + ZΘ + ukth,

for h = 1, . . . , Hkt

k = 1, . . . , K,

t = 1, . . . , T, (7)

where qτh are dummy variables such that qτh=1 if the observation h is from period t

and zero otherwise. Similarly, rκh=1 if the observation h is from region k and zero

otherwise. The dummy variables bκτh denote interactions between periods and regions

taking the value of 1 if the observation h is from region-period kt and zero otherwise.

The postcode dummies are denoted by dκmh, where dκmh=1 for observation h’s postcode

and zero otherwise.

Z is a set of quality characteristics. It includes the dwelling type, number of

bedrooms, bathrooms, lot size, and two-way interactions among this set of attributes.

In addition, each of these attributes is allowed to interact with regions. A detailed

exposition of Z is provided in equation (8).

ZΘ =
Ci∑
ci=2

θcizcih +
Ci∑
ci=2

Cj∑
cj=2i 6=j

ηcicjzcicjh +
K∑
κ=2

Ci∑
ci=1

ξκcizκcih for i, j = 1, . . . , I. (8)

In (8), i, j = 1, . . . , I are the quality characteristics (bedrooms, bathrooms, lot size,

dwelling type) and ci = 1, . . . , Ci denote the attributes of the characteristic i (e.g.,

the number of bedrooms for the case of the bedrooms characteristic). The lot size
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and the square of lot size are included in the equation as continuous variables. The

other characteristics take the form of dummy variables. The equation includes two-way

interaction terms among the characteristic attributes, which are denoted by zcicj . In

addition Z includes interactions between the regions and characteristics.

3.2 Accounting for spatial correlation

Basu and Thibodeau (1998) document two reasons why positive spatial correlation may

exist. First, neighborhoods tend to develop at the same time resulting in dwellings hav-

ing similar structural characteristics. Second, dwelling in a neighborhood share the

same locational amenities. Many of the price determining factors shared by neighbor-

hoods are difficult to document explicitly. However, the influence of these potentially

‘omitted’ variables are contained in the neighboring prices. Therefore, in the course

of predicting house prices or undertaking regression analysis, one should work with a

mechanism which takes account of this information.

In order to provide an illustration of the locational dependence of house prices in

our data set, two graphs of dwelling prices have been plotted against distance to central

business district (CBD) and a sea beach. The distances are the euclidian distances in

R2 calculated from the locations defined by longitudes and latitudes for each dwelling.

The plots are provided in Figure 2.12 Note that that none of the plots are flat, implying

the importance of location in the determination of house prices. Note also that the

dwelling prices are influenced by many other determinants including other locational

factors and, since these are not controlled for in Figure 2, the curvature of the graphs

should only be interpreted as indicative rather than capturing a proper causal effect.

12With regard to the first diagram, an arc was drawn from the CBD area (in postcode 2000) to the

deep west of the Sydney metropolitan area. The dwellings of the postcodes through which the arc

passed were included in drawing the graphs. These postcodes are 2000, 2007, 2008, 2042, 2048, 2049,

2203, 2131, 2191, 2192, 2190, 2199, 2143, 2162, 2163, 2160, 2161, 2165, 2164, 2766, 2760, 2770, 2747

and 2750. For the second diagram, four adjacent postcodes were considered: 2031, 2032, 2033 and

2034. The sea beach used for measurement is in postcode 2034.
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Insert Figure 2 Here

The presence of spatial correlation implies that the Gauss-Markov assumptions are

violated. At the very least, this implies inefficient estimators and incorrect standard

errors, leading to biased inferences (see Anselin 1988 and Basu and Thibodeau 1998).

More precisely, positive correlation will cause upward bias in the t-statistics. Its impact

can potentially also cause biased in the estimators themselves. If the spatially correlated

omitted variables are also correlated with the included variables, then the estimated

coefficients can be biased even in large samples.13 Therefore, we need to incorporate

spatial dependence into the model.

To do this, we first need to find the neighbors of each observation. By using

information on whether two spatial units have a common border or edge, one can identify

neighboring spatial units. Anselin (1988) considers two spatial units as ‘contiguous’ if

they have a common border of non-zero length. Neighboring observations can also be

defined with respect to ‘distance’ between two observations. Under this scheme, it is

possible to either keep the number of neighbors fixed, from 1 to n or to keep the distance

between the neighbors fixed. Typically, a euclidian distance function is used to calculate

the distance using locational information represented by latitudes and longitudes.

Second, we need to map the calculated distances to spatial dependence. This can

be achieved in various ways. A common feature of these functions is that the closer are

two observations, the higher is the strength of the spatial dependence.

In order to provide a structure to the assumed spatial relationship, a matrix com-

monly known as a spatial weight or contiguity matrix is constructed. The nature of the

spatial dependence is specified in the spatial weight matrix. There are a large number

of ways to construct the matrix. Each cell in the matrix can be the inverse distance

or a function of the inverse distance between neighboring observations. Alternatively,

13The existence of spatial correlation in the residuals of the traditional hedonic equations have

been reported in many empirical studies. For example, see Can (1990), Basu and Thibodeau (1998),

Bourassa, Hoesli and Peng (2003), Pace and Gilley (1997), and Pace, Barry, Clapp and Rodriguez

(1998).
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it is possible to construct a matrix of ones and zeros, with ‘ones’ denoting neighboring

observations and ‘zeros’ otherwise.14 An elaborate discussion of alternative ways of

constructing a spatial weights matrix is provided in Kelejian and Robinson (1995).

For a data set of n observations, the matrix has the dimension n × n. The ith

row of the matrix specifies the spatial dependence of the ith observation with the other

n − 1 observations. The elements of the ith row take the value of 1 for observations

neighboring the ith observation and 0 otherwise. Note that the matrix is symmetric

and always has zeros on the lead diagonal. In applied work, a transformation is often

used that converts the spatial matrix so that the rows sum to unity. This matrix is

referred to as the standardized version of the spatial weight matrix.

Using the ‘Delaunay triangle algorithm’, contiguity information can be created

artificially. This algorithm simply requires the latitude and longitude of each spatial

unit. This procedure is also less time and computing intensive than using information

on common borders and edges.15 Given points in Cartesian space, the algorithm creates

a set of triangles such that no points are contained in any triangle’s circumcircle. The

edges of the triangle satisfy the ‘empty circle’ property: the circumcircle of a triangle

formed by three points is empty if if does not contain the vertices other than the

three that define it. This way of creating a contiguity matrix entails more neighbors

in relatively more densely populated areas and thus conforms to the idea that closer

dwellings are more likely to be correlated with each other than those that are located

at a distance from each other.

Once we have defined the contiguity or spatial weight matrix, spatial correlation

between observations is captured in the error term ukth in equation (7) as follows:

ukth = λWukth + εkth, (9)

where εkth ∼ N(0, ωkthσ
2). The variance of εkth is subscripted with kt implying that the

model will allow for heteroscedasticity. Furthermore, we assume that ωkthσ
2 = g(x),

14A spatial matrix with binary numbers contains relatively less information but makes econometric

estimation computationally less intensive.
15Matlab 6.5 has an in-built Delaunay triangle algorithm routine.
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where x is a subset of the explanatory variables. W is a spatial weights matrix, and the

parameter λ measures the average locational influence of the neighboring observations

on each observations. For example, λ = 0.30 means that 30 per cent of the variation of

ukth is explained by locational influences of its neighbors.

3.3 Estimation of the model

The model is estimated separately for six sub-samples of the data set. Each of these

samples contains observations for five consecutive quarters with the exception of the last

sample where the observations belong to four quarters.16 The existence of overlapping

periods allows us to link the results from one block to the next.

Estimating equations separately for each five-quarter block allows the shadow

prices of characteristics to vary over time. The shadow prices also vary in the spatial

dimension because of the inclusion of interaction terms between regions and charac-

teristics of dwellings. With this flexible set-up, we can construct temporal indexes for

each region directly from the estimated coefficients, β̂t and δ̂kt. However, construction

of spatial indexes is relatively more involved. This is because the interaction between

regions and characteristics requires the inclusion of more coefficients in the calculation.

We use the maximum likelihood estimation (MLE) method developed by Anselin

(1988) to estimate the parameters of the model.17 We extend the method to account

for heteroscedastic disturbance terms. The maximum likelihood method is based on a

16The six sub-samples cover the periods 2001:1–2002:1, 2002:1–2003:1, 2003:1–2004:1, 2004:1–2005:1,

2005:1–2006:1 and 2006:1–2006:4.
17See LeSage (1999) for a brief explanation of alternative spatial auto-regressive models. The most

general model is Y = ρW1Y +Xβ + u, where u = λW2u+ ε and ε ∼ N(0, σ2In). W1 and W2 are two

spatial contiguity matrices. Two of the alternative models can be specified by imposing restrictions

on W1 and W2. By setting W1 = 0, we specify a model which corrects for spatial correlation in the

disturbance. The restriction of W2 = 0 specifies a model that Anselin (1988) refers to as a mixed

regressive-spatial autoregressive model. Our preliminary analysis shows that both models yield similar

results. However, construction of indexes is computationally much less intensive in the former, which

accounts for spatial correlation without yielding an additional slope coefficient.
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concentrated likelihood function where λ̂ is estimated from a univariate optimization

routine. Other estimates of the model are obtained from ordinary least squares estima-

tion. The process is conducted iteratively until the convergence criteria are satisfied.

In each iteration, two estimations are undertaken, each updating its own estimates by

using the updated estimates from the other estimation.

To start the process, we estimate an ordinary least squares (OLS) model: the

log of dwelling price on the same set of variables specified in equation (7), with the

assumption of homoscedastic error variance and λ = 0. The next step is to relax the

assumption of homoscedasticity. We transform the model with the assumption that the

error variance is a function of some of the explanatory variables, g(x). Here x includes

region, period, region-period interactions, postcodes and the core characteristics, but

excludes all other interaction terms. The following transformation of the variables is

taken: Y ∗ = [1/
√
g(x)]Y and X∗ = [1/

√
g(x)]X, where Y and X denote the dependent

and explanatory variables of the model.

We run OLS on the transformed variables which gives us the feasible generalized

least squares (FGLS) estimates of the intercept and slope coefficients. The FGLS esti-

mates are fed into the following concentrated log likelihood function which is optimized

over a single coefficient λ:

L(λ) = −n
2

ln(π)− n

2
ln(

1

n
) [(In − λW )ε]′ [(I − λW )ε]− n

2
+ ln |In − λW |. (10)

We again transform the variables but this time to correct for spatial correlation.

The transformation takes place in the following way: Y ∗∗ = [In − λ̃W ]Y ∗ and X∗∗ =

[In − λ̃W ]X∗, where In is an n × n identity matrix, λ̃ is the MLE from the current

iteration and W is the spatial contiguity matrix defined earlier.

This completes one iteration. When the convergence criteria are satisfied, this iter-

ative process yields a set of FGLS estimates for the intercept and the slope coefficients

and maximum likelihood estimates for the spatial correlation coefficient. The FGLS

coefficients, which we use later to construct indexes, are consistent and asymptotically
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efficient.18

4 Derivation of the Price Indexes

4.1 Temporal indexes

For a given region, k, temporal price indexes can be constructed from the estimated β

and δ coefficients from the hedonic equation (7). Our price indexes are computed on a

quarterly basis. Hence let Pk,t,u denote the price index for region k in year t and quarter

u. The price index Pk,t,u relative to Pk,t,1 is calculated as follows:

Pk,t,u
Pk,t,1

= exp(β̂t,u + δ̂k,t,u) for u = 2, 3, 4. (11)

Similarly, the price index for the first quarter in year t + 1 relative to the first quarter

in year t is given by

Pk,t+1,1

Pk,t,1
= exp(β̂t+1,1 + δ̂k,t+1,1).

