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Abstract

We propose new scoring rules based on partial likelihood for assessing the relative
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1 Introduction
The interest in density forecasts is rapidly expanding in both macroeconomics and finance.
Undoubtedly this is due to the increased awareness that point forecasts are not very infor-
mative unless some indication of their uncertainty is provided, see Granger and Pesaran
(2000) and Garratt et al. (2003) for discussions of this issue. Density forecasts, represent-
ing the future probability distribution of the random variable in question, provide the most
complete measure of this uncertainty. Prominent macroeconomic applications are density
forecasts of output growth and inflation obtained from a variety of sources, including sta-
tistical time series models (Clements and Smith, 2000), professional forecasters (Diebold
et al., 1998), and central banks and other institutions producing so-called ‘fan charts’ for
these variables (Clements, 2004; Mitchell and Hall, 2005). In finance, density forecasts
play a fundamental role in risk management as they form the basis for risk measures such
as Value-at-Risk and Expected Shortfall, see Dowd (2005) and McNeil et al. (2005) for
general overviews and Guidolin and Timmermann (2006) for a recent empirical appli-
cation. In addition, density forecasts are starting to be used in other financial decision
problems, such as derivative pricing (Campbell and Diebold, 2005; Taylor and Buizza,
2006) and asset allocation (Guidolin and Timmermann, 2007). It is also becoming more
common to use density forecasts to assess the adequacy of predictive regression models
for asset returns, including stocks (Perez-Quiros and Timmermann, 2001), interest rates
(Hong et al., 2004; Egorov et al., 2006) and exchange rates (Sarno and Valente, 2005;
Rapach and Wohar, 2006).

The increasing popularity of density forecasts has naturally led to the development
of statistical tools for evaluating their accuracy. The techniques that have been proposed
for this purpose can be classified into two groups. First, several approaches have been
put forward for testing the quality of an individual density forecast, relative to the data-
generating process. Following the seminal contribution of Diebold et al. (1998), the
most prominent tests in this group are based on the probability integral transform (PIT) of
Rosenblatt (1952). Under the null hypothesis that the density forecast is correctly speci-
fied, the PITs should be uniformly distributed, while for one-step ahead density forecasts
they also should be independent and identically distributed. Hence, Diebold et al. (1998)
consider a Kolmogorov-Smirnov test for departure from uniformity of the empirical PITs
and several tests for temporal dependence. Alternative test statistics based on the PITs
are developed in Berkowitz (2001), Bai (2003), Bai and Ng (2005), Hong and Li (2005),
Li and Tkacz (2006), and Corradi and Swanson (2006a), mainly to counter the problems
caused by parameter uncertainty and the assumption of correct dynamic specification un-
der the null hypothesis. We refer to Clements (2005) and Corradi and Swanson (2006c)
for in-depth surveys on specification tests for univariate density forecasts. An extension
of the PIT-based approach to the multivariate case is considered by Diebold et al. (1999),
see also Clements and Smith (2002) for an application. For more details of multivariate
PITs and goodness-of-fit tests based on these, see Breymann et al. (2003) and Berg and
Bakken (2005), among others.

The second group of evaluation tests aims to compare two or more competing density
forecasts. This problem of relative predictive accuracy has been considered by Sarno and
Valente (2004), Mitchell and Hall (2005), Corradi and Swanson (2005, 2006b), Amisano
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and Giacomini (2007) and Bao et al. (2007). All statistics in this group compare the
relative distance between the competing density forecasts and the true (but unobserved)
density, but in different ways. Sarno and Valente (2004) consider the integrated squared
difference as distance measure, while Corradi and Swanson (2005, 2006b) employ the
mean squared error between the cumulative distribution function (CDF) of the density
forecast and the true CDF. The other studies in this group develop tests of equal predictive
accuracy based on a comparison of the Kullback-Leibler Information Criterion (KLIC).
Amisano and Giacomini (2007) provide an interesting interpretation of the KLIC-based
comparison in terms of scoring rules, which are loss functions depending on the den-
sity forecast and the actually observed data. In particular, it is shown that the difference
between the logarithmic scoring rule for two competing density forecasts corresponds
exactly to their relative KLIC values.

In many applications of density forecasts, we are mostly interested in a particular
region of the density. Financial risk management is an example in case, where the main
concern is obtaining an accurate description of the left tail of the distribution. Bao et
al. (2004) and Amisano and Giacomini (2007) suggest weighted likelihood ratio (LR)
tests based on KLIC-type scoring rules, which may be used for evaluating and comparing
density forecasts in a particular region. However, as mentioned by Corradi and Swanson
(2006c) measuring the accuracy of density forecasts over a specific region cannot be done
in a straightforward manner using the KLIC. The problem that occurs with KLIC-based
scoring rules is that they favor density forecasts which have more probability mass in the
region of interest, rendering the resulting tests biased towards such density forecasts.

In this paper we demonstrate that two density forecasts can be compared on a specific
region of interest in a natural way by using scoring rules based on partial likelihood (Cox,
1975). We specifically introduce two different scoring rules based on partial likelihood.
The first rule considers the value of the conditional likelihood, given that the actual obser-
vation lies in the region of interest. The second rule is based on the censored likelihood,
where again the region of interest is used to determine if an observation is censored or not.
We argue that these partial likelihood scoring rules behave better than KLIC-type rules, in
that they always favor a correctly specified density forecast over an incorrect one. This is
confirmed by our Monte Carlo simulations. Moreover, we find that the scoring rule based
on the censored likelihood, which uses more of the relevant information present, performs
better in all cases considered.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss
conventional scoring rules based on the KLIC distance for evaluating density forecasts
and point out the problem with the weighted versions of the resulting LR tests when these
are used to focus on a particular region of the density. In Sections 3 and 4, we develop
alternative scoring rules based on partial likelihood, and demonstrate that these do not suf-
fer from this shortcoming. This is further illustrated by means of Monte Carlo simulation
experiments in Section 5, where we assess the properties of tests of equal predictive accu-
racy of density forecasts with different scoring rules. We provide an empirical application
concerning density forecasts for daily S&P 500 returns in Section 6, demonstrating the
practical usefulness of our approach. Finally, we conclude in Section 7.

2



2 Scoring rules for evaluating density forecasts
Following Amisano and Giacomini (2007) we consider a stochastic process {Zt : Ω →
Rk+1}T

t=1, defined on a complete probability space (Ω,F ,P), and identify Zt with (Yt, X
′
t)
′,

where Yt : Ω → R is the real valued random variable of interest and Xt : Ω → Rk is a
vector of predictors. The information set at time t is defined as Ft = σ(Z ′

1, . . . , Z
′
t)
′. We

consider the case where two competing forecast methods are available, each producing
one-step ahead density forecasts, i.e. predictive densities of Yt+1, based on Ft. The com-
peting density forecasts are denoted by the probability density functions (pdfs) f̂t(Yt+1)
and ĝt(Yt+1), respectively. As in Amisano and Giacomini (2007), by ‘forecast method’ we
mean the set of choices that the forecaster makes at the time of the prediction, including
the variables Xt, the econometric model (if any), and the estimation method. The only
requirement that we impose on the forecast methods is that the density forecasts depend
only on the R most recent observations Zt−R+1, . . . , Zt. Forecast methods of this type
arise easily when model-based density forecasts are made and model parameters are esti-
mated based on a moving window of R observations. This finite memory simplifies the
asymptotic theory of tests of equal predictive accuracy considerably, see Giacomini and
White (2006). To keep the exposition as simple as possible, in this paper we will be mainly
concerned with the case of comparing ‘fixed’ predictive densities for i.i.d. processes.

