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Summary:  
Self-reported data collected via surveys are often subject to measurement error caused 
by recall errors. While methods to minimize such problems are to be encouraged we 
argue that such errors are often unavoidable and need to be accommodated in 
estimation. Such methods have been developed to facilitate estimation in the case of a 
binary choice model with a misclassified dependent variable. These methods are 
extended to situations where the survey contains questions with multiple recall 
windows. The estimation procedure is illustrated using an analysis of Australian data 
on visits to a GP.  
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Introduction 
Measurement error is a pervasive problem in the collection of survey data. Recall 

error, where respondents provide inaccurate answers when recalling past events, is a 

major source of such problems; see for example Sudman and Bradburn (1973). 

Consider the case of the utilisation of various health services such as whether 

individuals have recently visited a doctor or had a Pap test. In such cases, survey 

designers aiming to reduce or eliminate recall error have an incentive to choose very 

short recall windows and ask whether a respondent has visited a GP in say the last 2 

weeks or not.  

 

While respondents are likely to be able to better recall visits over the last two weeks 

compared with say the last 6 months, Clarke, Fiebig and Gerdtham (2005) argue that 

the reduction in recall error will have an associated cost in terms of information loss. 

Moreover, they note that often a recall window that minimizes recall error will not be 

very policy relevant. For instance, women may be able to accurately recall whether 

they have had a Pap test in the last month but the policy relevant period is whether 

they have been tested in the last two years.  

 

Self-reported data collected via surveys are often subject to measurement error and 

while methods to minimize such problems are to be encouraged we contend that such 

errors are often unavoidable. As such procedures to cope with measurement error 

problems need to be developed and utilized; see for example the excellent survey by 

Bound, Brown and Mathiowetz (2000). When the utilisation variable is dichotomous 

and is the endogenous variable, Hausman, Abrevaya and Scott-Morton (1998) 

developed maximum likelihood (ML) and semi-parametric estimation procedures for 

a binary choice model where there is some probability that the choices are 

misclassified.  These methods have been used by Caudill and Mixon (2005), Kenkel, 

Lillard and Mathios (2004) and by Leece (2000) and extended to ordered choice 

problems by Dustman and van Soest (2004). See also Hsiao and Sun (1999).  

 

Our primary aim is to develop and illustrate an extension of the Hausman, Abrevaya 

and Scott-Morton (1998) ML estimation procedure when the survey contains 

utilisation questions over multiple recall windows. For example, respondents are 

asked if they have visited a GP in the last two weeks and if not whether they have 
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been in the last six months or not. Responses to the second question are likely to be 

subject to recall error and the procedures developed by Hausman, Abrevaya and 

Scott-Morton (1998) appropriate. However, it is reasonable to assume that responses 

to the first utilisation question are error-free and its availability provides accurate 

information (for a subset of observations) that is exploited in our suggested estimation 

approach. Interpreted in this way, the approach suggests an alternative to the 

collection of validation data and thus, for those involved in survey design, represents a 

very simple and cost effective means of validating part of the data.  

 

A survey designer would ask two utilisation questions over different recall windows. 

First, they put aside issues of recall error and decide on the most relevant and useful 

utilisation period for analysis. For example, there may be policy relevant periods such 

as recommended screening intervals. Then the narrow recall window would be chosen 

in order to generate error-free measures.  

 

In what follows, we develop the estimation procedure and illustrate and evaluate its 

use in an analysis of Australian data on visits to a GP.  

 

 

The econometric model  
Consider a binary variable yi that represents utilisation over some policy relevant 

target period and is generated according to:  

 

iiii pxFxy =′== )()|1Pr()1( β  
 

for i=1, … , n respondents and where xi represents a vector of explanatory variables 

and F(.) is a known (usually normal or logistic) cdf.  Assume yi is error-free but is not 

observed. Instead two binary variables y1i and y2i are observed where the latter is an 

error-ridden version of yi with misclassification errors. In particular, 

 

)1)(1()2( 2 iiiii ydydy −−+=  

 

where di is an unobserved binary indicator of whether the ith response is correctly 

classified or not.  The second binary variable, y1i is assumed to be an error-free 
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measure of utilisation but over a recall period that is shorter than that associated with 

yi and y2i. Because of the nesting structure of the recall windows, y1i = 1 implies y2i = 

yi = 1 and thus y1i identifies true positives amongst the error-ridden y2i observations. A 

subset of observations where di = 1 is observed and it is this extra information that we 

seek to exploit. It would be possible to extend the current analysis to a situation where 

the second binary variable, y1i is not error-free but where misclassification errors are 

less likely than in the longer recall period. Given our emphasis on survey design 

where the narrow recall window would be chosen to avoid this case, we leave this 

extension for future work.  