Comparisons between other pairs of quarters (say the second and third quarter) are

obtained indirectly as follows:

Pk,t,3
Pk,t,2

=
Pk,t,3
Pk,t,1

× Pk,t,1
Pk,t,2

= exp[(β̂t,3 − β̂t,2) + (δ̂k,t,3 − δ̂k,t,2)]. (12)

Comparisons over longer time horizons require the linking of five-quarter blocks.

For the case of chronologically adjacent blocks, the price indexes are calculated as

follows:

Pk,t+1,u

Pk,t,1
=
Pk,t+1,1

Pk,t,1
× Pk,t+1,u

Pk,t+1,1

= exp[(β̂t+1,1 + β̂t+1,u)+(δ̂k,t+1,1 + δ̂k,t+1,u)] for u = 2, 3, 4.

18There are a number of computational issues that are specific to spatial statistics/econometrics. The

most important one is that it is necessary to compute the determinant of an n× n contiguity matrix,

which requires a lot of computer memory. We have used the Spatial Econometrics Toolbox for MAT-

LAB developed by J. P. LeSage available at�http://www.spatial-econometrics.com�. The details on

the toolbox and the associated computational issues can be found in LeSage (1999). For initial condi-

tions, convergence criteria and maximum number of allowed iterations we have used the default settings

of the Toolbox. Another toolbox for MATLAB which implements various spatial auto-regressive models

has been developed by R. K. Pace and R. Barry �http://www.spatial-statistics.com�.
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For the more general case,

Pk,t+s,1
Pk,t,1

=
Pk,t+1,1

Pk,t,1
× Pk,t+2,1

Pk,t+1,1

× · · · × Pk,t+s,1
Pk,t+s−1,1

=
s∏
j=1

exp(β̂t+j,1 + δ̂k,t+j,1),

Pk,t+s,u
Pk,t,1

= exp(β̂t+s,u + δ̂k,t+s,u)
s∏
j=1

exp(β̂t+j,1 + δ̂k,t+j,1) for u = 2, 3, 4. (13)

Using this approach, it is possible to construct a temporal price index for each

region over the entire period of analysis.

4.2 Spatial indexes

For a given quarter (t, u), spatial price indexes can be constructed from the estimated

coefficients γk, δkt, ηkm and θkc obtained from the hedonic equation (7).19 Our starting

point is a comparison between a postcode m in region j and a postcode n in region

k for a particular dwelling h with characteristic vector zch. This spatial price index is

calculated as follows:

Pjmtu,kntu(zch) = exp[(γ̂k− γ̂j)+(δ̂kt− δ̂jt)+(η̂kn− η̂jm)]

[
C∏
c=1

exp(θ̂kczch − θ̂jczch)
]

(14)

The spatial index can be generalized to take account of all dwellings sold in post-

codes jm as follows:

PL
jmtu,kntu = exp[(γ̂k− γ̂j)+(δ̂kt− δ̂jt)+(η̂kn− η̂jm)]

Hjmtu∏
h=1

C∏
c=1

exp(θ̂kczch − θ̂jczch)

1/Hjmtu

(15)

The superscript L on the price index denotes the fact that it is analogous to a Laspeyres

price index in the sense that they are calculated using the dwellings actually sold in

postcode jm. In an analogous manner, Paasche-type indexes can be computed based

on the dwellings actually sold in postcode kn as follows:

P P
jmtu,kntu = exp[(γ̂k− γ̂j)+(δ̂kt− δ̂jt)+(η̂kn− η̂jm)]

Hkntu∏
h=1

C∏
c=1

exp(θ̂kczch − θ̂jczch)

1/Hkntu

(16)

19Spatial indexes are constructed for a given quarter. Therefore, β drops out of the calculation.
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Taking the geometric mean of the Laspeyres and Paasche type indexes, we obtain a

Fisher-type index that treats both postcodes symmetrically.

P F
jmtu,kntu = (PL

jmtu,kntu × P P
jmtu,kntu)

1/2 (17)

A spatial index between pairs of regions (as opposed to postcodes) can now be

obtained by comparing all possible combinations of postcodes between pairs of regions,

and then taking the geometric mean of the results of all these pairwise comparisons, as

follows:

P F
jtu,ktu =

Mj∏
m=1

Mk∏
n=1

(P F
jmtu,kntu)

1/(MjMk), (18)

where Mj and Mk denote the number of postcodes, respectively, in regions j and k.

These bilateral indexes are not transitive. That is, P F
jtu,ktu × P F

ktu,ltu 6= P F
jtu,ltu.

These indexes can be transitivized using the Gini-EKS formula (see for example Hill

1997), as follows:

Pktu
Pjtu

=
K∏
i=1

(
P F
ktu,itu

P F
jtu,itu

)1/K

.

Transitive indexes are referred to as multilateral indexes in the price index literature

(again see Hill 1997).

4.3 Panel indexes

Combining the temporal and spatial indexes of the previous sections to allow a price

comparison between a region-period jsu and another region-period ktv, where neither

the regions nor periods are matched, is not entirely straightforward. To see why, it

is useful to represent the panel comparison as a graph in which each region-period is

depicted by a vertex as shown in Figure 3 for the case of 9 quarters and 15 regions.

Multilateral spatial benchmarks for 2001(1), 2002(1) and 2003(1), calculated using the

Gini-EKS formula are represented by elongated ovals. If we try to combine more than

one multilateral spatial benchmark with chained temporal indexes, each bilateral com-

parison within the panel will be path dependent. For example, a comparison between

region-periods A-2001(1) and B-2002(4) in Figure 3 could be made by following a
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number of paths. Here we will consider just two. One path would entail linking a com-

parison between A-2001(1) and A-2002(4) with a comparison between A-2002(4) and

B-2002(4). A second path would link a comparison between A-2001(1) and B-2001(1)

with a comparison between B-2001(1) and B-2002(4). These two paths from A-2001(1)

to B-2002(4) will yield different answers.

Insert Figure 3 Here

To obtain an internally consistent set of panel results it is necessary that all cycles

are removed from the graph. This can be done in a number of ways (see Hill 2004).

One simple way of doing this is to use only one spatial benchmark. Three such methods

are depicted in Figure 4. An attractive feature of such methods is that they preserve

the chained temporal indexes. The temporal indexes are generally considered more

reliable than their spatial counterparts since they are probably less affected by omitted

variables bias. A disadvantage of the methods in Figure 4 is that the paths between

pairs of region-periods in the graph may become rather long. For example, suppose

we use the spatial benchmark in 2001(1), and thereafter extrapolate forward using the

chained temporal indexes. This would lead to some long paths between some pairs of

vertices in the graph. For example, a comparison between region-periods A-2006(1)

and B-2006(1) would follow the path: A-2006(1) → A-2005(1) → · · · → A-2001(1) →

B-2001(1) → B-2001(2) → · · · → B-2006(1). The problem with this is that longer

paths tend to cause the results to drift (due to the accumulation of errors). Also, the

results depend heavily on a single spatial benchmark.

For these reasons, we prefer to generate multiple sets of panel results using in

turn the spatial benchmarks for 2001(1), 2002(1) and 2003(1), as shown in Figure 4,

and, by extension, panel results using also the benchmarks for 2004(1), 2005(1) and

2006(1).20,21 This generates a total of six sets of panel results. We combine them

20As a consequence of our overlapping five-quarter blocks, we actually obtain two EKS spatial

benchmarks for the first quarter of each year (except 2001). We combine these benchmarks by taking

their geometric mean.
21We do not consider here the possibility of generating panel results from second, third or fourth

quarter spatial benchmarks.
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by taking a geometric mean to get our overall results. By construction, this method

preserves all the chained temporal indexes. All the adjustments required for internal

consistency are forced onto the less reliable spatial indexes. Also, it treats all regions

symmetrically, and likewise all spatial benchmarks symmetrically. One weakness of this

method, however, is that only the temporal indexes satisfy temporal fixity. That is, if a

new year of data is added to the data set, the results for bilateral comparisons involving

two regions will change.22

Insert Figure 4 Here

If temporal fixity is required, we recommend using the method described in Figure

5. This method combines multiple spatial benchmarks (at one year intervals) with

chained temporal indexes. Cycles in the graph are prevented by omitting the temporal

indexes for one quarter in each year for all except one link region. In Figure 5, region

C acts as the link region. Four different graphs are obtained depending on which

quarter each year is omitted (for all except the link region). The problem with each of

these graphs is that the excluded quarter introduces a structural break in the temporal

indexes. For example, in the top graph in Figure 5, the structural break will occur

in comparisons between the fourth quarter and the first quarter of the following year.

These breaks can be smoothed out by taking a geometric mean of the four sets of results.

To ensure that all regions are treated symmetrically, 15 sets of results are generated

using each region in turn as the link. The overall panel results treat all regions and

all quarters symmetrically. The main problem with this method is that it distorts the

temporal indexes. For this reason, except when temporal fixity is considered essential,

we prefer the method describe in Figure 4.

Insert Figure 5 Here

22Some ways of imposing temporal fixity are discussed in Hill (2004).
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5 An Application to Sydney, Australia (2001-6)

5.1 Regression results

The model for each period is estimated around 400 parameters. The estimated coef-

ficients with information on whether they are significant or not are provided in the

Appendix of Syed, Hill and Melser (2008). With only a few exceptions, the coefficients

of the models have the expected signs. Around 88 percent of the coefficients are found

to be significant at the 5 percent significance level. The coefficients are stable in the

sense that there are not large differences in the value of the characteristics, or in the

premium for living in a particular postcode, between periods. Although with all the

interaction terms it is difficult to determine the impact of each of the characteristics on

price, generally the impact is found to be in the expected direction. For example, units

are found to be cheaper than houses, more bedrooms and bathrooms add to the value

of a dwelling and the lot size is found to have a positive effect on the price (at a dimin-

ishing rate). In summary, the results are reasonably consistent with prior expectations

and are robust to sample periods.

We have conducted likelihood ratio tests to check whether groups of variables are

jointly significant. The log-likelihoods for each block of five quarters (or four quarters for

the final block) are given in Table 4. Likelihood ratio (LR) test statistics are provided

in Table 5. These statistics test one at a time a restriction against the most general

model. For example, if we impose a restriction that the coefficients of all region-quarter

dummies are zero, the LR test statistic is found to be 280.0 for the 2001(1)-2002(1)

model. The LR test statistics have χ2(k) distributions where k denotes the number of

parameter restrictions. The tests show that the most important variables as a group

are the postcodes. All the interaction terms are significant at the 1 percent level except

for one case where it is significant at the 5 percent level. This implies that the use of

the general model inclusive of interaction terms is justified.

Insert Table 4 Here

Insert Table 5 Here
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Table 6 provides tests for spatial dependence and heteroscedasticity. As antici-

pated, the prices of dwellings exhibit a very high degree of spatial dependence. We

regress each house price against the neighbors’ house prices (no other variables), where

neighbors are defined by a contiguity matrix constructed from a Delaunay triangulation

algorithm. We find that around 70 percent of the house prices can be explained by the

neighbors’ prices. We have conducted some further tests to see how much of the spatial

dependence is left out in the errors of the traditional hedonic model. Spatial dependence

is reduced when locational variables such as postcodes and regions are included in the

model. A further reduction is achieved when we account for spatial dependence explic-

itly in the model. However, around 20 percent of the spatial dependence still remains in

the error. This analysis points us to two important facts: (1) hedonic regression models

should take account of spatial dependence explicitly and (2) a simple spatial correction

(as we did in our study) might not be enough to account for all the spatial dependence

in the data.