Our interest lies in comparing the relative performance of f̂t(Yt+1) and ĝt(Yt+1), that
is, assessing which of these densities comes closest to the true but unobserved density
pt(Yt+1). One of the approaches that has been put forward for this purpose is based on
scoring rules, which are commonly used in probability forecast evaluation, see Diebold
and Lopez (1996). Lahiri and Wang (2007) provide an interesting application of several
such rules to the evaluation of probability forecasts of gross domestic product (GDP) de-
clines, that is, a rare event comparable to Value-at-Risk violations. In the current context,
a scoring rule can be considered as a loss function depending on the density forecast and
the actually observed data. The general idea is to assign a high score to a density forecast
if an observation falls within a region with high probability, and a low score if it falls
within a region with low probability. Given a sequence of density forecasts and corre-
sponding realizations of the time series variable Yt+1, competing density forecasts may
then be compared based on their average scores. Mitchell and Hall (2005), Amisano and
Giacomini (2007), and Bao et al. (2007) focus on the logarithmic scoring rule

Sl(f̂t; yt+1) = log f̂t(yt+1), (1)

where yt+1 is the observed value of the variable of interest. Based on a sequence of P
density forecasts and realizations for observations R + 1, . . . , T ≡ R + P , the density
forecasts f̂t and ĝt can be ranked according to their average scores P−1

∑T−1
t=R log f̂t(yt+1)

and P−1
∑T−1

t=R log ĝt(yt+1). The density forecast yielding the highest score would ob-
viously be the preferred one. We may also test formally whether differences in average
scores are statistically significant. Defining the score difference

dl
t+1 = Sl(f̂t; yt+1)− Sl(ĝt; yt+1)

= log f̂t(yt+1)− log ĝt(yt+1),
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the null hypothesis of equal scores is given by H0 : E[dl
t+1] = 0. This may be tested by

means of a Diebold and Mariano (1995) type statistic

d
l√

σ̂2/P

d−→ N(0, 1), (2)

where d
l

is the sample average of the score difference, that is, d
l
= P−1

∑T−1
t=R dl

t+1, and
σ̂2 is a consistent estimator of the asymptotic variance of d

l

t+1. Following Giacomini and
White (2006), we focus on competing forecast methods rather than on competing models.
This has the advantage that the test just described is still valid in case the density forecasts
depend on estimates of unknown parameters, provided that a finite (rolling) window of
past observations is used for parameter estimation.

Intuitively, the logarithmic scoring rule is closely related to information theoretic mea-
sures of ‘goodness-of-fit’. In fact, as discussed in Mitchell and Hall (2005) and Bao et al.
(2007), the sample average of the score difference d

l
in (2) may be interpreted as an esti-

mate of the difference in the values of the Kullback-Leibler Information Criterion (KLIC),
which for the density forecast f̂t is defined as

KLIC(f̂t) =

∫
pt(yt+1) log

(
pt(yt+1)

f̂t(yt+1)

)
dyt+1 = E[log pt(Yt+1)− log f̂t(Yt+1)]. (3)

Note that by taking the difference between KLIC(f̂t) and KLIC(ĝt) the term E[log pt(Yt+1)]
drops out, which solves the problem that the true density pt is unknown. Hence, the null
hypothesis of equal logarithmic scores for the density forecasts f̂t and ĝt actually corre-
sponds with the null hypothesis of equal KLICs. Bao et al. (2007) discuss an extension
to compare multiple density forecasts, where the null hypothesis to be tested is that none
of the available density forecasts is more accurate than a given benchmark, in the spirit of
the reality check of White (2000).

It is useful to note that both Mitchell and Hall (2005) and Bao et al. (2007) employ
the same approach for testing the null hypothesis of correct specification of an individual
density forecast, that is, H0 : KLIC(f̂t) = 0. The problem that the true density pt in (3) is
unknown then is circumvented by using the result established by Berkowitz (2001) that the
KLIC of f̂t is equal to the KLIC of the density of the inverse normal transform of the PIT
of the density forecast f̂t. Defining zf̂ ,t+1 = Φ−1(F̂t(yt+1)) with F̂t(yt+1) =

∫ yt+1

−∞ f̂t(y) dy
and Φ the standard normal distribution function, it holds true that

log pt(yt+1)− log f̂t(yt+1) = log qt(zf̂ ,t+1)− log φ(zf̂ ,t+1),

where qt is the true conditional density of zf̂ ,t+1 and φ is the standard normal density. This
result states that the KLIC takes the same functional form before and after the inverse nor-
mal transform of {yt+1}, which is essentially a consequence of the general invariance of
the KLIC under invertible measurable coordinate transformations. Of course, in practice
the density qt is not known either, but if f̂t is correctly specified, {zf̂ ,t+1} should behave
as an i.i.d. standard normal sequence. As discussed in Bao et al. (2007), qt may be esti-
mated by means of a flexible density function to obtain an estimate of the KLIC, which
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then allows testing for departures of qt from the standard normal. Finally, we note that the
KLIC has also been used by Mitchell and Hall (2005) and Hall and Mitchell (2007) for
combining density forecasts.

2.1 Weighted scoring rules
In empirical applications of density forecasting it frequently occurs that a particular region
of the density is of most interest. For example, in risk management applications such as
Value-at-Risk and Expected Shortfall estimation, an accurate description of the left tail of
the distribution obviously is of crucial importance. In that case, it seems natural to focus
on the performance of density forecasts in the region of interest and pay less attention to
(or even ignore) the remaining part of the distribution. Within the framework of scoring
rules, this may be achieved by introducing a weight function w(yt+1) to obtain a weighted
scoring rule, see Franses and van Dijk (2003) for a similar idea in the context of testing
equal predictive accuracy of point forecasts. For example, Amisano and Giacomini (2007)
suggest the weighted logarithmic (WL) scoring rule

Swl(f̂t; yt+1) = w(yt+1) log f̂t(yt+1) (4)

to assess the quality of the density forecast f̂t, together with the weighted average scores
P−1

∑T−1
t=R w(yt+1) log f̂t(yt+1) and P−1

∑T−1
t=R w(yt+1) log ĝt(yt+1) for ranking two com-

peting forecasts. Using the weighted score difference

dwl
t+1 = Swl(f̂t; yt+1)− Swl(ĝt; yt+1) = w(yt+1)(log f̂t(yt+1)− log ĝt(yt+1)), (5)

the null hypothesis of equal weighted scores, H0 : E[dwl
t+1] = 0, may be tested by means of

a Diebold-Mariano type test statistic of the form (2), but using the sample average d
wl

=

P−1
∑T−1

t=R dwl
t+1 instead of d

l
together with an estimate of the corresponding asymptotic

variance of dwl
t+1. From the discussion above, it follows that an alternative interpretation

of the resulting statistic is to say that it tests equality of the weighted KLICs of f̂t and ĝt.
The weight function w(yt+1) should be positive and bounded but may otherwise be

chosen arbitrarily to focus on a particular density region of interest. For evaluation of
the left tail in risk management applications, for example, we may use the ‘threshold’
weight function w(yt+1) = I(yt+1 ≤ r), where I(A) = 1 if the event A occurs and zero
otherwise, for some value r. However, we are then confronted with the problem pointed
out by Corradi and Swanson (2006c) that measuring the accuracy of density forecasts
over a specific region cannot be done in a straightforward manner using the KLIC or
log scoring rule. In this particular case the weighted logarithmic score may be biased
towards fat-tailed densities. To understand why this occurs, consider the situation where
ĝt(Yt+1) > f̂t(Yt+1) for all Yt+1 smaller than some given value y∗, say. Using w(yt+1) =
I(yt+1 ≤ r) with r < y∗ in (4) implies that the weighted score difference dwl

t+1 in (5) is
never positive, and strictly negative for observations below the threshold value r, such that
E[dwl

t+1] is negative. Obviously, this can have far-reaching consequences when comparing
density forecasts with different tail behavior. In particular, there will be cases where the
fat-tailed distribution ĝt is favored over the thin-tailed distribution f̂t, even if the latter is
the true distribution from which the data are drawn.
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Figure 1: Probability density functions of the standard normal distribution f̂t(yt+1) and standard-
ized Student-t(5) distribution ĝt(yt+1) (upper panel) and corresponding relative log-likelihood
scores log f̂t(yt+1)− log ĝt(yt+1) (lower panel).