 

The model specification is completed by assuming a relationship between the 

observed, short-recall measure, y1i, and the unobserved error-free measure, yi.  Two 

possible specifications seem natural:  

 

10;)|1Pr()3( 1 ≤≤==′ αα iii pxy  

or 

.0);()|1Pr()3( 1 >′+−==′′ μβμ iii xFxy  

 

When no misclassification is assumed (3′) implies a multinomial regression model 

with three outcomes: (y1i =1, y2i =1), (y1i =0, y2i =1) and (y1i =0, y2i =0). In the 

particular case where F(.) is assumed to be logistic, this special case corresponds to a 

multinomial logistic (MNL) model with pooled states; see Cramer and Ridder (1991). 

Alternatively, (3′′) represents an ordered regression model with the outcomes 

representing three levels of duration since last utilization. The choice between these 

two alternatives is essentially an empirical matter and for the application to be 

provided below, the second specification in (3′′) is not supported by the data. Thus, in 

what follows it is (3′) that is developed to accommodate misclassification errors. This 

may not always be the case so we are not advocating that this should be the only 

possible specification considered to complete the model when using multiple recall 

windows as a means of internal validation of possibly error-ridden data.  

 

The misclassification probabilities are defined as: 
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where α represents the proportion of successes (yi = 1) occurring in the narrow recall 

period, π10 is the probability of a false positive and π∗01 is the (unconditional) 

probability of a false negative. When y1i is observed, define π01 as the probability of a 

false negative conditional on y1i = 0. Note that the classical errors-in-variable 

framework associated with continuous random variables is not appropriate in the 

discrete case being considered here. The measurement errors represented by (4) are 

clearly not independent of the true variable and in fact will be negatively correlated 

with y. 

 

Given these assumptions the implied generating process for y2i is given by 

 

.])1(1[)|1Pr()5( 1001102 iii pxy ππαπ −−−+==  

 

α = 0 corresponds to the case of no y1 data and the analysis relies solely on the 

mismeasured y2 data. This is the situation considered by Hausman, Abrevaya, and 

Scott-Morton (1998).      

 

With data on y1i and y2i, the three dummy variables representing the possible 

outcomes are: 

 

w11i = y1i y2i , w01i = (1-y1i )y2i and w00i =(1-y1i)(1-y2i). 

 

Then it follows  
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and the log-likelihood function is given by: 
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ML estimation using (7) will not be able to distinguish between two sets of parameter 

values; (α, β, π∗01, π10) and (α, -β, 1-π∗01, 1-π10). Thus for identification, we also 

assume that π∗01 + π10 < 1. Hausman, Abrevaya, and Scott-Morton (1998) refer to this 

as the monotonicity condition, which from (5), we see ensures that reported use 

increases in actual use.   

   

 

Application to modelling utilisation of GP services  
The endogenous variables are whether or not a respondent has visited a GP in the last 

2 weeks (y1= GP1) or in the last six months (y2= GP2). We expect utilisation to be 

affected by personal characteristics including age, household income, gender, their 

general health status, education, location, ethnicity, and whether they have private 

health insurance. Table 1 provides a brief description of the actual variables to be used 

in the analyses together with their sample means.  

 

These data are taken from the 2001 National Health Survey (NHS) which is the fifth 

health survey of its type conducted by the Australian Bureau of Statistics (ABS). The 

2001 NHS was conducted using a sample of 17,918 private dwellings across Australia 

representing a response rate of 92%. Within each sampled dwelling a random 

selection of usual residents were chosen including one adult, all children aged 6 or 

less and one child aged 7-17. In our analysis all children were excluded leaving a 

sample of 17,918 (adult) observations available for estimation. In a small number of 

cases (just over 1%) adult respondents were unable to answer for themselves and the 

person responsible for them was used as a proxy to answer questions. The data set 

contains 3,355 missing observations on the household income question accounting for 

approximately 19 percent of the sample.  These ‘item non-response’ observations are 

retained but are flagged by the introduction of the dummy variable ‘HINCMISS’ into 

the covariate set. 
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We first estimate a binary logit model for GP2 assuming no misclassification errors. 

These results are given in the first column of Table 2. In order to gain further insights 

into the magnitude of some of these effects, the results have been translated into 

impacts on probabilities. The estimated probability for a baseline case is determined. 