Insert Table 6 Here

In order to check for the presence of heteroscedasticity, we conduct a Breusch-

Pagan (BP) test on the residuals of the standard OLS model (see the notes below Table

6 for a description of the model and the test statistics). The BP statistics which have

χ2(k) distribution were significant for all the periods, which prompted us to estimate

FGLS models.

The estimated model contains a lot of information including shadow prices of each

of the characteristics, how they differ across regions, and how they interact with each

other. Much of it is not our primary interest. Now we turn out attention to the resulting

indexes obtained from the estimated coefficients.

5.2 Price indexes for a panel of 15 regions and 24 quarters

The panel indexes, calculated using the method described in Figure 4, are reported in

Table 7 and their graphs are shown in Figure 6. These indexes can be used to make
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comparisons of prices across regions and time. The results are normalized such that

region A (Inner Sydney) is equal to 1.00 in the first quarter of 2001. The interpretation

of the numbers are that, for example, region N (Cronulla-Sutherland) in the first quarter

of 2001 had prices which were only 71 percent of those in region A (Inner Sydney)

in the same period, after controlling for physical and geo-spatial price determining

characteristics. Turning first to the spatial dimension, there is clearly a great deal of

disparity in the cost of housing across regions. A significant premium is being paid for

dwellings in region F (Mosman-Cremorne) and region B (Eastern Suburb) and to a

lesser extent in region C (Inner West). The results show that in the first quarter of

2001 the same dwelling in region D (Lower North Shore) would on average have cost a

little more than double that in region K (Fairfield-Liverpool).

Insert Table 7 Here

Insert Figure 6 Here

Such premiums have two potential interpretations. First, they can be thought of as

‘good’ or ‘bad’ deals. People in region K are getting more for their money than those in

expensive suburbs. This seems unlikely since these large price differentials persist over

time. A second explanation is that the premiums embody unmeasured characteristics,

reflecting everything that is left out of the hedonic function. That is, if we had access to

all price determining characteristics then we would not expect to find such systematic

premiums.

From Table 7 it can be seen that there are also quite significant differences in the

price trends across regions. From 2001 to 2006, prices rose most (53.3 percent) in region

O (Penrith-Windsor), and least (33.6 percent) in region F (Mosman-Cremorne).

5.3 A combined temporal index for the 15 regions

Our regional indexes can be combined to obtain an overall index for Sydney. We consider

two ways of doing this. The first index is obtained by taking the geometric mean of the
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indexes for each region as follows:

Ptv
Psu

=
K∏
k=1

(
Pktv
Pksu

)1/K

,

where s and t denote years, while u and v denote quarters. The second index is calcu-

lated by taking a weighted average where weights correspond to the number of housing

sales in the given period.23

Ptv
Psu

=
K∏
k=1

(
Pktv
Pksu

)wk,su,tv
,

where

wk,su,tv =
Hksu +Hktv∑K

j=1(Hjsu +Hjtv)
.

Both indexes depicted in Table 8 indicate that prices increased between the first quarter

of 2001 and the last quarter of 2003, after which they declined until the end of the

sample period (December 2006). This finding is consistent with the consensus view (see

Robertson 2006).

Insert Table 8 Here

In the period of increasing prices, both the hedonic indexes reported in Table 8 are

for the most part indistinguishable, exhibiting the same rate of price increase – about

50 percent in three years. When prices started decreasing, the first index exhibits a

faster rate of decrease than the weighted mean index. This indicates that the regions

with a higher volume of sales had a slower decline than the regions which had lower

sales.

Also included in Table 8, is the Australian Bureau of Statistics (ABS) house price

index for Sydney.24 The three indexes are graphed in Figure 7. Before considering the

difference in trends, we should point out some similarities. All the series indicate the

same ‘boom’ period for the housing market, from the first quarter of 2001 to fourth

quarter of 2003. The market has stabilized and started falling since then, which is

23We have also constructed an index by taking value weights and found it almost indistinguishable

from the index obtained using ‘number of sales’ weights.
24The series in ABS (2003) had a different base than the series in ABS (2007). We have changed

the base to link up the two series so as to allow a comparison with our series.
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again indicated by both the ABS and our hedonic indexes. Prices increased as much

as 50 percent in some regions between 2001 and 2003. Since then they have fallen only

slightly.

Insert Figure 7 Here

While the broad trends in our hedonic indexes and the ABS index are similar,

there are also important differences between the two sets of results. In particular, the

ABS index rose by more than 60 percent from 2001 to 2003, while our hedonic indexes

rose by only about 50 percent. The ABS indexes also fell more from 2003 onwards. In

fact, the fall in house prices after 2003 is only just discernable in our hedonic indexes in

Figure 7. Also, the ABS index seems to be more volatile. These differences can provide

interesting insights. The ABS index is a stratified median price index. The sample is

stratified based on location. Each strata (or cluster) consisting of houses of similar price

determining characteristics is formed using principal component analysis. The index

for a city is obtained by taking a weighted average of the ‘median price’ of each strata.

The ABS series includes only ‘project homes’ and ‘established houses’, essentially res-

idential dwellings on their own block of land.25 The ABS index excludes apartment

housing and high-rise buildings, and hence covers a narrower range of dwellings than

our indexes. The difference may be suggestive of the fact that established houses, as

defined by the ABS, behaved differently from the rest of the market. Alternative ex-

planations include differences in the source and scope of data, sampling methods and

methodological differences in compiling and calculating the indexes.

With regard to methodological differences, even if they start from identical data

sets, average price methods, such as the ABS stratified median method, and hedonic

methods may generate quite different results. If properly modelled, a hedonic method

reflects a ‘pure price’ change, abstracting from qualitative and compositional changes,

whereas an ‘average price’ method combines the two changes. In boom periods, the

premium from each additional attribute is expected to be higher. Therefore, it is likely

25See ABS (2005) for details on the ABS House Price Index and on some recent efforts to revamp

the series.
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that new dwellings that entered the market were increasingly of better quality (larger,

with more bedrooms and bathrooms) and old dwellings were renovated. This might also

explain the divergence between the ABS and our hedonic indexes. In the post-boom

period, the ABS index fell faster than our hedonic indexes. This is suggestive of the

fact that lower quality and/or smaller dwellings may have come on the market earlier.

5.4 Spatial indexes and convergence

Spatial indexes might be of interest for several reasons. For a given period, they provide

a ranking of the regions in terms of the value of houses. This has policy implications

because it indicates which civic amenities (such as parks, footpaths, shopping areas)

are valued most, providing guidance for future public expenditure, as well as providing

some indication of the degree of inequality of wealth. Spatial indexes can also shed light

on the extent of market segmentation and regional variations in the impact of business

cycles. This latter issue is particularly relevant here given that house prices peaked in

2003.

Spatial indexes obtained from equation (18) are provided in Table 9. From Table

9 it is clear that there are significant and systematic differences in prices across re-

gions. Prices in the most expensive region (Region B: Eastern Suburbs) are more than

three times higher than in the least expensive region (Region O: Penrith-Windsor) and,

though it narrowed slightly, the gap remained throughout the whole period of analysis.

Also, with few exceptions, the ranking of the regions remains the same over time.

Insert Table 9 Here

To investigate whether differences in price levels across regions are rising or falling

over time, we calculate σ-convergence coefficients for the 15 regions in each of the 24

quarters in our data set. σ-convergence measures the variance of the cross-section of

price parities and then examines whether this has declined or increased over time (see

for example Sala-i-Martin 1996). That is, we calculate and compare the following:

σ2
t =

1

K

K∑
k=1

[
ln(Pkt)− ln(P̄t)

]2
, ln(P̄t) =

1

K

K∑
k=1

ln(Pkt), t = 1, . . . , T. (19)

28



Applying this formula to the multilateral indexes in Table 7, we find a clear pattern

of convergence until early 2004 (when house prices were rising) followed by divergence

thereafter (when house prices were falling). The sigma convergence results are shown in

Table 10. The convergence turning point appears to lag the change in direction of the

housing market by one or two quarters. This association of the house price movement

and the measure of σ-convergence is illustrated graphically in Figure 8.

Insert Table 10 Here

Insert Figure 8 Here

One possible explanation for this finding is that a rise in house prices in the richest

regions triggered by a scarcity of housing in desirable locations (such as close to Sydney

Harbor) creating a perception that house prices were rising throughout Sydney, and

that this perception then became self-fulfilling. That is, price rises in poorer regions

were driven more by momentum than fundamentals, as compared with richer regions.

When the market started to decline, it follows that prices in the poorer regions fell

more. It remains to be seen whether similar patterns are observed in other cities.

6 Conclusion

In this study we have constructed panel price indexes for 15 regions in Sydney, Australia

over 24 quarters using a hedonic regression model. Our hedonic model is flexible in that

it includes interaction terms, and allows the shadow prices on characteristics to evolve

over time. The latter is achieved by breaking the comparison up into blocks and then

using innovative methods to splice the blocks together. We also account for missing

characteristics, spatial correlation and heteroscedasticity, all of which are prevalent in

housing data sets. In particular, ours is the first study to apply the multiple-imputation

method to the missing-data problem in a housing context.

The model performed well in terms of the economic and statistical significance

of the parameters. The likelihood ratio tests on groups of variables show that the

interaction between characteristics and regions is significant indicating that the inclusion
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of interaction terms is justified.

Our hedonic house price indexes rose significantly from 2001 to 2003, after which

they fell slightly. This finding is consistent with the official Australian Bureau of Statis-

tics (ABS) index. Our indexes, however, are less volatile than their ABS counterpart,

rising noticeably less in the boom and falling less thereafter. We discuss some possible

causes of these differences. In the spatial dimension, we find large and systematic dif-

ferences in the price of housing across regions. The regional dispersion narrowed during

the boom period but appears to have increased again since then. It remains to be seen

whether a similar pattern will be observed in other cities.

House price indexes are important since many consumers and investors, and also

government, in some way or another are tied to the housing market. They are also an

important input into the overall measure of inflation. In addition to providing a better

measure of ‘pure price’ change over time in the housing market, our study also considers

regional variations. Our findings may have policy implications for macroeconomic man-

agement and resource allocation at the regional level. Finally, although the focus was

on the housing market, our methodology may also be usefully applied in other markets

requiring qualitative and compositional adjustments.
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Table 1: Some Summary Information of Dwelling Prices

Number of Price (Australian $)
Observations Mean Median Std Dev.