The following example illustrates the issue at hand. Suppose we wish to compare the
accuracy of two density forecasts for Yt+1, one being the standard normal distribution with
pdf

f̂t(yt+1) = (2π)−
1
2 exp(−y2

t+1/2),

and the other being the (fat-tailed) Student-t distribution with ν degrees of freedom, stan-
dardized to unit variance, with pdf

ĝt(yt+1) =
Γ
(

ν+1
2

)√
(ν − 2)πΓ(ν

2
)

(
1 +

y2
t+1

(ν − 2)

)−(ν+1)/2

with ν > 2.

Figure 1 shows these density functions for the case ν = 5, as well as the relative log-
likelihood score log f̂t(yt+1) − log ĝt(yt+1). The score function is negative in the left tail
(−∞, y∗), with y∗ ≈ −2.5. Now consider the average weighted log score d

wl
as defined

before, based on an observed sample yR+1, . . . , yT of P observations from an unknown
density on (−∞,∞) for which f̂t(yt+1) and ĝt(yt+1) are candidates. Using the threshold
weight function w(yt+1) = I(yt+1 ≤ r) to concentrate on the left tail, it follows from
the lower panel of Figure 1 that if the threshold r < y∗, the average weighted log score
can never be positive and will be strictly negative whenever there are observations in the
tail. Evidently the test of equal predictive accuracy will then favor the fat-tailed Student-t
density ĝt(yt+1), even if the true density is the standard normal f̂t(yt+1).

We emphasize that the problem sketched above is not limited to the logarithmic scor-
ing rule but occurs more generally. For example, Berkowitz (2001) advocates the use
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of the inverse normal transform zf̂ ,t+1, as defined before, motivated by the fact that if
f̂t is correctly specified, these should be an i.i.d. standard normal sequence. Taking the
standard normal log-likelihood of the transformed data leads to the following scoring rule:

SN(f̂t; yt+1) = log φ(zf̂ ,t+1) = −1

2
log(2π)− 1

2
z2

f̂ ,t+1
. (6)

Although for a correctly specified density forecast the sequence {zf̂ ,t+1} is i.i.d. nor-
mal, tests for the comparative accuracy of density forecasts in a particular region based
on the normal log-likelihood may be biased towards incorrect alternatives. A weighted
normal scoring rule of the form

SwN(f̂t; yt+1) = w(yt+1) log φ(zf̂ ,t+1) (7)

also would not guarantee that a correctly specified density forecast is preferred over an
incorrectly specified density forecast. Figure 2 illustrates this point for standard normal
and standardized Student-t(5) distributions, denoted as f̂t and ĝt as before. When focusing
on the left tail by using the threshold weight function w(yt+1) = I(yt+1 ≤ r), it is seen that
|zf̂ ,t+1| > |zĝ,t+1| for all values of y less than y∗ ≈ −2. As for the weighted logarithmic
scoring rule (4), it then follows that if the threshold r < y∗ the relative score dwN

t+1 =
1
2
w(yt+1)(z

2
ĝ,t+1 − z2

f̂ ,t+1
) is strictly negative for observations yt+1 in the left tail and zero

otherwise, such that the test based on the average score difference d
wN

is biased against
the Student-t alternative.

Berkowitz (2001) proposes a different way to use the scoring rule based on the normal
transform for evaluation of the accuracy of density forecasts in the left tail, based on the
idea of censoring. Specifically, for a given quantile 0 < α < 1, define the censored normal
log-likelihood (CNL) score function

ScN(f̂t, yt+1) = I(F̂t(yt+1) < α) log φ(zf̂ ,t+1) + I(F̂t(yt+1) ≥ α) log(1− α)

= w(zf̂ ,t+1) log φ(zf̂ ,t+1) + (1− w(zf̂ ,t+1)) log(1− α), (8)

where w(zf̂ ,t+1) = I(zf̂ ,t+1 < Φ−1(α)), which is equivalent to I(F̂t(yt+1) < α). The
CNL scoring rule evaluates the shape of the density forecast for the region below the αth
quantile and the frequency with which this region is visited. The latter form of (8) can
also be used to focus on other regions of interest by using a weight function w(Yt+1)
equal to one in the region of interest, together with α bf,t = Pf̂ ,t(w(Yt+1) = 1). One can
arrange for the weight functions of competing density forecasts to coincide by allowing
α to depend on the predictive density at hand. Particularly, in the case of the threshold
weight function the same threshold r can be used for two competing density forecasts by
using two different values of α, equal to the left exceedance probability of the value r for
the respective density forecast.

Although it is perfectly valid to assess the quality of an individual density forecast in
an absolute sense based on (8), see Berkowitz (2001), this scoring rule should be used with
caution when testing the relative accuracy of competing density forecasts, as considered
by Bao et al. (2004). Like the WL scoring rule, the CNL scoring rule with the threshold
weight function has a tendency to favor predictive densities with more probability mass in
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Figure 2: Inverse normal transformations zf̂ ,t+1 = Φ−1(F̂t(yt+1)) of the probability integral
transforms of the standard normal distribution (solid line) and the standardized Student-t(5) dis-
tribution (dashed line).

the left tail. Suppose Ĝt(yt+1) is fat-tailed on the left whereas F̂t(yt+1) is not. For values
of yt+1 sufficiently far in the left tail it then holds that F̂t(yt+1) < Ĝt(yt+1) < 1

2
. Because

of the asymptote of Φ−1(s) at s = 0, zf̂ ,t+1 = Φ−1
(
F̂t(yt+1)

)
will be much larger in

absolute value than zĝ,t+1 = Φ−1
(
Ĝt(yt+1)

)
, so that φ(zf̂ ,t+1) = −1

2
log(2π)− 1

2
z2

f̂ ,t+1
�

−1
2
log(2π)− 1

2
z2

ĝ,t+1 = φ(zĝ,t+1). That is, a much higher score is assigned to the fat-tailed
predictive density ĝt than to f̂t.

3 Scoring rules based on partial likelihood
The example in the previous section demonstrates that intuitively reasonable scoring rules
can in fact favor the wrong density forecast when the evaluation concentrates on a partic-
ular region of interest. We argue that this can be avoided by requiring that score functions
correspond to the logarithm of a (partial) likelihood function associated with the outcome
of some statistical experiment. To see this, note that in the standard, unweighted case the
log-likelihood score log f̂t(yt+1) is useful for measuring the divergence between a candi-
date density f̂t and the true density pt, because, under the constraint

∫∞
−∞ f̂t(yt+1) dy = 1,
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the expectation

EY [log f̂t(Yt+1)] ≡ E[log f̂t(Yt+1)|Yt+1 ∼ pt(yt+1)]

is maximized by taking f̂t = pt. This follows from the fact that for any density f̂t different
from pt we obtain

EY

[
log

(
f̂t(Yt+1)

pt(Yt+1)

)]
≤ EY

[
f̂t(Yt+1)

pt(Yt+1)

]
− 1 =

∫ ∞

−∞
pt(y)

f̂t(y)

pt(y)
dy − 1 ≤ 0,

applying the inequality log x ≤ x− 1 to f̂t/pt.
This shows that log-likelihood scores of different forecast methods can be compared in

a meaningful way, provided that the densities under consideration are properly normalized
to have unit total probability. The quality of a normalized density forecast f̂t can therefore
be quantified by the average score EY [log f̂t(Yt+1)]. If pt(y) is the true conditional density
of Yt+1, the KLIC is nonnegative and defines a divergence between the true and an approx-
imate distribution. If the true data generating process is unknown, we can still use KLIC
differences to measure the relative performance of two competing densities, which renders
the logarithmic score difference discussed before, dl

t+1 = log f̂t(yt+1)− log ĝt(yt+1).
The implication from the above is that likelihood-based scoring rules may still be used

to assess the (relative) accuracy of density forecasts in a particular region of the distribu-
tions, as long as the scoring rules correspond to (possibly partial) likelihood functions. In
the specific case of the threshold weight function w(yt+1) = I(yt+1 ≤ r) we can break
down the observation of Yt+1 in two stages. First, it is revealed whether Yt+1 is smaller
than the threshold value r or not. We introduce the random variable Vt+1 to denote the
outcome of this first stage experiment, defining it as

Vt+1 =

{
1 if Yt+1 ≤ r,
0 if Yt+1 > r.