Then, characteristics are varied one at a time, and the new probability estimate is 

calculated. The probability estimates for three sets of results are reported in Table 3. 

Again, at this stage we only consider the relevant results provided in the column 

labelled “logit”.  

 

As would be expected under Australia’s Medicare system, health related factors, 

namely age and self-assessed health status (SAHS), are the important determinants of 

GP utilisation.  Although income is not found to be significant, other socioeconomic 

and demographic factors such as gender, ethnicity, education and area of residence are 

found to have a significant impact on GP utilisation. The baseline case in the 

probability calculations in Table 3 refers to a 40 year old male, in the lowest income 

decile who has fair SAHS, less than complete high school, has no private health 

insurance, is not Australian born and lives in a metropolitan area. The logit estimate 

for the probability that such an individual visited a GP in the last 6 months is 

estimated to be 0.761 with the largest change occurring when the SAHS is changed 

from fair to excellent in which case the estimated probability drops to 0.396. The age 

and SAHS profiles and the other predicted probabilities are sensible in terms of 

expected changes in probabilities relative to the base case but the magnitudes are 

potentially biased if misclassification errors are present. 

 

The Hosmer-Lemeshow (1989) goodness-of-fit test is performed with observations 

ordered into 20 groups by their expected probability of observing y2 = 1.  The 

resulting test statistic of 32.50 is above the relevant 5% critical value for a chi-square 

distribution with 18 degrees of freedom, which is 28.9.  Thus, the GP utilisation 

binary logit model with no misclassification is rejected at the 5% level.  Figure 1 

shows the expected and observed relative frequencies of GP utilisation in 20 classes 

of equal observations.  The graph shows a deviation of the expected frequencies from 

the actual ones at the low end of the expected probability.  This could be interpreted 

as evidence of misclassification, in particular the presence of false positives whereby 

respondents who have not been to a GP in the last six months say they have.   
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Now consider the possibility of misclassification in the variables representing visits in 

the last six months. The second column of Table 2 provides (EIV logit) estimates for 

the binary logit model with possibilities of misclassification developed by Hausman, 

Abrevaya and Scott-Morton (1998).  The result is consistent with what we observe 

from Figure 1.  The probability of false positives is estimated to be 0.33 whereas the 

probability of false negatives is small and statistically insignificant. The systematic 

difference in coefficient estimates in the first two columns of Table 2 and the 

difference in probability estimates in the first two columns of Table 3 is attributable to 

biases caused by not accounting for misclassification errors. For example, the 

predicted probabilities generated by the EIV logit for a GP visit in the last 6 months 

for the base case is 19% lower than that predicted by the logit model.  The percentage 

differences are even more pronounced for rarer events. When the base case is changed 

to be in excellent health the predicted probability of EIV logit is 0.159 which is 60% 

lower than that predicted by the logit model.  

 

To illustrate the extension of the Hausman, Abrevaya and Scott-Morton (1998) ML 

estimation procedure when the survey contains utilisation questions over multiple 

recall windows, we follow the procedure outlined above. In particular, we exploit the 

availability of presumably recall error-free information on whether or not a 

respondent has visited a GP in the last two weeks.  Support for this assumption is 

provided by application of the Hosmer-Lemeshow test to a binary logit model for 

GP1 where the test statistic is found to be 16.18 with a p-value of 0.58, which is 

consistent with no mis-specification.  The last column of Table 2 provides (MRW 

logit) estimates for the model presented in (7).   

 

Compared to the coefficient estimates for the binary logit with single recall window 

and misclassification, the estimates obtained from the multiple-recall-window model 

display the same signs, consistent statistical significance and similar magnitudes. 

Thus, in Table 3 it is not surprising to see that they also produce very similar 

estimated probabilities.  However, the multiple-recall-window model gives more 

precise estimates as indicated by uniformly smaller standard errors of the coefficient 

estimates. On average the MRW standard errors are approximately 15% less than 

those for EIV logit.  This is an efficiency gain that results from exploiting extra 
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information on the utilisation over a shorter recall period. The information provided 

by the GP1 responses effectively reduces the number of GP2=1 responses potentially 

misclassified. This information also translates into a much more precise estimate of 

the probability of a false positive which, with an estimated value of 0.40 is again 

found to be substantial. Just as for the EIV logit, the MRW logit produces an estimate 

of the probability of false negatives that is small and statistically insignificant. 

 

The additional parameter estimated with the MRW logit model is α. If there were no 

errors of misclassification then the MLE of α is simply the ratio of the sample 

proportions for y1 and y2 which for our data yields 0.28/0.73 = 0.38. Thus of those 

reporting at least one GP visit in the last six months, 38% reported a visit in the last 2 

weeks. Because a propensity for false positives has been found, this is an 

underestimate of this proportion and the MRW estimation results yield an estimate for 

α of 0.50.    