Full sample 418,877 527,095 422,000 381,045

By type of dwelling:
Houses 222,033 602,863 495,000 413,377
Units 196,844 441,631 370,000 320,069

By bedroom counts:
1 18,551 341,416 318,000 183,830
2 80,616 449,471 400,000 253,006
3 94,628 594,382 500,000 370,982
4 42,853 775,097 638,000 490,237
5 & above 11,735 988,669 800,000 627,499

By year:
2001 80,233 431,064 350,000 322,896
2002 85,881 493,967 400,000 352,098
2003 80,741 551,110 445,000 387,192
2004 59,194 574,326 462,500 398,391
2005 58,187 572,320 460,000 403,375
2006 54,641 585,360 465,000 417,474

By region:
A 33,484 537,063 435,000 393,578
B 34,432 785,706 595,000 566,461
C 24,788 598,312 525,000 340,999
D 23,973 717,292 580,000 466,254
E 22,291 707,260 625,000 399,452
F 9,561 838,470 592,000 636,903
G 24,354 694,801 595,000 442,679
H 24,248 559,706 518,000 300,293
I 35,818 452,371 377,000 308,421
J 32,033 407,387 369,000 330,000
K 39,110 336,580 320,000 190,154
L 17,555 348,669 325,000 185,112
M 34,209 443,500 403,000 215,871
N 25,715 548,257 480,000 323,908
O 37,306 312,076 299,000 133,583

Notes: (1) Because of missing data, the number of observations by bedroom counts does not add up

to the total sample.

(2) A=Inner Sydney, B=Eastern Suburbs, C=Inner West, D=Lower North Shore, E=Upper

North Shore, F=Mosman-Cremorne, G=Manly-Warringah, H=North Western, I=Western Suburbs,

J=Parramatta Hills, K=Fairfield-Liverpool, L=Canterbury-Bankstown, M=St George, N=Cronulla-

Sutherland & O=Penrith-Windsor.
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Table 2: Percentage of Missing Data

% of Observations Missing the Attribute(s):
Bed Bath Bed & Bed or Bath

Bath or lot size
Full sample 40.7 58.4 40.5 58.8

By type of dwelling:
Houses 33.3 53.1 33.3 53.6
Units 49.0 64.3 48.7 64.6

By bedroom counts:
1 n.a 30.4 n.a 30.5
2 n.a 34.0 n.a 34.3
3 n.a 31.1 n.a 31.6
4 n.a 22.7 n.a 23.2
5 & above n.a 21.6 n.a 22.2

By year:
2001 46.6 69.3 46.4 69.6
2002 48.8 68.5 48.7 68.8
2003 45.6 65.4 45.4 65.7
2004 39.5 61.6 39.3 62.0
2005 31.6 41.6 31.4 42.1
2006 23.1 30.4 22.8 31.3

By region:
A 56.6 37.3 55.5 68.6
B 23.3 40.3 23.0 41.0
C 26.2 44.8 25.9 45.5
D 33.3 48.4 33.1 49.0
E 25.7 43.5 25.7 43.8
F 23.6 40.4 23.4 40.8
G 29.4 49.5 29.3 49.8
H 28.5 50.8 28.4 51.0
I 43.2 62.3 43.2 62.6
J 51.2 62.9 51.2 63.1
K 59.0 73.2 59.0 73.4
L 49.9 71.6 49.9 71.9
M 34.7 64.6 34.6 64.9
N 35.9 62.9 35.9 63.4
O 59.3 68.2 59.2 68.4

Note: In the case of many units, the available lot size information was for the whole floor the unit

belonged to rather than only for that particular unit. Therefore lot size data was not used for units.

However, they were not considered as missing. For houses, only 2150 observations had missing lot size.
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Table 3: Percentage of Missing Data in the Most and Least Expensive Postcodes

Postcodes Median Price Observations % of Observations Missing
(’000 $) the Attribute(s):

Bed Bath Bed & Bed or Bath
Bath or lot size

Least Expensive 5:
2195 205 3254 47.8 75.2 47.7 75.4
2770 231 5656 50.9 59.2 50.8 59.4
2166 242 5254 71.2 86.5 71.2 86.7
2163 248 652 60.0 79.6 59.8 79.8
2760 251 3305 45.6 61.2 45.5 61.5

Most Expensive 5:
2071 935 1233 11.9 25.9 11.8 26.0
2030 950 1486 19.7 35.3 19.6 35.8
2069 950 1282 13.9 30.0 13.9 30.3
2063 1050 756 19.3 33.9 19.0 34.1
2108 1170 343 23.0 37.9 23.0 38.2

Table 4: Log Likelihoods of the Estimated Equations

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Observations 96837 100913 91067 70285 70756 54172
Parameters 404 404 404 404 404 389
Log Likelihood 443×103 470×103 419×103 314×103 313×103 232×103
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Table 5: Likelihood Ratio Tests

Restrictions No.Param Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
in Variables Restrict
Postcodes 175 10155.0 8478.4 7838.2 5815.9 6737.8 6631.0
Region-Quarter 56 280.0 401.4 253.8 185.3 155.7 124.9

All interactions
with characteristics 144 6148.0 7028.0 7355.5 5319.8 5902.0 3787.2

Region-Dwell type 14 279.0 316.1 429.3 368.6 338.5 197.5
Region-Bedroom 56 587.0 585.3 540.6 472.9 530.5 442.8
Region-Bathroom 42 643.0 573.1 606.5 539.5 475.4 304.3
Region-Lot size 14 234.0 147.0 158.7 74.9 125.3 138.9

Dwelling type-Bed 4 85.0 207.3 157.2 132.6 303.8 107.5
Dwelling type-Bath 3 207.0 381.5 400.5 159.7 183.6 100.6
Bedroom-Lot size 4 46.0 22.5 27.2 39.4 42.5 15.3
Bathroom-Lot size 3 71.0 91.4 72.6 36.3 39.7 15.2
Bedroom-Bathroom 4 12.0 28.1 43.2 42.3 33.2 50.2

Notes: (1) The log-likelihood ratios test against the model specified in equation 7 have χ2(k) distribu-

tion where k is the number of parameter restrictions imposed on the model. All the model restrictions

are found to be binding at the 1% significance level except for the bedroom-bathroom interaction terms

in period 1 which are jointly significant at the 5% level.

(2) The parameter restrictions for the region-quarter interaction terms are 42 for period 6.
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Table 6: Spatial Correlation and Heteroscedasticity Tests

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Spatial Correlation Tests:

On Observed Dwelling Price 0.73 0.68 0.67 0.66 0.68 0.69

On Residuals from Models:
Model a 0.43 0.40 0.38 0.38 0.40 0.39
Model b 0.34 0.33 0.32 0.30 0.31 0.29
Model c 0.11 0.22 0.20 0.19 0.19 0.18

Spatial Correlation
Coefficient in Model c (λ̂) 0.29 0.27 0.26 0.25 0.26 0.23

Breusch-Pagan(BP) F Stat.: 41 39 56 50 45 52

Notes: (1) Model a: A traditional hedonic model without consideration of spatial heterogeneity or

the possibilities for the existence of sub-markets across spatial dimensions. This model excludes the

postcode and region dummies, and any interactions with them, from equation (7). Additionally, it

does not account for spatial correlation.

(2) Model b: It includes the postcode and region dummies and interactions with them. It does not

account for spatial correlation.

(3) Model c: The model specified in equation (7).

(4) All the BP F Statistics are significant at the 1% level.
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Table 7: Panel House Price Indexes for Sydney by Region

Quarter/ A B C D E F G H I J K L M N O
Region

2001 Q1 1.00 1.36 1.23 0.98 0.68 1.31 0.82 0.61 0.74 0.56 0.47 0.54 0.65 0.71 0.45
Q2 1.09 1.44 1.30 1.06 0.71 1.39 0.87 0.67 0.80 0.59 0.50 0.57 0.72 0.72 0.46
Q3 1.15 1.54 1.39 1.08 0.75 1.40 0.93 0.70 0.84 0.61 0.52 0.61 0.73 0.74 0.49
Q4 1.16 1.53 1.39 1.11 0.78 1.48 0.99 0.72 0.89 0.64 0.56 0.64 0.77 0.78 0.52

2002 Q1 1.19 1.58 1.38 1.12 0.80 1.55 1.01 0.75 0.94 0.67 0.59 0.68 0.79 0.81 0.55
Q2 1.27 1.68 1.50 1.20 0.83 1.53 1.04 0.81 1.00 0.70 0.64 0.71 0.84 0.86 0.58
Q3 1.25 1.75 1.51 1.22 0.87 1.58 1.05 0.83 1.04 0.75 0.68 0.76 0.89 0.87 0.61
Q4 1.28 1.72 1.59 1.24 0.89 1.54 1.09 0.85 1.07 0.78 0.72 0.78 0.89 0.92 0.64

2003 Q1 1.26 1.81 1.55 1.28 0.89 1.58 1.11 0.84 1.12 0.79 0.75 0.78 0.91 0.95 0.65
Q2 1.32 1.84 1.66 1.28 0.92 1.68 1.13 0.90 1.13 0.81 0.76 0.81 0.93 0.97 0.68
Q3 1.33 1.92 1.75 1.33 0.98 1.71 1.17 0.93 1.14 0.86 0.80 0.87 1.00 1.03 0.72
Q4 1.37 1.90 1.70 1.31 0.99 1.70 1.21 0.95 1.19 0.89 0.82 0.89 1.01 1.05 0.75

2004 Q1 1.34 1.87 1.70 1.28 0.98 1.70 1.18 0.94 1.15 0.88 0.83 0.86 1.00 1.06 0.76
Q2 1.36 1.80 1.67 1.24 0.96 1.62 1.17 0.92 1.12 0.86 0.82 0.87 0.98 1.02 0.75
Q3 1.37 1.86 1.68 1.30 0.98 1.64 1.17 0.91 1.14 0.85 0.82 0.87 0.97 0.99 0.75
Q4 1.35 1.87 1.66 1.37 0.98 1.68 1.20 0.93 1.15 0.84 0.82 0.85 0.96 1.01 0.76

2005 Q1 1.44 1.88 1.65 1.35 0.97 1.75 1.18 0.90 1.12 0.83 0.80 0.83 0.95 1.00 0.75
Q2 1.37 1.81 1.68 1.31 0.96 1.75 1.18 0.91 1.16 0.86 0.81 0.88 0.94 0.99 0.73
Q3 1.34 1.84 1.64 1.30 0.96 1.71 1.18 0.90 1.09 0.81 0.77 0.83 0.93 0.97 0.72
Q4 1.36 1.83 1.70 1.29 0.98 1.77 1.20 0.88 1.10 0.81 0.76 0.83 0.93 0.96 0.72

2006 Q1 1.38 1.81 1.68 1.29 0.97 1.74 1.18 0.90 1.10 0.81 0.75 0.80 0.92 0.97 0.72
Q2 1.38 1.86 1.71 1.33 0.98 1.82 1.17 0.91 1.08 0.81 0.75 0.80 0.92 0.97 0.71
Q3 1.33 1.88 1.68 1.33 0.97 1.77 1.22 0.89 1.08 0.80 0.72 0.77 0.93 0.95 0.72
Q4 1.38 1.91 1.71 1.31 0.99 1.75 1.25 0.90 1.05 0.80 0.70 0.76 0.91 0.96 0.69

Total
Change(%) 38.0 40.4 39.0 33.7 45.6 33.6 52.4 47.5 41.9 42.9 48.9 40.7 40.0 35.2 53.3
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Table 8: Temporal Price Indexes for Sydney

Quarters Calculated from Panel Indexes Reported in Table 7 ABS
Geometric Mean Weighted Mean Index