(9)

In the second stage the actual value Yt+1 is observed. The second stage experiment cor-
responds to a draw from the conditional distribution of Yt+1 given the region (below or
above the threshold) in which Yt+1 lies according to the outcome of the first stage, as
indicated by Vt+1. Note that we may easily allow for a time varying threshold value rt.
However, this is not made explicit in the subsequent notation to keep the exposition as
simple as possible.

Any (true or false) probability density function ft of Yt+1 given Ft can be written as
the product of the probability density function of Vt+1, which is revealed in the first stage
binomial experiment, and that of the second stage experiment in which Yt+1 is drawn
from its conditional distribution given Vt+1. The likelihood function associated with the
observed values Vt+1 = I(Yt+1 ≤ r) = v and subsequently Yt+1 = y can thus be written
as the product of the likelihood of Vt+1, which is a Bernoulli random variable with success
probability F (r), and that of the realization of Yt+1 given v:

(F (r))v(1− F (r))1−v

[
f(y)

1− F (r)
I(v = 0) +

f(y)

F (r)
I(v = 1)

]
.
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By disregarding either the information revealed by Vt+1 or Yt+1|v (possibly depending on
the first-stage outcome Vt+1) we can construct various partial likelihood functions. This
enables us to formulate several scoring rules that may be viewed as weighted likelihood
scores. As these still can be interpreted as a true (albeit partial) likelihood, they can be
used for comparing the predictive accuracy of different density forecasts. In the following,
we discuss two specific scoring rules as examples.

Conditional likelihood scoring rule For a given density forecast f̂t, if we decide to
ignore information from the first stage and use the information revealed in the second stage
only if it turns out that Vt+1 = 1 (that is, if Yt is a tail event), we obtain the conditional
likelihood (CL) score function

Scl(f̂t; yt+1) = I(yt+1 ≤ r) log(f̂t(yt+1)/F̂t(r)). (10)

The main argument for using such a score function would be to evaluate density fore-
casts based on their behavior in the left tail (values less than or equal to r). However,
due to the normalization of the total tail probability we lose information of the original
density forecast on how often tail observations actually occur. This is because the infor-
mation regarding this frequency is revealed only by the first-stage experiment, which we
have explicitly ignored here. As a result, the conditional likelihood scoring rule attaches
comparable scores to density forecasts that have similar tail shapes, but completely dif-
ferent tail probabilities. This tail probability is obviously relevant for risk management
purposes, in particular for Value-at-Risk evaluation. Hence, the following scoring rule
takes into account the tail behavior as well as the relative frequency with which the tail is
visited.

Censored likelihood scoring rule Combining the information revealed by the first stage
experiment with that of the second stage provided that Yt+1 is a tail event (Vt+1 = 1), we
obtain the censored likelihood (CSL) score function

Scsl(f̂t; yt+1) = I(yt+1 ≤ r) log f̂t(yt+1) + I(yt+1 > r) log(1− F̂t(r)). (11)

This scoring rule uses the information of the first stage (essentially information regarding
the CDF F̂t(y) at y = r) but apart from that ignores the shape of ft(y) for values above
the threshold value r. In that sense this scoring rule is similar to that used in the Tobit
model for normally distributed random variables that cannot be observed above a certain
threshold value (see Tobin, 1958). To compare the censored likelihood score with the
censored normal score of (8), consider the case α = F̂t(r) in the latter. The indicator
fuctions, as well as the second terms, in both scoring rules then coincide exactly, while
the only difference between the scoring rules is that log f̂t(yt+1) occurs in the CSL rule
in place where the CNL rule has log φ(zf̂ ,t+1). It is the latter term that gave rise to the
(too) high scores in the left tail to the standardized t(5)-distribution in case the correct
distribution is the standard normal.

We may test the null hypothesis of equal performance of two density forecasts f̂t(y)
and ĝt(y) based on the conditional likelihood score (10) or the censored likelihood score
(11) in the same manner as before. That is, given a sample of density forecasts and
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Figure 3: Empirical CDFs of mean relative scores d
∗

for the weighted logarithmic (WL) scoring
rule in (4), the censored normal likelihood (CNL) in (8), the conditional likelihood (CL) in (10),
and the censored likelihood (CSL) in (11) for series of P = 2000 independent observations from a
standard normal distribution. The scoring rules are based on the threshold weight function w(y) =
I(y ≤ r) with r = −2.5. The relative score is defined as the score for (correct) standard normal
density minus the score for the standardized Student-t(5) density. The graph is based on 10, 000
replications.

corresponding realizations for P time periods R + 1, . . . , T , we may form the relative
scores dcl

t+1 = Scl(f̂t; yt+1) − Scl(ĝt; yt+1) and dcsl
t+1 = Scsl(f̂t; yt+1) − Scsl(ĝt; yt+1) and

use these as the basis for computing a Diebold-Mariano type test statistic of the form given
in (2).

We revisit the example from the previous section in order to illustrate the properties of
the various scoring rules and the associated tests for comparing the accuracy of competing
density forecasts. We generate 10, 000 independent series of P = 2000 independent
observations yt+1 from a standard normal distribution. For each sequence we compute the
mean value of the weighted logarithmic scoring rule in (4), the censored normal likelihood
in (8), the conditional likelihood in (10), and the censored likelihood in (11). For the WL
scoring rule score we use the threshold weight function w(yt+1) = I(yt+1 ≤ r), where
the threshold is fixed at r = −2.5. The CNL score is used with α = Φ(r), where Φ(·)
represents the standard normal CDF. The threshold value r = −2.5 is also used for the CL
and CSL scores. Each scoring rule is computed for the (correct) standard normal density
f̂t and the standardized Student-t density ĝt with five degrees of freedom.

Figure 3 shows the empirical CDF of the mean relative scores d
∗
, where ∗ is wl, cnl,

cl or csl. The average WL and CNL scores take almost exclusively negative values, which
means that for the weight function considered, on average they attach a lower score to
the correct normal distribution than to the Student-t distribution, leading to a bias in the
corresponding test statistic towards the incorrect, fat-tailed distribution. The two scoring
rules based on partial likelihood both correctly favor the true normal density. The scores of
the censored likelihood rule appear to be better at detecting the inadequacy of the Student-
t distribution, in the sense that its relative scores stochastically dominate those based on
the conditional likelihood.

We close this section by noting that the validity of the CL and CSL scoring rules in (10)
and (11) does not depend on the particular definition of Vt+1 (or weight function w(Yt+1))
used. The two scoring rules discussed above focus on the case where Vt+1 = I(Yt+1 ≤
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r). This step function is the analogue of the threshold weight function w(Yt+1) used in
the introductory example which motivated our approach. This weight function seems an
obvious choice in risk management applications, as the left tail behavior of the density
forecast then is of most concern. In other empirical applications of density forecasting,
however, the focus may be on a different region of the distribution, leading to alternative
weight functions. For example, for monetary policymakers aiming to keep inflation within
a certain range, the central part of the distribution may be of most interest, suggesting to
define Vt+1 as Vt+1 = I(rl ≤ Yt+1 ≤ ru) for given lower and upper bounds rl and ru.

4 Smooth weight functions and generalized scoring rules
The conditional and censored likelihood scoring rules in in (10) and (11) with the par-
ticular definitions of Vt+1 and corresponding weight functions w(Yt+1) strictly define a
precise region for which the density forecasts are evaluated. This is appropriate in case
it is perfectly obvious which specific region is of interest. In practice this may not be so
clear-cut, and it may be desirable to define a certain region with less stringent bounds.
For example, instead of the threshold weight function w(Yt+1) = I(Yt+1 ≤ r), we may
consider a logistic weight function of the form

w(Yt+1) = 1/(1 + exp(a(Yt+1 − r))) with a > 0. (12)

This sigmoidal function changes monotonically from 1 to 0 as Yt+1 increases, with w(r) =
1
2

and the slope parameter a determining the speed of the transition. Note that in the limit
as a → ∞, the threshold weight function I(Yt+1 ≤ r) is recovered. In this section
we demonstrate how the partial likelihood scoring rules can be generalized to alternative
weight functions, including smooth functions such as (12).

This can be achieved by not taking Vt+1 as a deterministic function of Yt+1 as in (9)
but instead allowing Vt+1 to take the value 1 with probability w(Yt+1) and 0 otherwise,
that is,

Vt+1|Yt+1 =

{
1 with probability w(Yt+1),

0 with probability 1− w(Yt+1),
(13)

so that Vt+1 given Yt+1 is a Bernoulli random variable with success probability w(Yt+1). In
this more general setting the two-stage experiment can still be thought of as observing only
Vt+1 in the first stage and Yt+1 in the second stage. The (partial) likelihoods based on the
first and/or second stage information then allow the construction of more general versions
of the CL and CSL scoring rules, involving the weight function w(Yt+1). To see this, recall
that the CL and CSL scoring rules based on the threshold weight function either include
the likelihood from the second stage experiment or ignore it, depending on whether Vt+1 is
one or zero, respectively. Applying the same recipe in this more general case would lead
to a random scoring rule, depending on the realization of the random variable Vt+1 given
Yt+1. Nevertheless, being likelihood-based scores, these random scores could be used
for density forecast comparison, provided that the same realizations of Vt+1 are used for
both density forecasts under consideration. Random scoring rules would obviously not be
very practical, but it is important to notice their validity from an partial likelihood point
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of view. In practice we propose to integrate out the random variation by averaging the
random scores over the conditional distribution of Vt+1 given Yt+1, which is independent
of the density forecast. The following clarifies how this leads to generalized CL and CSL
scoring rules.

Generalized conditional likelihood scoring rule For the first scoring rule, where only
the conditional likelihood of Yt+1 given Vt+1 = 1 is used and no other information on the
realized values of Vt+1, the likelihood given Vt+1 is

I(Vt+1 = 1|Yt+1) log

(
f̂t(Yt+1)

Pf̂ (Vt+1 = 1)

)
,

where Pf̂ (Vt+1 = 1) is the probability that Vt+1 = 1 under the assumption that Yt+1 has
density f̂t. This is a random score function, in the sense that it depends on the random
variable Vt+1. Averaging over the conditional distribution of Vt+1 given Yt+1 leads to
EVt+1|Yt+1;f [I(Vt+1 = 1|Yt+1)] = Pf̂ (Vt+1 = 1|Yt+1) = w(Yt+1), so that the score averaged
over Vt+1, given Yt+1, is

S(f̂t; Yt+1) = w(Yt+1) log

(
f̂t(Yt+1)∫∞

−∞ f̂t(x)w(x) dx

)
. (14)

It can be seen that this is a direct generalization of the CL scoring rule given in (10), which
is obtained by choosing w(Yt+1) = I(Yt+1 ≤ r).

Generalized censored likelihood scoring rule As mentioned before, the conditional
likelihood scoring rule is based on the conditional likelihood of the second stage experi-
ment only. The censored likelihood scoring rule also includes the information revealed by
the realized value of Vt+1, that is, the first stage experiment. The log likelihood based on
Yt+1 and Vt+1 is

I(Vt+1 = 1) log f̂t(Yt+1) + I(Vt+1 = 0) log

(∫ ∞

−∞
f̂(x)(1− w(x)) dx

)
,

which, after averaging over Vt+1 given Yt+1 gives the scoring rule

S(f̂t; Yt+1) = w(Yt+1) log f̂t(Yt+1)+ (1−w(Yt+1)) log

(
1−

∫ ∞

−∞
f̂(x)w(x) dx

)
. (15)

The choice w(Yt+1) = I(Yt+1 ≤ r) gives the CSL scoring rule as given in (11).
Returning to the simulated example concerning the comparison of the normal and

Student-t density forecasts, we consider logistic weight functions as given in (12). We fix
the center at r = −2.5 and vary the slope parameter a among the values 1, 2, 5, and 10.
The integrals

∫
f̂t(y)w(y) dy and

∫
ĝt(y)w(y) dy for the threshold weight function were

determined numerically with the CDF routines from the GNU Scientific Library. For other
weight functions the integrals were determined numerically by averaging w(yt+1) over a
large number (106) of simulated random variables yt+1 with density f̂t and ĝt, respectively.
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Figure 4: Empirical CDFs of mean relative scores d
∗

for the generalized conditional likelihood
(CL) and censored likelihood (CSL) scoring rules for series of P = 2000 independent observations
from a standard normal distribution. The scoring rules are based on the logistic weight function
w(y) defined in (12) for various values of the slope parameter a. The relative score is defined as
the score for (correct) standard normal density minus the score for the standardized Student-t(5)
density. The graph is based on 10, 000 replications.

Figure 4 shows the empirical CDFs of the mean relative scores d
∗

obtained with the
conditional likelihood and censored likelihood scoring rules for the different values of
a. It can be observed that for the smoothest weight function considered (a = 1) the
two score distributions are very similar. The difference between the scores increases as
a becomes larger. For a = 10, the logistic weight function is already very close to the
threshold weight function I(yt+1 ≤ r), such that for larger values of a essentially the same
score distributions are obtained. The score distributions become more similar for smaller
values of a because, as a → 0, w(yt+1) in (12) converges to a constant equal to 1

2
for all

values of yt+1, so that w(yt+1) − (1 − w(yt+1)) → 0, and moreover
∫

w(y)f̂t(y) dy =∫
w(y)ĝt(y) dy → 1

2
. Consequently, both scoring rules converge to the unconditional

likelihood (up to a constant factor 2) and the relative scores dcl
t+1 and dcsl

t+1 have the limit

1

2
(log ĝt(yt+1)− log f̂t(yt+1)).
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5 Monte Carlo simulations
In this section we examine the implications of using the weighted logarithmic scoring
rule in (4), the censored normal likelihood in (8), the conditional likelihood in (10), and
the censored likelihood in (11) for constructing a test of equal predictive ability of two
competing density forecasts. Specifically, we consider the size and power properties of
the Diebold-Mariano type test as given in (2). The null hypothesis states that the two
competing density forecasts have equal expected scores, or

H0 : E[d∗t+1] = 0,

under scoring rule ∗, where ∗ is either wl, cnl, cl or csl. We focus on one-sided rejection
rates to highlight the fact that some of the scoring rules may favor a wrongly specified
density forecast over a correctly specified one. Throughout we use a HAC-estimator for
the asymptotic variance of the relative score d∗t+1, that is σ̂2 = γ̂0 + 2

∑K−1
k=1 akγ̂k, where

γ̂k denotes the lag-k sample covariance of the sequence {d∗t+1}T−1
t=R and ak are the Bartlett

weights ak = 1− k/K with K = bP−1/4c, where P = T −R is the sample size.

5.1 Size
In order to assess the size properties of the tests a case is required with two competing
predictive densities that are both ‘equally (in)correct’. However, whether or not the null
hypothesis of equal predictive ability holds depends on the weight function w(yt+1) that is
used in the scoring rules. This complicates the simulation design, also given the fact that
we would like to examine how the behavior of the tests depends on the specific settings of
the weight function. For the threshold weight function w(yt+1) = I(yt+1 ≤ r) it appears to
be impossible to construct an example with two different density forecasts having identical
predictive ability regardless of the value of r. We therefore evaluate the size of the tests by
focusing on the central part of the distribution using the weight function w(y) = I(−r ≤
y ≤ r). As mentioned before, in some cases this region of the distribution may be of
primary interest, for instance to monetary policymakers aiming to keep inflation between
certain lower and upper bounds. The data generating process (DGP) is taken to be an
i.i.d. standard normal distribution, while the two competing density forecasts are normal
distributions with means equal to −0.2 and 0.2, and variance equal to 1. In this case,
independent of the value of r the competing density forecasts have equal predictive ability,
as the scoring rules considered here are invariant under a simultaneous reflection about
zero of all densities of interest (the true conditional density as well as the two competing
density forecasts under consideration). In addition, it turns out that for this combination
of DGP and predictive densities, the relative scores d∗t+1 for the WL, CL and CSL rules
based on w(y) = I(−r ≤ y ≤ r) are identical. For this weight function the CNL rule
takes the form of the last expression in (8), with α = Pt(Yt+1 = 1) = P(−r ≤ Yt+1 ≤
r) = Φ(r)− Φ(−r).