2001 Q1 1.00 1.00 1.00
Q2 1.06 1.06 1.03
Q3 1.11 1.12 1.09
Q4 1.16 1.16 1.15

2002 Q1 1.20 1.20 1.20
Q2 1.26 1.28 1.29
Q3 1.31 1.32 1.35
Q4 1.34 1.36 1.40

2003 Q1 1.37 1.36 1.42
Q2 1.41 1.41 1.48
Q3 1.47 1.47 1.56
Q4 1.50 1.50 1.62

2004 Q1 1.48 1.50 1.61
Q2 1.45 1.47 1.55
Q3 1.46 1.47 1.54
Q4 1.47 1.48 1.55

2005 Q1 1.46 1.49 1.51
Q2 1.46 1.49 1.49
Q3 1.43 1.45 1.47
Q4 1.43 1.46 1.48

2006 Q1 1.43 1.46 1.47
Q2 1.44 1.46 1.49
Q3 1.42 1.45 1.50
Q4 1.42 1.45 1.50

Total
Change(%) 42.1 45.1 50.2

Table 9: Spatial Price Indexes for Sydney

Quarter/ A B C D E F G H I J K L M N O
Region

2001 Q1 1.00 1.36 1.23 0.98 0.68 1.31 0.82 0.61 0.74 0.56 0.47 0.54 0.65 0.71 0.45
2002 Q1 1.00 1.33 1.17 0.95 0.68 1.31 0.86 0.64 0.79 0.56 0.50 0.57 0.67 0.69 0.46
2003 Q1 1.00 1.43 1.22 1.01 0.70 1.25 0.87 0.67 0.89 0.62 0.59 0.62 0.72 0.75 0.52
2004 Q1 1.00 1.39 1.27 0.96 0.73 1.27 0.88 0.70 0.86 0.66 0.62 0.64 0.75 0.79 0.57
2005 Q1 1.00 1.31 1.14 0.93 0.67 1.22 0.82 0.62 0.78 0.58 0.56 0.58 0.66 0.70 0.52
2006 Q1 1.00 1.31 1.22 0.94 0.70 1.26 0.86 0.65 0.79 0.59 0.54 0.58 0.67 0.70 0.52
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Table 10: Estimates of σ Convergence

Quarter Variance Quarter Variance
2001 Q1 0.1208 2004 Q1 0.0728

Q2 0.1248 Q2 0.0695
Q3 0.1228 Q3 0.0748
Q4 0.1143 Q4 0.0773

2002 Q1 0.1065 2005 Q1 0.0851
Q2 0.1030 Q2 0.0788
Q3 0.0951 Q3 0.0846
Q4 0.0867 Q4 0.0896

2003 Q1 0.0870 2006 Q1 0.0900
Q2 0.0892 Q2 0.0967
Q3 0.0833 Q3 0.0981
Q4 0.0746 Q4 0.1044
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Figure 1: Distribution of Dwelling Prices Before and After Exclusion of Extreme Ob-

servations

 

 
 
 

 
 
Notes: (1) Observations excluded are: (i) top and bottom 1 per cent of the distribution of prices, 
(ii) top and bottom 1 per cent of the distribution of lot size, (iii) dwellings with more than 10  
bedrooms and (iv) dwellings with more than 8 bathrooms. 
(2) The smooth curves drawn on the histogram for price levels are the normal kernel density 
functions estimated from the data. Kernel density estimation is a non-parametric technique 
that averages a kernel function across observations with pre-specified bandwidth to create  
a smooth approximation of the distribution. 
(3) In each of the histograms for the logarithm of prices, there is an additional smooth curve 
(lighter of the two in each diagram). These are the normal curves with means and standard  
deviations obtained from the empirical distributions. 
 

43



Figure 2: Spatial Dependence of Prices of Dwellings

Dwelling Prices and Distance to CBD
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. 3 bed 2 bath houses
• 2 bed 1 bath units

Dwelling Prices and Distance to Sea Beach

Distance

P
ri
c
e
 (

$
)

0.0 0.01 0.02 0.03 0.04

4
*
1
0
^
5

8
*
1
0
^
5

1
.2

*
1
0
^
6
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Figure 3: The Path Dependence Problem in Panel Comparisons
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Note: The Residex regions used are: A=Inner Sydney, B=Eastern Suburbs, C=Inner West, D=Lower

North Shore, E=Upper North Shore, F=Mosman-Cremorne, G=Manly-Warringah, H=North Western,

I=Western Suburbs, J=Parramatta Hills, K=Fairfield-Liverpool, L=Canterbury-Bankstown, M=St

George, N=Cronulla-Sutherland, Campbelltown, O=Penrith-Windsor.
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Figure 4: Panel Comparisons That Use A Single Spatial Benchmark
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Figure 5: Panel Comparisons That Use Spatial Benchmarks at One-Year Intervals

Linked Through Region C
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Figure 6: House Price Indexes for Sydney by Region 
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Figure 7: Temporal Price Indexes for Sydney 
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Figure 8: σ-Convergence Results 
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 51

     Appendix table 1: Estimated Coefficients from Equation
(7) in Six Periods

Variables Period1 Period2 Period3 Period4 Period5 Period6
Intercept 9.0987 ┴ 9.5678 9.7711 9.9082 9.8815 10.2320
Time Qtr2 0.0843 0.0675 0.0441 0.0157 -0.0498 -0.0038
Dummies Qtr3 0.1413 0.0501 0.0484 0.0241 -0.0745 -0.0360
(Base:Qtr1) Qtr4 0.1515 0.0770 0.0830 0.0081 -0.0558 -0.0006

Qtr5 0.1701 0.0644 0.0578 0.0729 -0.0423 -

Regions B -0.2681 -0.2400 -0.2088 -0.1299 -0.3351 -0.3895
(Base:Region A) C -0.0543 ┴ -0.0698 -0.0622 -0.0179 -0.1219 -0.0260

D -0.0253 ┴ -0.0260 ┴ -0.0484 -0.0064 -0.0566 -0.0476
E -0.1037 -0.1680 -0.1763 -0.0890 -0.2382 -0.1707
F 0.1869 0.1346 0.1701 0.2099 0.0840 0.0814
G 0.1201 0.1354 0.1881 0.2350 0.1744 0.2514
H -0.4266 -0.3580 -0.3970 -0.3417 -0.4530 -0.4869
I -0.5445 -0.4913 -0.4360 -0.4065 -0.5786 -0.6355
J -0.4552 -0.5425 -0.5171 -0.3134 -0.4915 -0.4899
K -0.5982 -0.6695 -0.5749 -0.5258 -0.6744 -0.6836
L -0.3826 -0.4230 -0.3679 -0.3086 -0.4955 -0.5318
M -0.2606 -0.2726 -0.2389 -0.2150 -0.3548 -0.3537
N -0.3559 -0.4088 -0.3585 -0.3230 -0.4413 -0.4383
O -0.6800 -0.7278 -0.6964 -0.6567 -0.7530 -0.7599

Time- Region Qtr2-B -0.0253 ┴ -0.0067 ┴ -0.0236 -0.0510 0.0103 0.0323
Inter. Dummies Qtr2-C -0.0283 ┴ 0.0156 ┴ 0.0282 -0.0359 0.0730 0.0198

Qtr2-D -0.0068 ┴ -0.0057 ┴ -0.0437 -0.0503 0.0241 0.0276
Qtr2-E -0.0427 -0.0312 ┴ -0.0090 -0.0348 0.0459 0.0183
Qtr2-F -0.0242 ┴ -0.0817 0.0165 -0.0633 0.0448 0.0472
Qtr2-G -0.0217 ┴ -0.0396 -0.0250 -0.0259 0.0458 -0.0050
Qtr2-H 0.0007 ┴ -0.0013 ┴ 0.0222 -0.0398 0.0645 0.0160
Qtr2-I -0.0105 ┴ -0.0083 ┴ -0.0406 -0.0444 0.0806 -0.0118
Qtr2-J -0.0460 -0.0132 ┴ -0.0152 -0.0432 0.0768 -0.0044
Qtr2-K -0.0257 ┴ 0.0181 ┴ -0.0298 -0.0254 0.0606 0.0055

Qtr2-L -0.0387 -0.0246 ┴ -0.0158 -0.0054 0.1088 0.0027
Qtr2-M 0.0107 ┴ -0.0129 ┴ -0.0145 -0.0388 0.0377 0.0082
Qtr2-N -0.0673 -0.0180 ┴ -0.0239 -0.0536 0.0322 0.0045
Qtr2-O -0.0458 -0.0096 ┴ -0.0073 -0.0229 0.0349 -0.0106
Qtr3-B -0.0150 ┴ 0.0525 0.0145 -0.0299 0.0494 0.0753
Qtr3-C -0.0181 ┴ 0.0357 0.0774 -0.0360 0.0737 0.0321

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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  Appendix table 1: Estimated Coefficients in Six Periods
    (continued)

Qtr3-D -0.0485 0.0305 ┴ -0.0142 -0.0151 0.0432 0.0655
Qtr3-E -0.0357 0.0269 ┴ 0.0434 -0.0313 0.0701 0.0415
Qtr3-F -0.0795 -0.0301 ┴ 0.0302 -0.0577 0.0501 0.0490
Qtr3-G -0.0199 ┴ -0.0156 ┴ 0.0083 -0.0322 0.0757 0.0636
Qtr3-H -0.0031 ┴ 0.0481 0.0541 -0.0511 0.0690 0.0291
Qtr3-I -0.0191 ┴ 0.0525 -0.0299 -0.0385 0.0465 0.0202
Qtr3-J -0.0579 0.0641 0.0416 -0.0605 0.0433 0.0164
Qtr3-K -0.0430 0.0916 0.0164 -0.0367 0.0360 0.0037
Qtr3-L -0.0223 ┴ 0.0636 0.0597 -0.0197 0.0690 -0.0045
Qtr3-M -0.0260 ┴ 0.0635 0.0515 -0.0540 0.0516 0.0476
Qtr3-N -0.0936 0.0194 ┴ 0.0270 -0.0869 0.0400 0.0169
Qtr3-O -0.0437 0.0491 0.0432 -0.0358 0.0438 0.0310
Qtr4-B -0.0303 0.0094 ┴ -0.0316 -0.0092 0.0244 0.0573
Qtr4-C -0.0305 ┴ 0.0613 0.0113 -0.0374 0.0855 0.0154
Qtr4-D -0.0283 ┴ 0.0202 ┴ -0.0631 0.0600 0.0123 0.0111
Qtr4-E -0.0121 ┴ 0.0309 ┴ 0.0189 -0.0119 0.0662 0.0246
Qtr4-F -0.0310 ┴ -0.0850 -0.0119 -0.0182 0.0655 0.0055
Qtr4-G 0.0308 ┴ -0.0072 ┴ 0.0040 0.0068 0.0712 0.0565
Qtr4-H 0.0088 ┴ 0.0376 0.0407 -0.0182 0.0314 0.0029
Qtr4-I 0.0298 0.0579 -0.0218 -0.0143 0.0352 -0.0413
Qtr4-J -0.0265 ┴ 0.0767 0.0456 -0.0654 0.0290 -0.0109
Qtr4-K 0.0178 ┴ 0.1188 0.0092 -0.0242 -0.0009 ┴ -0.0621
Qtr4-L 0.0096 ┴ 0.0650 0.0488 -0.0200 0.0490 -0.0437
Qtr4-M 0.0149 ┴ 0.0379 0.0263 -0.0460 0.0354 -0.0134
Qtr4-N -0.0451 0.0414 0.0147 -0.0577 0.0148 -0.0097
Qtr4-O -0.0088 ┴ 0.0774 0.0472 -0.0132 0.0239 -0.0369
Qtr5-B -0.0207 ┴ 0.0710 -0.0236 -0.0650 0.0012 ┴ -
Qtr5-C -0.0510 0.0462 0.0396 -0.1082 0.0657 -
Qtr5-D -0.0338 0.0668 -0.0560 -0.0256 0.0030 -
Qtr5-E -0.0013 ┴ 0.0387 0.0416 -0.0917 0.0431 -
Qtr5-F -0.0024 ┴ -0.0461 ┴ 0.0142 -0.0407 0.0360 -
Qtr5-G 0.0408 0.0217 ┴ 0.0065 -0.0704 0.0443 -
Qtr5-H 0.0386 0.0460 0.0505 -0.1148 0.0422 -