Figure 5 displays one-sided rejection rates (at nominal significance levels of 1, 5 and
10%) of the null hypothesis against the alternative that the N(0.2, 1) distribution has better
predictive ability as a function of the threshold value r, for sample size P = 500 (based
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Figure 5: One-sided rejection rates of the Diebold-Mariano type test statistic of equal predictive
accuracy defined in (2) when using the weighted logarithmic (WL), the censored normal likelihood
(CNL), the conditional likelihood (CL), and the censored likelihood (CSL) scoring rules, under the
weight function w(y) = I(−r ≤ y ≤ r) for sample size P = 500, based on 10,000 replications.
The DGP is i.i.d. standard normal. The test compares the predictive accuracy of N(−0.2, 1) and
N(0.2, 1) distributions. The graph shows rejection rates against the alternative that the N(0.2, 1)
distribution has better predictive ability.

on 10,000 replications). The rejection rates of the tests are quite close to the nominal sig-
nificance levels for all values of r. Unreported results for different values of P show that
this holds even for sample sizes as small as 100 observations. Hence, the size properties
of the tests appear to be satisfactory.

It is useful to note that the rejection rates of the CNL scoring rule converge to those
based on the WL/CL/CSL scoring rules for large values of r, when practically the entire
distribution is taken into account. This is due to the fact that the ‘unconditional’ scoring
rules (which are obtained as r → ∞) all coincide as they become equal to scores based
on the unconditional normal likelihood.

5.2 Power
We evaluate the power of the test statistics by performing simulation experiments where
one of the competing density forecasts is correct, in the sense that it corresponds with the
underlying DGP. In that case the true density always is the best possible one, regardless of
the region for which the densities are evaluated, that is, regardless of the weight function
used in the scoring rules. Given that our main focus in this paper has been on comparing
density forecasts in the left tail, in these experiments we return to the threshold weight
function w(y) = I(y ≤ r) for the WL, CL and CSL rules. For each value of r considered,
the CNL score is used with α = Φ(r), where Φ(·) represents the standard normal CDF.

Figures 6 and 7 plot the observed rejection rates for sample sizes P = 500 and 2000,
respectively (again based on 10, 000 replications), for data drawn from the standard nor-

16



 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2  0  2  4

re
je

ct
io

n 
ra

te

threshold r

WL
CNL

CL
CSL

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2  0  2  4

re
je

ct
io

n 
ra

te

threshold r

WL
CNL

CL
CSL

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2  0  2  4

re
je

ct
io

n 
ra

te

threshold r

WL
CNL

CL
CSL

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2  0  2  4

re
je

ct
io

n 
ra

te

threshold r

WL
CNL

CL
CSL

Figure 6: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano
type test statistic of equal predictive accuracy defined in (2) when using the weighted logarithmic
(WL), the censored normal likelihood (CNL), the conditional likelihood (CL), and the censored
likelihood (CSL) scoring rules, under the threshold weight function w(y) = I(y ≤ r) for sample
size P = 500, based on 10,000 replications. For the graphs in the top and bottom rows, the
DGP is i.i.d. standard normal and i.i.d. standardized t(5), respectively. The test compares the
predictive accuracy of the standard normal and the standardized t(5) distributions. The graphs in
the left (right) panels show rejection rates against superior predictive ability of the standard normal
(standardized t(5)) distribution, as a function of the threshold parameter r.

mal distribution (top row) or the standardized Student-t(5) distribution (bottom row). In
both cases, the null hypothesis being tested is equal predictive accuracy of standard nor-
mal and standardized t(5) density forecasts. The left (right) panels in these Figures show
rejection rates (at nominal significance level 5%) against superior predictive ability of the
standard normal (standardized t(5)) distribution, as a function of the threshold parame-
ter r. Hence, the top left and bottom right panels report true power (rejections in favor
of the correct density), while the top right and bottom left panels report spurious power
(rejections in favor of the incorrect density).

Several interesting conclusions emerge from these graphs. First, for large values of
the threshold r, the tests based on the WL, CL and CSL scoring rules behave similarly
(recall that they become identical when r → ∞) and achieve rejection rates against the
correct alternative of around 80% for P = 500 and nearly 100% for P = 2000. When
the threshold r is fairly large, the CNL-based test has even better power properties for
the standard normal DGP, with rejection rates close to 100% already for P = 500. By
contrast, it has no power whatsoever in case of the standardized Student-t DGP. The latter
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Figure 7: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano
type test statistic of equal predictive accuracy defined in (2) when using the weighted logarithmic
(WL), the censored normal likelihood (CNL), the conditional likelihood (CL), and the censored
likelihood (CSL) scoring rules, under the threshold weight function w(y) = I(y ≤ r) for sample
size P = 2000, based on 10,000 replications. Specifications of the simulation experiments are
identical to Figure 6.

occurs because in this case the normal scoring rule in (6) (which is the limiting case of
the CNL-rule when r →∞) has the same expected value for both density forecasts, such
that the null hypothesis of equal predictive accuracy actually holds true. To see this, let
f̂t(y) and ĝt(y) denote the N(0, 1) and standardized t(5) density forecasts, respectively,
with corresponding CDFs F̂t and Ĝt and inverse normal transforms Zf,t+1 and Zg,t+1. It
then follows that

Et(Z
2
f,t+1) =

∫ ∞

−∞
(yt+1)

2 ĝt(yt+1) dyt+1 = Vart(Yt+1) = 1,

and

Et(Z
2
g,t+1) =

∫ ∞

−∞

(
Φ−1(Ĝt(yt+1))

)2

ĝt(yt+1) dyt+1 =

∫ 1

0

(
Φ−1(u))

)2
du = 1,

such that E[dcN
t+1] = 0 when r becomes large.

Second, the power of the weighted logarithmic scoring rule depends strongly on the
threshold parameter r. For the normal DGP, for example, the test has excellent power
for values of r larger than 2 and between −2 and 0, but for other threshold values the
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Figure 8: Mean relative WL score E[dwl
t+1] with threshold weight function w(y) = I(y ≤ r) for

the standard normal versus the standardized t(5) density as a function of the threshold value r, for
the standard normal DGP.

rejection rates against the correct alternative drop to zero. In fact, for these regions of
threshold values, we observe substantial rejection rates against the incorrect alternative of
superior predictive ability of the Student-t density. Comparing Figures 6 and 7 shows that
this is not a small sample problem. In fact, the spurious power increases as P becomes
larger. To understand the non-monotonous nature of these power curves, we use numerical
integration to obtain the mean relative score E[dwl

t+1] for various values of the threshold
r for i.i.d. standard normal data. The results are shown in Figure Figure 8. It can be
observed that the mean changes sign several times, in exact accordance with the patterns
in the top panels of Figures 6 and 7. Whenever the mean score difference (computed
as the score of the standard normal minus the score of the standardized t(5) density) is
positive the associated test has high power, while it has high spurious power for negative
mean scores. Similar considerations also explain the spurious power that is found for the
CNL scoring rule. Note that in case of the normal DGP, the rejection rates against the
incorrect alternative are particularly high for those values of r that are most relevant when
the interest is in comparing the predictive accuracy for the left tail of the distribution,
suggesting that the CNL-rule is not suitable for this purpose.

Third, we find that the tests based on our partial likelihood scoring rules have reason-
able power when a considerable part of the distribution is taken into account. For positive
threshold values, rejection rates against the correct alternative are between 50 and 80%
for P = 500 and close to 100% for the larger sample size P = 2000. For the CL-based
test, power declines as r becomes smaller, due to the reduced number of observations
falling in the relevant region that is taken into consideration. The power of the CSL-based
statistic remains higher, in particular for the normal DGP, suggesting that the additional
information concerning the actual coverage probability of the left tail region helps to dis-
tinguish between the competing density forecasts. Perhaps even more importantly, we find
that the partial likelihood scores do not suffer from spurious power. For both the CL and
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Figure 9: One-sided rejection rates (at nominal significance level 5%) of the Diebold-Mariano
type test statistic of equal predictive accuracy defined in (2) when using the weighted logarithmic
(WL), the censored normal likelihood (CNL), the conditional likelihood (CL), and the censored
likelihood (CSL) scoring rules, under the weight function w(y) = I(−r ≤ y ≤ r) for sample size
P = 500, based on 10,000 replications. The DGP is i.i.d. standard normal. The graphs on the left
and right show rejection rates against better predictive ability of the standard normal distribution
compared to the standardized t(5) distribution and vice versa.

CSL rules, the rejection rates against the incorrect alternative remain below the nominal
significance level of 5%. The only exception occurs for the i.i.d. standardized t(5) DGP,
where the CSL-based exhibits spurious power for small values of the threshold parameter
r when P = 500. Comparing the bottom-left panels of Figures 6 and 7 suggests that
this is a small sample problem though, as the rejection rates decline considerably when
increasing the number of forecasts to P = 2000.

Finally, to study the power properties of the tests when they are used to compare
density forecasts on the central part of the distribution, we perform the same simulation
experiments but using the weight function w(y) = I(−r ≤ y ≤ r) in the various scoring
rules. Only a small part of these results are included here; full details are available upon re-
quest. Figure 9 shows rejection rates obtained for an i.i.d. standard normal DGP, when we
test the null of equal predictive ability of the N(0, 1) and standardized t(5) distributions
against the alternative that either of these density forecasts has better predictive ability, for
sample size P = 500. The left panel shows rejection rates against better predictive per-
formance of the (correct) N(0, 1) density, while the right panel shows the spurious power,
that is rejection rates against better predictive performance of the (incorrect) standardized
t(5) distribution. Clearly, all tests have high power, provided that the observations from a
sufficiently wide interval (−r, r) are taken into account. It can also be observed that the
tests based on WL and CNL scores suffer from a large spurious power even for quite rea-
sonable values of r, while the spurious power for the tests based on the partial likelihood
scores remains smaller than the nominal level (5%).

6 Empirical illustration
We examine the empirical relevance of our partial likelihood-based scoring rules in the
context of the evaluation of density forecasts for daily stock index returns. We consider
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S&P 500 log-returns yt = ln(Pt/Pt−1), where Pt is the closing price on day t, adjusted
for dividends and stock splits. The sample period runs from January 1, 1980 until March
14, 2008, giving a total of 7115 observations (source: Datastream).

For illustrative purposes we define two forecast methods based on GARCH models
in such a way that a priori one of the methods is expected to be superior to the other.
Examining a large variety of GARCH specifications for forecasting daily US stock index
returns, Bao et al. (2007) conclude that the accuracy of density forecasts depends more
on the choice of the distribution of the standardized innovations than on the choice of
the volatility specification. Therefore, we differentiate our forecast methods in terms of
the innovation distribution, while keeping identical specifications for the conditional mean
and the conditional variance. We consider an AR(5) model for the conditional mean return
together with a GARCH(1,1) model for the conditional variance, that is

yt = µt + εt = µt +
√

htηt,

where the conditional mean µt and the conditional variance ht are given by

µt = ρ0 +
5∑

j=1

ρjyt−j,

ht = ω + αε2
t−1 + βht−1,

and the standardized innovations ηt are i.i.d. with mean zero and variance one.
Following Bollerslev (1987), a common finding in empirical applications has been

that GARCH models with a normal distribution for ηt are not able to fully account for the
kurtosis observed in stock returns. We therefore concentrate on leptokurtic distributions
for the standardized innovations. Specifically, for one forecast method the distribution of
ηt is specified as a (standardized) Student-t distribution with ν degrees of freedom, while
for the other forecast method we use the (standardized) Laplace distribution. Note that for
the Student-t distribution the degrees of freedom ν is a parameter that is to be estimated.
The degrees of freedom directly determines the value of the excess kurtosis of the stan-
dardized innovations, which is equal to 6/(ν− 4) (assuming ν > 4). Due to its flexibility,
the Student-t distribution has been widely used in GARCH modeling (see e.g. Bollerslev
(1987), Baillie and Bollerslev (1989)). The standardized Laplace distribution provides a
more parsimonious alternative with no additional parameters to be estimated and has been
applied in the context of conditional volatility modeling by Granger and Ding (1995) and
Mittnik et al. (1998)). The Laplace distribution has excess kurtosis of 3, which exceeds
the excess kurtosis of the Student-t(ν) distribution for ν > 6. Because of the greater
flexibility in modeling kurtosis, we may expect that the forecast method with Student-t
innovations gives superior density forecasts relative to the Laplace innovations. This is
indeed indicated by results in Bao et al. (2007), who evaluate these density forecasts
‘unconditionally’, that is, not focusing on a particular region of the distribution.

Our evaluation of the two forecast methods is based on their one-step ahead density
forecasts for returns, using a rolling window scheme for parameter estimation. The width
of the estimation window is set to R = 2000 observations, so that the number of out-of-
sample observations is equal to P = 5115. For comparing the density forecasts’ accuracy
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we use the Diebold-Mariano type test based on the weighted logarithmic scoring rule
in (4), the censored normal likelihood in (8), the conditional likelihood in (10), and the
censored likelihood in (11). We concentrate on the left tail of the distribution by using the
threshold weight function w(yt+1) = I(yt+1 ≤ rt) for the WL, CL and CSL scoring rules.
We consider two time-varying thresholds rt, that are determined as the one-day Value-
at-Risk estimates at the 95% and 99% level based on the corresponding quantiles of the
empirical CDF of the return observations in the relevant estimation window. For the CNL
scoring rule in (8) we use the corresponding values α = 0.05 and 0.01, respectively. The
score difference d∗t+1 is computed by subtracting the score of the GARCH-Laplace density
forecast from the score of the GARCH-t density forecast, such that positive values of d∗t+1

indicate better predictive ability of the forecast method based on Student-t innovations.
Table 1 shows the average score differences d

∗
with the accompanying tests of equal

predictive accuracy as in (2), where we use a HAC estimator for the asymptotic variance
σ̂2 to account for serial dependence in the d∗t+1 series. The results clearly demonstrate
that different conclusions follow from the different scoring rules. For both choices of
the threshold rt the WL and CNL scoring rules suggest superior predictive ability of the
forecast method based on Laplace innovations. By contrast, the CL scoring rule suggests
that the performance of the GARCH-t density forecasts is superior. The CSL scoring
rule points towards the same conclusion as the CL rule, although the evidence for better
predictive ability of the GARCH-t specification is somewhat weaker. In the remainder of
this section we seek to understand the reasons for these conflicting results, and explore
the consequences of selecting either forecast method for risk management purposes. In
addition, this allows us to obtain circumstantial evidence that shows which of the two
competing forecast methods is most appropriate.