Qtr5-I 0.0605 0.1144 -0.0300 -0.0983 0.0177 -
Qtr5-J -0.0043 ┴ 0.1011 0.0595 -0.1314 0.0158 -
Qtr5-K 0.0555 0.1718 0.0494 -0.1098 -0.0280 -
Qtr5-L 0.0535 0.0800 0.0377 -0.1062 -0.0036 -
Qtr5-M 0.0275 ┴ 0.0668 0.0412 -0.1206 0.0060 -
Qtr5-N -0.0252 ┴ 0.0905 0.0496 -0.1278 0.0112 -
Qtr5-O 0.0340 0.1121 0.0918 -0.0922 0.0058 -

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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Appendix table 1: Estimated Coefficients in Six Periods
(continued)

Postcodes 2000 0.1961 0.1747 0.1640 0.1074 0.1252 0.1576
2007 -0.0141 ┴ 0.0854 -0.0272 -0.1382 -0.0922 -0.1884
2008 -0.1182 -0.1010 -0.1001 -0.1101 -0.0744 -0.1275
2009 0.0861 0.0890 0.0403 -0.0157 -0.0137 0.0379
2011 0.0070 ┴ 0.0603 0.0845 0.0667 0.1013 0.1621
2015 -0.0865 -0.0310 -0.0443 -0.1294 -0.1351 -0.1195
2016 -0.1423 -0.1287 -0.0997 -0.1832 -0.1237 -0.1437
2017 -0.0471 -0.0348 -0.0275 -0.0664 -0.0861 -0.1042
2018 -0.2213 -0.2029 -0.1992 -0.3169 -0.2653 -0.3047
2019 -0.2177 -0.1795 -0.1650 -0.1826 -0.1968 -0.2115
2020 -0.2723 -0.2795 -0.1552 -0.2144 -0.1537 -0.1516
2021 0.4453 0.4075 0.3663 0.3639 0.4967 0.5370
2022 0.3789 0.3625 0.3328 0.3655 0.4269 0.4443
2023 0.4498 0.4954 0.4585 0.4783 0.5524 0.5442
2024 0.3730 0.3685 0.4052 0.3710 0.4686 0.5093
2025 0.5686 0.5083 0.4813 0.4618 0.5587 0.5843
2026 0.4155 0.3751 0.4167 0.4372 0.4720 0.5192
2027 0.6120 0.6173 0.5688 0.7010 0.7011 0.7246
2028 0.5434 0.5224 0.5406 0.5435 0.5699 0.6158
2029 0.4866 0.4758 0.4318 0.4450 0.4853 0.5352
2030 0.4319 0.4018 0.3710 0.4314 0.4555 0.5125
2031 0.3326 0.3408 0.3289 0.3313 0.3898 0.4481
2032 0.1900 0.1745 0.1432 0.1189 0.1798 0.2113
2033 0.1950 0.2769 0.2415 0.2759 0.2815 0.3236
2034 0.4218 0.3896 0.3843 0.3937 0.4468 0.4929
2035 0.2181 0.2418 0.2316 0.2365 0.2618 0.2469
2037 0.0404 ┴ -0.0111 ┴ 0.0667 0.0091 -0.0356 -0.0720
2038 -0.0123 ┴ -0.0381 ┴ -0.0562 -0.0133 -0.0370 -0.0442
2039 0.0633 0.0143 ┴ 0.0148 0.0228 0.0212 0.0281
2040 -0.0939 -0.0916 -0.0446 -0.0664 -0.0834 -0.1347
2041 0.1366 0.1374 0.1245 0.1373 0.1196 0.0804
2042 -0.1292 -0.1329 -0.1531 -0.1260 -0.1235 -0.1810
2043 -0.0654 -0.0854 -0.0647 -0.0383 -0.0443 -0.1106
2044 -0.2946 -0.3196 -0.3010 -0.2541 -0.2917 -0.3274
2045 -0.2291 -0.1687 -0.1522 -0.1872 -0.1117 -0.0944
2046 -0.0899 -0.0095 ┴ -0.0069 -0.0828 -0.0566 -0.0846
2047 0.0276 ┴ 0.0537 0.0731 0.0445 0.0240 0.0488
2048 -0.1584 -0.1284 -0.1141 -0.1154 -0.1332 -0.1567
2049 -0.2102 -0.1592 -0.1224 -0.1490 -0.1762 -0.2182
2060 0.3311 0.2570 0.3067 0.2713 0.2583 0.2889

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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    Appendix table 1: Estimated Coefficients in Six Periods
(continued)

2061 0.5000 0.4906 0.5616 0.4987 0.5062 0.4394
2062 0.1910 0.2178 0.2457 0.2315 0.1808 0.2010
2063 0.1925 0.2171 0.2475 0.1839 0.1678 0.1948
2064 0.1151 0.1192 0.1145 0.1056 0.1143 0.1013
2065 0.1640 0.1849 0.2237 0.2014 0.1506 0.1409
2066 0.0122 ┴ 0.0104 ┴ 0.0652 0.0392 0.0000 ┴ -0.0063
2067 0.0435 0.0925 0.1285 0.1052 0.0748 0.0477
2068 0.0527 0.0715 0.0909 0.0459 0.0571 0.0570
2070 0.1609 0.1464 0.1787 0.1826 0.1972 0.2214
2071 0.1948 0.1711 0.1514 0.1739 0.1796 0.1601
2072 0.1718 0.1473 0.1323 0.1057 0.1344 0.1711
2073 0.0549 0.0394 ┴ 0.0817 0.0423 0.0729 0.0881
2074 0.0189 ┴ 0.0309 ┴ 0.0307 0.0407 0.0328 0.0622
2075 0.0006 ┴ 0.0098 ┴ 0.0361 0.0292 0.0563 0.0374
2076 -0.0355 ┴ -0.0358 ┴ -0.0411 -0.0508 -0.0449 -0.0311
2077 -0.1016 -0.1101 -0.1292 -0.1494 -0.1253 -0.1698
2079 -0.2172 -0.2619 -0.2400 -0.2788 -0.2244 -0.2759
2080 -0.2969 -0.4438 -0.2860 -0.2984 -0.2946 -0.3273
2081 -0.2395 -0.2752 -0.2512 -0.1998 -0.2206 -0.2484
2082 -0.2628 -0.2858 -0.2512 -0.2531 -0.2542 -0.2874
2083 -0.1186 -0.0785 ┴ -0.1344 -0.2094 -0.1087 -0.1492
2084 -0.0308 ┴ 0.0672 ┴ 0.0690 0.0245 0.0112 0.0533
2085 -0.0342 ┴ -0.0888 -0.0211 -0.0331 -0.0602 -0.0620
2086 -0.0156 ┴ -0.0031 ┴ 0.0064 -0.0231 -0.0124 -0.0319
2088 0.0058 ┴ 0.0272 ┴ 0.0290 0.0160 0.0473 0.0342
2089 -0.0206 ┴ -0.0144 ┴ 0.0055 -0.0442 -0.0399 -0.0318
2092 -0.0358 ┴ -0.0040 ┴ -0.0293 -0.1252 -0.1680 -0.1616
2094 0.0260 ┴ 0.0266 ┴ 0.0588 -0.0103 -0.0492 -0.0326
2095 0.1197 0.1644 0.1636 0.0808 0.0758 0.0798
2096 -0.0902 -0.0435 ┴ -0.0557 -0.1014 -0.1423 -0.1804
2097 -0.1524 -0.1179 -0.1716 -0.2313 -0.2599 -0.2364
2099 -0.1929 -0.1760 -0.2151 -0.2726 -0.3171 -0.3358
2100 -0.2862 -0.2710 -0.3176 -0.3665 -0.3779 -0.3908
2101 -0.2014 -0.1350 -0.1704 -0.2494 -0.2859 -0.2828
2102 -0.2924 -0.2849 -0.3800 -0.3457 -0.3916 -0.5319
2103 -0.1807 -0.1447 -0.1919 -0.1899 -0.2466 -0.2614
2106 -0.1642 -0.1565 -0.1354 -0.2229 -0.2299 -0.2687
2107 -0.1970 -0.1727 -0.2191 -0.2483 -0.2762 -0.2837
2110 0.5276 0.5222 0.5400 0.5584 0.5655 0.5941
2111 0.3773 0.3198 0.3011 0.3436 0.3772 0.3810

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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   Appendix table 1: Estimated Coefficients in Six Periods
(continued)

2112 0.1988 0.1767 0.1960 0.1669 0.1945 0.2001
2113 0.1812 0.2032 0.1798 0.1794 0.2116 0.1999
2114 0.0879 0.1592 0.1892 0.1458 0.1899 0.1763
2115 -0.0160 ┴ -0.0328 ┴ 0.0005 ┴ 0.0101 0.0435 0.0069
2116 0.0363 ┴ 0.1345 0.3093 0.0028 ┴ -0.0016 ┴ 0.0087 ┴
2117 0.0265 ┴ 0.0302 ┴ 0.0638 0.0663 0.0555 0.0251
2118 0.0308 ┴ 0.0345 ┴ 0.0498 0.0574 0.0325 0.0049
2119 0.1663 0.1815 0.1813 0.2012 0.1937 0.1792
2120 0.0550 0.0395 0.0830 0.0718 0.0565 0.0324
2121 0.1748 0.1891 0.2067 0.2007 0.1911 0.2008
2125 0.0395 0.0607 0.0905 0.0973 0.0573 0.0246
2127 0.3585 0.3308 0.3107 0.3015 0.2815 0.3809
2128 -0.0222 ┴ 0.0506 ┴ 0.0748 0.0943 0.1339 0.1549
2130 0.2863 0.2543 0.2967 0.2646 0.2868 0.4118
2131 0.2423 0.2035 0.2228 0.1905 0.2011 0.3138
2132 0.3271 0.2783 0.3091 0.2685 0.3028 0.4004
2133 0.1870 0.1620 0.1732 0.1808 0.1744 0.2558
2134 0.3686 0.3331 0.2907 0.2622 0.2817 0.3668
2135 0.3682 0.3484 0.3488 0.3133 0.3081 0.4123
2136 0.2309 0.1969 0.2245 0.2185 0.1876 0.2352
2137 0.4605 0.4130 0.4167 0.4095 0.3763 0.4825
2138 0.3273 0.3055 0.3641 0.3169 0.2885 0.3490
2139 0.0633 0.0143 ┴ 0.0148 0.0228 0.0212 0.0281
2140 0.2286 0.2582 0.2387 0.2104 0.1813 0.2724
2141 0.0479 0.0679 0.0441 0.0343 0.0328 0.0460
2142 -0.0455 -0.0564 -0.0026 -0.0217 -0.0295 -0.0231
2143 -0.0890 -0.0346 ┴ -0.0794 -0.0960 -0.0985 -0.0239
2144 -0.0513 0.0183 ┴ 0.0037 0.0058 -0.0147 0.0217
2146 -0.0589 ┴ -0.0167 ┴ -0.0157 -0.1167 -0.0734 -0.1113
2147 -0.1116 -0.0706 ┴ -0.0785 -0.1851 -0.1566 -0.1757
2148 -0.1467 -0.1099 -0.0744 -0.1978 -0.1790 -0.1867
2150 0.0498 ┴ 0.1044 0.0823 -0.0530 -0.0313 -0.0329
2151 0.0813 ┴ 0.1040 0.0989 -0.0340 -0.0015 ┴ 0.0007 ┴
2152 0.0823 ┴ 0.1068 0.1129 -0.0439 -0.0354 -0.0067 ┴
2153 0.1027 0.1204 0.1278 0.0066 ┴ 0.0208 0.0194
2154 0.1566 0.1905 0.1793 0.0472 0.0620 0.0762
2156 0.1591 0.1719 0.1639 0.0472 0.0429 0.0160
2157 -0.0830 ┴ -0.0673 ┴ -0.0181 ┴ -0.1374 -0.0868 -0.1225
2158 0.1751 0.1879 0.1866 0.0475 0.0508 0.0824

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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(continued)

2160 0.1868 0.1790 0.1587 0.1498 0.1337 0.1639
2161 0.0589 0.0810 0.1265 0.1159 0.1128 0.0808
2162 0.0808 0.1066 0.1088 0.0679 0.0871 0.1229
2163 -0.0849 -0.0846 -0.0802 -0.0777 -0.0415 -0.0785
2164 -0.0272 ┴ 0.0142 ┴ 0.0306 0.0391 0.0214 0.0379
2165 0.0180 ┴ 0.0466 0.0489 0.0632 0.0665 0.0456
2166 -0.1135 -0.0812 -0.0551 -0.0374 -0.0234 -0.0152
2167 -0.0775 -0.0690 -0.0573 -0.0627 0.0226 -0.0087
2168 -0.0574 -0.0379 ┴ -0.0129 -0.0129 -0.0332 -0.0552
2170 0.0523 0.0431 0.0469 0.0558 0.0497 0.0544
2171 0.1033 0.0873 0.1224 0.1055 0.0886 0.1009
2176 0.0585 0.0454 ┴ 0.0477 0.0228 0.0423 0.0734
2190 -0.0436 -0.0330 -0.0180 -0.0291 -0.0330 -0.0492
2191 0.1347 0.1145 0.1117 0.1238 0.1256 0.1699
2192 -0.0191 ┴ 0.0793 0.0517 0.0112 -0.0122 0.0331
2195 -0.1445 -0.1037 -0.0821 -0.1292 -0.1285 -0.1227
2196 -0.0628 -0.0820 -0.0435 -0.0445 -0.0342 -0.0503
2197 -0.1288 -0.1227 -0.0996 -0.0910 -0.0915 -0.0504
2198 -0.0129 ┴ -0.0957 -0.0859 -0.0495 -0.0277 -0.0425
2199 -0.0847 -0.1024 -0.0857 -0.0778 0.0144 -0.0716
2203 -0.0022 ┴ 0.0443 0.0573 0.0707 0.0576 0.0771
2204 -0.0172 ┴ 0.0139 ┴ 0.0390 0.0505 0.0944 0.0505
2205 0.0197 ┴ 0.0829 0.0592 0.0718 0.0262 0.0055
2206 0.0076 ┴ 0.0233 ┴ 0.0190 0.0118 0.0184 0.0040
2207 -0.0556 -0.0349 -0.0445 -0.0031 -0.0215 -0.0390
2208 -0.0816 -0.0099 ┴ -0.0107 -0.0394 0.0237 -0.0120
2209 -0.1186 -0.0990 -0.0744 -0.0707 -0.1027 -0.1158
2210 -0.1232 -0.1013 -0.0951 -0.0403 -0.0979 -0.1146
2211 -0.2279 -0.1614 -0.1448 -0.1247 -0.1363 -0.1545
2212 -0.2274 -0.1975 -0.2050 -0.1801 -0.1916 -0.2125
2213 -0.2079 -0.1774 -0.1777 -0.1539 -0.1444 -0.1722
2214 -0.1704 -0.2085 -0.2490 -0.2573 -0.2077 -0.2298
2216 0.0776 0.0824 0.0880 0.1156 0.0762 0.0774
2217 0.0595 0.0695 0.0621 0.0831 0.0499 0.0390
2218 -0.0356 0.0041 ┴ -0.0030 0.0026 -0.0024 -0.0011 ┴
2224 0.1994 0.2455 0.2892 0.2553 0.2854 0.3322
2225 0.0436 ┴ 0.1049 0.2014 0.1598 0.1344 0.1344
2226 0.0389 0.0566 0.0622 0.0592 0.0460 0.0641

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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2227 0.0841 0.1474 0.1480 0.1345 0.1691 0.1231
2228 0.1102 0.1368 0.1401 0.1501 0.1348 0.1212
2229 0.1921 0.2332 0.2375 0.2110 0.2329 0.2410
2230 0.2749 0.2955 0.3299 0.3397 0.3339 0.3558
2231 -0.0797 -0.1477 -0.0165 -0.0468 -0.0383 -0.0281
2232 0.0591 0.0563 0.0696 0.0852 0.0790 0.0897
2233 -0.0584 -0.0402 -0.0295 -0.0289 -0.0173 -0.0296
2745 0.1398 0.1481 0.1451 0.1566 0.1601 0.1259
2747 -0.0680 -0.0314 ┴ -0.0162 0.0035 -0.0179 -0.0217
2750 0.0085 ┴ 0.0260 ┴ 0.0317 0.0551 0.0520 0.0557
2760 -0.0952 -0.0641 -0.0493 -0.0232 -0.0506 -0.0664
2761 0.0327 ┴ 0.0382 0.0571 0.1012 0.0856 0.0632
2763 0.1434 0.1775 0.1558 0.1739 0.1434 0.1494
2766 -0.0228 ┴ 0.0214 ┴ 0.0464 0.0971 0.1226 0.1146
2767 0.0588 0.0927 0.0579 0.0891 0.0954 0.0368
2768 0.2592 0.2746 0.2621 0.2693 0.2601 0.2454
2770 -0.1824 -0.1159 -0.0869 -0.0382 -0.0854 -0.1340
2773 0.1737 0.1850 0.1453 0.2052 0.1592 0.1441
2774 0.0533 0.0352 ┴ 0.0313 0.0835 0.1126 0.0813

Dwelling Type Units -0.1841 -0.2162 -0.2604 -0.1924 -0.2358 -0.2774
(Base: House)
Bedroom Counts 1 -0.1474 -0.1854 -0.1506 -0.1397 -0.1810 -0.1959
(Base: 2) 3 0.1230 0.1161 0.1473 0.1752 0.1625 0.1572

4 0.2443 0.2285 0.2569 0.2192 0.1995 0.2094
5 0.1978 0.1855 0.2024 0.2514 0.1784 0.3206

Bathroom Counts 2 0.0887 0.0961 0.1221 0.1405 0.1559 0.1508
(Base: 1) 3 0.3154 0.3429 0.3828 0.4590 0.4907 0.3991

4 0.6079 0.3057 0.4903 0.5263 0.5983 0.5554

Lot Size (meter2 /103) 0.4328 0.3768 0.3974 0.4321 0.3117 0.2686

Lot Size2 (meter4 /106) -0.0325 -0.0521 -0.0538 -0.0640 -0.0514 -0.0492

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.
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  Appendix table 1: Estimated Coefficients in Six Periods
(continued)

Bedroom- 1-B -0.0622 -0.0438 -0.0198 -0.0150 -0.0267 -0.0544
Region 3-B 0.0469 0.0380 0.0347 0.0137 0.0195 0.0219
Inter. Dummies 4-B 0.0317 ┴ 0.0136 ┴ 0.0275 0.0292 0.0173 0.0784

5-B 0.0561 ┴ 0.0715 ┴ 0.0875 -0.0181 -0.0078 ┴ -0.0529
1-C 0.0100 ┴ 0.0168 ┴ 0.0060 -0.0074 0.0255 0.0111
3-C -0.0137 ┴ 0.0008 ┴ -0.0313 -0.0269 -0.0055 -0.0186
4-C -0.0343 ┴ -0.0050 ┴ -0.0396 -0.0065 0.0544 0.0553
5-C 0.0592 ┴ 0.1112 ┴ 0.0337 -0.0231 0.0322 0.0271
1-D 0.0108 ┴ 0.0012 ┴ -0.0110 -0.0147 -0.0068 -0.0254
3-D -0.0025 ┴ -0.0079 ┴ -0.0142 -0.0411 -0.0310 -0.0182
4-D -0.0503 ┴ -0.0271 ┴ -0.0003 ┴ -0.0278 0.0380 0.0145
5-D -0.0099 ┴ 0.0713 ┴ 0.0696 -0.0413 0.0440 -0.0062
1-E 0.1204 0.1073 0.1220 0.1077 0.1439 0.0950
3-E -0.0958 -0.0745 -0.1088 -0.1214 -0.0905 -0.1160
4-E -0.1656 -0.1418 -0.1460 -0.1473 -0.0866 -0.1374
5-E -0.1342 -0.0541 ┴ -0.0363 -0.1255 -0.0817 -0.1848
1-F -0.0385 ┴ -0.0507 -0.0738 -0.0645 -0.0680 -0.1180
3-F 0.1120 0.0990 0.0813 0.0665 0.0512 0.0272
4-F 0.1776 0.1609 0.1945 0.1400 0.1641 0.0925
5-F 0.0726 ┴ 0.2553 0.2760 0.1693 0.0762 -0.0201
1-G -0.0152 ┴ -0.0309 ┴ -0.0284 -0.0409 0.0042 -0.0237
3-G -0.0182 ┴ -0.0621 -0.0488 -0.0701 -0.0519 -0.0585
4-G -0.1067 -0.1307 -0.1015 -0.1095 -0.0944 -0.0887
5-G -0.0605 ┴ -0.0536 ┴ -0.0496 -0.1397 -0.1035 -0.1750
1-H 0.0194 ┴ 0.0009 ┴ 0.0027 ┴ 0.0043 ┴ 0.0090 -0.0409
3-H -0.0219 ┴ -0.0494 -0.0519 -0.0712 -0.0515 -0.0458
4-H -0.0997 -0.1292 -0.1151 -0.1222 -0.0507 -0.0817
5-H -0.0674 ┴ -0.0504 ┴ -0.0522 -0.1379 -0.0505 -0.1588
1-I 0.0594 0.0716 0.0398 0.0763 0.0885 0.0648
3-I -0.0906 -0.0882 -0.1058 -0.1370 -0.0967 -0.0840
4-I -0.1603 -0.1581 -0.1417 -0.1183 -0.0484 -0.0919

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.  
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  Appendix table 1: Estimated Coefficients in Six Periods
(continued)