For most estimation windows, the degrees of freedom parameter in the Student-t dis-
tribution is estimated to be (slightly) larger than 6, such that the Laplace distribution im-
plies fatter tails than the Student-t distribution. Hence, it may very well be that the WL
and CNL scoring rules indicate superior predictive ability of the Laplace distribution sim-
ply because this density has more probability mass in the region of interest, that is, the
problem that motivated our analysis in the first place. To see this from a slightly differ-
ent perspective, we compute one-day 95% and 99% Value-at-Risk (VaR) and Expected
Shortfall (ES) estimates as implied by the two forecast methods. The 100 × (1 − α)%
Value-at-Risk is determined as the α-th quantile of the density forecast f̂t, that is, through
Pf̂ ,t

(
Yt+1 ≤ VaRf̂ ,t(α)

)
= α. The Expected Shortfall is defined as the conditional mean

return given that Yt+1 ≤ VaRf̂ ,t(α), that is ESf̂ ,t(α) = Ef̂ ,t

(
Yt+1|Yt+1 ≤ VaRf̂ ,t(α)

)
.

Figure 10 shows the VaR estimates against the realized returns. We observe that typically
the VaR estimates based on the Laplace innovations are more extreme and, thus, imply
fatter tails than the Student-t innovations. The same conclusion follows from the sample
averages of the VaR and ES estimates, as shown in Table 2.

The VaR and ES estimates also enable us to assess which of the two innovation distri-
butions is the most appropriate in a different way. For that purpose, we first of all compute
the frequency of 95% and 99% VaR violations, which should be close to 0.05 and 0.01,
respectively, if the innovation distribution is correctly specified. We compute the likeli-
hood ratio (LR) test of correct unconditional coverage (CUC) suggested by Christoffersen
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Table 1: Average score differences and tests of equal predictive
accuracy

Scoring rule α = 0.05 α = 0.01

d
∗

Test d
∗

Test

WL -0.0053 -4.820 -0.0032 -3.835
CNL -0.0081 -5.269 -0.0068 -4.382
CL 0.0016 2.328 0.0008 1.819
CSL 0.0016 1.537 0.0012 1.373

Note: The table presents the average score difference d
∗

for the
weighted logarithmic (WL) scoring rule in (4), the censored nor-
mal likelihood (CNL) in (8), the conditional likelihood (CL) in
(10), and the censored likelihood (CSL) in (11). The WL, CL
and CSL scoring rules are based on the threshold weight function
w(yt+1) = I(yt+1 ≤ rt), where rt is the α-th quantile of the em-
pirical (in-sample) CDF, where α = 0.01 or 0.05. These values
for α are also used for the CNL scoring rule. The score difference
dt+1 is computed for density forecasts obtained from an AR(5)-
GARCH(1,1) model with (standardized) Student-t(ν) innovations
relative to the same model but with Laplace innovations, for daily
S&P500 returns over the evaluation period December 2, 1987 –
March 14, 2008.

Figure 10: Daily S&P 500 log-returns (black) for the period December 2, 1987 – March 14, 2008
and out-of-sample 95% and 99% VaR forecasts derived from the AR(5)-GARCH(1,1) specification
using Student-t innovations (light gray) and Laplace innovations (dark gray).
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Table 2: Value-at-Risk and Expected Shortfall characteristics

α = 0.05 α = 0.01
t(ν) Laplace t(ν) Laplace

Average VaR −0.0149 −0.0162 −0.0247 −0.0279
Coverage (yt ≤ VaRt) 0.0532 0.0407 0.0104 0.0055
CUC (p-value) 0.3019 0.0016 0.7961 0.0004
IND (p-value) 0.0501 0.3823 0.5809 0.5788
CCC (p-value) 0.0861 0.0046 0.8304 0.0015

Average ES −0.0209 −0.0235 −0.0312 −0.0351
McNeil-Frey (test stat.) 1.0678 0.0851 1.0603 1.9730
McNeil-Frey (p-value) 0.2856 0.9322 0.2890 0.0485

Note: The average VaRs reported are the observed average 5% and 1% quantiles of
the density forecasts based on the GARCH model with t(ν) and Laplace innovations,
respectively. The coverages correspond with the observed fraction of returns below
the respective VaRs, which ideally would coincide with the nominal rate α. The rows
labeled CUC, IND and CCC provide p-values for Christoffersen’s (1998) tests for cor-
rect unconditional coverage, independence of VaR violations, and correct conditional
coverage, respectively. The average ES values are the expected shortfalls (equal to the
conditional mean return, given a realization below the predicted VaR) based on the dif-
ferent density forecasts. The bottom two rows report McNeil-Frey test statistics and
corresponding p-values for evaluating the expected shortfall estimates ESf̂ ,t(α).

(1998) to determine whether the empirical violation frequencies differ significantly from
these nominal levels. Additionally, we use Christoffersen’s (1998) LR tests of indepen-
dence of VaR violations (IND) and for correct conditional coverage (CCC). Define the
indicator variables If̂ ,t+1(yt+1 ≤ VaRf̂ ,t(α)) for α = 0.05 and 0.01, which take the value
1 if the condition in brackets is satisfied and 0 otherwise. Independence of the VaR vi-
olations is tested against a first-order Markov alternative, that is, the null hypothesis is
given by H0 : E(If̂ ,t+1|If̂ ,t) = E(If̂ ,t+1). In words, we test whether the probability of
observing a VaR violation on day t + 1 is affected by observing a VaR violation on day
t or not. The CCC test simultaneously examines the null hypotheses of correct uncon-
ditional coverage and of independence, with the CCC test statistic simply being the sum
of the CUC and IND LR statistics. For evaluating the adequacy of the Expected Short-
fall estimates ESf̂ ,t(α) we employ the test suggested by McNeil and Frey (2000). For
every return yt that falls below the VaRf̂ ,t(α) estimate, define the standardized ‘residual’
et+1 = (yt+1 − ESf̂ ,t(α))/ht+1, where ht+1 is the conditional volatility forecast obtained
from the corresponding GARCH model. Under the null of correct specification, the ex-
pected value of et+1 is equal to zero, which can easily be assessed by means of a two-sided
t-test with HAC variance estimator.

The results reported in Table 2 show that the empirical VaR violation frequencies are
very close to the nominal levels for the Student-t innovation distribution. For the Laplace
distribution, they are considerably lower. This is confirmed by the CUC test, which con-
vincingly rejects the null of correct unconditional coverage for the Laplace distribution but
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not for the Student-t distribution. The null hypothesis of independence is not rejected in
any of the cases at the 5% significance level. Finally, the McNeil and Frey (2000) test does
not reject the adequacy of the 95% ES estimates for either of the two distributions, but it
does for the 99% ES estimates based on the Laplace innovation distribution. In sum, the
VaR and ES estimates suggest that the Student-t distribution is more appropriate than the
Laplace distribution, confirming the density forecast evaluation results obtained with the
scoring rules based on partial likelihood. In terms of risk management, using the GARCH-
Laplace forecast method would lead to larger estimates of risk than the GARCH-t forecast
method. This, in turn, could result in suboptimal asset allocation and ‘over-hedging’.

7 Conclusions
In this paper we have developed scoring rules based on partial likelihood functions for
evaluating the predictive ability of competing density forecasts. It was shown that these
scoring rules are particularly useful when the main interest lies in comparing the density
forecasts’ accuracy for a specific region, such as the left tail in financial risk management
applications. Conventional scoring rules based on KLIC or censored normal likelihood
are not suitable for this purpose. By construction they tend to favor density forecasts with
more probability mass in the region of interest, rendering the tests of equal predictive ac-
curacy biased towards such densities. Our novel scoring rules based on partial likelihood
functions do not suffer from this problem.

Monte Carlo simulations were used to demonstrate that the conventional scoring rules
may indeed give rise to spurious rejections due to the possible bias in favor of an incorrect
density forecast. The simulation results also showed that this phenomenon is virtually
non-existent for the new scoring rules, and where present, diminishes quickly upon in-
creasing the sample size.

In an empirical application to S&P 500 daily returns we investigated the use of the
various scoring rules for density forecast comparison in the context of financial risk man-
agement. It was shown that the scoring rules based on KLIC and censored normal like-
lihood functions and the newly proposed partial likelihood scoring rules can lead to the
selection of different density forecasts. The density forecasts preferred by the partial like-
lihood scoring rules appear to be more appropriate as they were found to result in more
accurate estimates of Value-at-Risk and Expected Shortfall.
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