5-I -0.0161 ┴ 0.0379 ┴ 0.0730 -0.0183 0.0760 -0.1100
1-J 0.0895 0.1109 0.1167 0.1704 0.2385 0.1824
3-J -0.0943 -0.0991 -0.1404 -0.1422 -0.1174 -0.1252
4-J -0.2079 -0.1937 -0.2135 -0.1957 -0.1233 -0.1330
5-J -0.1368 -0.0933 ┴ -0.0871 -0.1470 -0.1017 -0.1977
1-K 0.1027 0.0871 0.1226 0.1024 0.1767 0.1357
3-K -0.0937 -0.0883 -0.1266 -0.1415 -0.0987 -0.1195
4-K -0.1826 -0.1490 -0.1675 -0.1530 -0.0809 -0.1063
5-K -0.1008 -0.0606 ┴ -0.0583 -0.1258 -0.0443 -0.1641
1-L 0.1166 0.1511 0.1545 0.2018 0.1856 0.1617
3-L -0.0792 -0.0953 -0.1153 -0.1241 -0.1138 -0.0947
4-L -0.1805 -0.1751 -0.1738 -0.1725 -0.1258 -0.1292
5-L -0.0663 ┴ -0.1101 -0.0387 -0.0650 -0.0269 -0.0973
1-M 0.0586 0.0522 0.0725 0.0689 0.0928 0.0819
3-M -0.0543 -0.0707 -0.0871 -0.0920 -0.0618 -0.0727
4-M -0.1451 -0.1515 -0.1262 -0.0927 -0.0717 -0.1030
5-M -0.1143 -0.0733 ┴ -0.0009 ┴ -0.0205 -0.0011 ┴ -0.0855
1-N -0.0173 ┴ -0.0470 ┴ -0.0343 0.0069 -0.0033 -0.0724
3-N -0.0600 -0.0509 -0.0918 -0.0929 -0.0790 -0.0940
4-N -0.1095 -0.1034 -0.1308 -0.1268 -0.0772 -0.1135
5-N -0.0812 ┴ -0.0271 -0.0495 -0.0969 -0.0281 -0.2107
1-O 0.0938 0.0937 0.1243 0.1814 0.1416 0.1424
3-O -0.0747 -0.1106 -0.1361 -0.1442 -0.1350 -0.1410
4-O -0.1811 -0.2071 -0.2057 -0.1876 -0.1321 -0.1584
5-O -0.1459 -0.1400 -0.1338 -0.1857 -0.1158 -0.2300

Bathroom- 2-B 0.0219 ┴ 0.0283 ┴ 0.0148 0.0039 -0.0054 0.0053
Region 3-B -0.0380 ┴ -0.0320 ┴ -0.0961 -0.0921 -0.1035 -0.0227
Inter. Dummies 4-B -0.2748 0.0275 ┴ -0.1530 -0.1331 -0.1224 -0.1132

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.  
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    Appendix table 1: Estimated Coefficients in Six Periods
(continued)

2-C -0.0163 ┴ -0.0158 ┴ -0.0451 -0.0486 -0.0262 -0.0080
3-C -0.0563 ┴ -0.0797 -0.1278 -0.0807 -0.1804 -0.0473
4-C -0.1278 ┴ 0.1082 ┴ -0.1379 0.0100 ┴ -0.0670 -0.1868
2-D -0.0071 ┴ -0.0308 -0.0472 -0.0539 -0.0703 -0.0591
3-D -0.1335 -0.2067 -0.1511 -0.1954 -0.2276 -0.1564
4-D -0.2509 -0.1609 ┴ -0.1491 -0.0987 -0.3145 -0.3222
2-E -0.0798 -0.0887 -0.1107 -0.1145 -0.1111 -0.1125
3-E -0.3027 -0.3284 -0.3435 -0.3377 -0.3348 -0.2590
4-E -0.3796 -0.1562 ┴ -0.2585 -0.2153 -0.2068 -0.1637
2-F 0.0415 ┴ 0.0230 ┴ 0.0124 -0.0478 0.0053 -0.0268
3-F -0.0521 ┴ -0.1702 -0.1820 -0.1445 -0.1033 -0.0962
4-F -0.1821 ┴ -0.2235 -0.4056 -0.2825 -0.2463 -0.3172
2-G -0.0167 ┴ -0.0207 ┴ -0.0431 -0.0424 -0.0201 -0.0267
3-G -0.1603 -0.1923 -0.1778 -0.1783 -0.1739 -0.1106
4-G -0.0797 ┴ 0.0386 ┴ -0.0856 0.1099 -0.0722 -0.0273 ┴
2-H -0.0617 -0.0673 -0.0945 -0.1078 -0.0857 -0.0875
3-H -0.2741 -0.3009 -0.3389 -0.3497 -0.3012 -0.2431
4-H -0.4217 -0.1023 ┴ -0.2426 -0.1773 -0.1695 -0.1296
2-I -0.0649 -0.0709 -0.1182 -0.1169 -0.1084 -0.1046
3-I -0.2643 -0.2416 -0.2434 -0.3129 -0.2343 -0.2182
4-I -0.4198 0.1966 ┴ 0.0553 -0.1809 0.0108 ┴ -0.0478
2-J -0.0773 -0.0878 -0.1192 -0.1238 -0.1261 -0.1295
3-J -0.2878 -0.3099 -0.3586 -0.3530 -0.3332 -0.2749
4-J -0.2236 ┴ -0.1857 ┴ -0.2583 -0.3089 -0.1738 -0.1641
2-K -0.0898 -0.0975 -0.1270 -0.1440 -0.1260 -0.1091
3-K -0.2952 -0.2570 -0.2954 -0.3232 -0.2689 -0.2741
4-K 0.0226 ┴ 0.3595 -0.1498 0.0435 ┴ 0.0554 -0.0068 ┴
2-L -0.0900 -0.1055 -0.1275 -0.1468 -0.1404 -0.1192
3-L -0.2572 -0.3149 -0.3154 -0.3496 -0.3038 -0.2363
4-L -0.3719 ┴ -0.4329 ┴ -0.2769 0.1604 0.4015 ┴ -0.2341
2-M -0.0737 -0.0816 -0.1093 -0.1227 -0.1136 -0.1105

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.  
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   Appendix table 1: Estimated Coefficients in Six Periods
(continued)

3-M -0.2896 -0.2905 -0.3149 -0.3320 -0.3440 -0.2356
4-M -0.4048 -0.1304 ┴ -0.2247 -0.2578 -0.3488 -0.2108
2-N -0.0636 -0.0769 -0.1019 -0.1179 -0.1050 -0.0865
3-N -0.2573 -0.2710 -0.2994 -0.2965 -0.2704 -0.1726
4-N -0.2023 ┴ 0.0493 ┴ -0.1268 -0.1907 -0.0512 -0.0605
2-O -0.0961 -0.1071 -0.1300 -0.1405 -0.1196 -0.1014
3-O -0.3258 -0.3634 -0.3808 -0.4099 -0.3702 -0.2797
4-O -0.3491 ┴ 0.0305 ┴ 0.0530 -0.2907 -0.1034 ┴ -0.0948

Dwelling type- Unit-B -0.0418 -0.0810 -0.0353 -0.1905 -0.0715 -0.0445
Region Unit-C 0.0932 0.0639 0.0952 0.0262 0.0282 0.0438
Inter. Dummies Unit-D -0.0864 -0.0928 -0.0604 -0.1712 -0.0975 -0.1017

Unit-E 0.0775 0.1158 0.1534 0.0491 0.0892 0.0782
Unit-F -0.0949 -0.0060 ┴ -0.0773 -0.1067 -0.0497 0.0344
Unit-G -0.0053 ┴ 0.0026 ┴ -0.0163 -0.0607 -0.0469 -0.0506
Unit-H 0.0399 ┴ 0.0095 ┴ 0.0384 0.0103 -0.0058 0.0813
Unit-I 0.1149 0.1028 0.1377 0.0453 0.1459 0.1359
Unit-J 0.1382 0.1732 0.2288 0.1312 0.1964 0.1909
Unit-K -0.0253 ┴ 0.1043 0.1459 0.0800 0.1475 0.0900
Unit-L -0.0437 ┴ 0.0065 ┴ -0.0090 -0.0647 0.0517 0.0495
Unit-M 0.0302 ┴ 0.0416 0.0429 -0.0107 0.0553 0.0766
Unit-N 0.1184 0.1191 0.1132 0.0745 0.0789 0.0785
Unit-O 0.1126 0.2068 0.2539 0.2090 0.2506 0.2334

Lot size - meter2-B 0.1486 0.1874 0.2390 -0.0171 0.2773 0.2327

Region meter2-C 0.2989 0.2440 0.2781 0.2630 0.2447 0.1173

Inter. Dummies meter2-D -0.1487 -0.1010 -0.0484 -0.1306 -0.0040 ┴ -0.0186

meter2-E -0.1744 -0.0647 ┴ -0.0615 -0.1173 -0.0310 -0.0320

meter2-F -0.0680 ┴ 0.2781 -0.0153 0.0055 ┴ 0.1231 0.3294

meter2-G -0.2014 -0.0852 ┴ -0.1668 -0.1462 -0.0694 -0.1271

Note:  ┴ denotes that the coefficients are not significant at the 5% level.  
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   Appendix table 1: Estimated Coefficients in Six Periods
(continued)

meter2-H -0.1214 -0.0948 -0.0674 -0.0760 -0.0710 0.0319

meter2-I 0.0427 ┴ 0.0631 ┴ 0.1272 0.0703 0.1653 0.2373

meter2-J -0.1158 -0.0314 ┴ 0.0383 -0.0171 0.0351 0.0522

meter2-K -0.1372 -0.0339 ┴ 0.0133 0.0035 ┴ 0.0581 0.0335

meter2-L -0.1379 0.0650 ┴ -0.0008 -0.0477 0.0865 0.1279

meter2-M -0.0200 ┴ 0.0597 ┴ 0.0524 0.0453 0.1163 0.1223

meter2-N -0.0528 ┴ -0.0133 ┴ -0.0012 ┴ 0.0072 ┴ 0.0266 0.0334

meter2-O -0.1334 -0.0293 ┴ -0.0081 -0.0093 ┴ 0.0612 0.0745

Dwelling type- Unit-1 -0.0144 ┴ 0.0131 ┴ -0.0451 -0.0821 -0.0713 -0.0556
Bedroom Unit-3 0.0556 0.0635 0.0773 0.0815 0.0802 0.1086
Inter. Dummies Unit-4 0.1163 0.1604 0.1402 0.1798 0.1801 0.1666

Unit-5 0.3996 0.4758 0.4496 0.5748 0.6845 0.5054

Lot Size- meter2-1 0.1657 0.2536 0.2036 0.1161 0.1895 0.0766

Bedroom meter2-3 -0.0453 -0.0043 ┴ -0.0243 -0.0478 -0.0295 0.0124

Inter. Dummies meter2-4 -0.0066 ┴ 0.0095 ┴ -0.0386 0.0125 0.0165 0.0549

meter2-5 0.0749 0.0510 ┴ 0.0013 ┴ 0.0540 0.0910 0.1163

Dwelling type- Unit-2 0.0579 0.0664 0.0722 0.0683 0.0792 0.0936
Bathroom Unit-3 0.2037 0.2576 0.2734 0.1965 0.2512 0.1706
Inter. Dummies Unit-4 0.5703 0.8623 0.7825 0.6470 0.5156 0.4185

Lot Size- meter2-2 0.0601 0.0616 0.0753 0.0577 0.0479 0.0247

Bathroom meter2-3 0.1655 0.1635 0.1723 0.1366 0.1127 0.0921

Inter. Dummies meter2-4 0.1552 0.2270 0.1293 0.1037 0.0891 0.0467

Bedroom- 3-2 0.0086 ┴ 0.0158 0.0117 0.0136 -0.0021 0.0107
Bathroom 3-3 -0.0364 -0.0361 -0.0726 -0.0759 -0.1132 -0.0323
Inter. Dummies 4-2 0.0090 ┴ 0.0288 0.0196 0.0399 0.0191 0.0519

4-4 -0.0022 ┴ 0.0122 ┴ 0.0055 0.0058 -0.0174 0.0652

  Note:  ┴ denotes that the coefficients are not significant at the 5% level.  
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