 

As mentioned in the development of the MRW model, (3′′) represents an alternative 

specification of the relationship between the observed, short-recall measure, y1i, and 

the unobserved error-free measure, yi.  Under this specification the binary logit using 

y1i alone is able to provide consistent coefficient estimates. This is the “parallel 

regressions” assumption of ordered regression models; see for example Long (1997). 

Using only y1i presents a problem with estimating the intercept as it will not be 

possible to separately identify the additional parameter μ and the intercept in the 

longer recall model; only their sum will be estimable. This is a problem if the aim is 

to predict utilisation probabilities but not if estimates of marginal effects are all that is 

required.  

 

For our current purposes the parallel regressions assumption is the basis for a 

convenient diagnostic check. If (3′′) did in fact provide a good approximation for our 

data then we would expect that coefficient estimates generated by a binary logit using 

the narrow recall variable, GP1, should yield coefficient estimates that are 

approximately equal to those estimated with using  GP2. On the other hand our 

current specification given in (3′) implies that the estimates from binary logit using 

GP1, should be systematically less in magnitude than the EIV logit estimates and this 

is in fact what we find; results for the former are not reported but are available on 
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request. The ratios of binary logit estimates for GP1 and EIV logit estimates for all 25 

coefficients (except the intercept) have a mean equal to 1.04 but a median of only 0.63 

because the mean is inflated by several outliers associated with coefficients that are 

not precisely estimated. Taking just the coefficients associated with the 16 EIV logit 

estimates in Table 2  that are significant at the 5% level, all have ratios less that unity 

with a mean of  0.49 and median of 0.46. For our particular application the alternative 

specification using (3′′) is not supported and so was not estimated.  

 

 

Simulation evidence  
In order to provide further evidence on the potential usefulness of the proposed 

approach we use our application as the basis of a small simulation study.  Our 

application has many estimated coefficients making it difficult to use directly as the 

basis for a simulation study. To simplify matters a single variable is produced 

corresponding to the estimated value of the index in equation (1).  Thus, the true data 

generating process for the unobserved error-free variable is assumed to be:  

    

iiii pzFzy === )()|1Pr()8( δ , 
 
where  with the estimated coefficients coming from the multiple recall 

window results of Table 2. δ is taken to be unity in all experiments and while an 

intercept is estimated in all models the true value is zero when generating the 

simulated choice data. 

β̂ii xz ′=

 
Probabilities of misclassification are varied as part of the experimental design but the 

overall amount of misclassification remains fixed at the level found in our application 

so that π10 + π01 = 0.4.  α, which governs the amount of internal validation made 

available by the narrow recall window, takes on values of 0.35 and 0.5. Given a 

particular design point we generate 100 Monte Carlo replications of y1 and y2 and then 

use y2 to estimate a logit model with and without accommodating for misclassification 

and use both y1 and y2 to estimate the multiple recall window logit.  The sample size is 

fixed at n = 17,918 for all distinct design points. 

 

The three estimators of δ are compared on the basis of three criteria: the finite sample 

bias, relative efficiency as measured by the root mean squared error (RMSE) and a 
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measure of how well the asymptotic standard errors (ASE) reflect the true variability 

of the estimators, represented by the ratio of the ASE and the RMSE. These results are 

presented in Table 4. There were some problems with convergence of the EIV and 

MRW estimation procedures and these cases were not included in the analysis. As a 

result some of the reported statistics are based on less than 100 observations. The 

problem was more prevalent for the EIV algorithm and thus one benefit of the extra 

information utilized with MRW is improvement in convergence. Across all design 

points and all iterations, the EIV algorithm failed to converge on 46 (7.6%) occasions 

while the MRW algorithm failed only 4 (0.7%) times. The vast majority of 

convergence failures occurred when π10 = 0.1 which corresponds to design points 

when there is likely to be fewer observations in the tails (predicted probabilities close 

to zero or unity) making it more difficult to estimate smaller amounts of 

misclassification.  

 

As expected there is clear downward bias in the logit estimates.  By contrast there is 

little bias in either the EIV or MRW logit estimates with all means over the 

replications close to the true value of unity. Where there is substantial improvement in 

MRW with respect to EIV is in terms of relative efficiency. The RMSE’s of MRW 

logit are systematically below those of EIV logit. Because of the substantial biases, 

the logit is clearly dominated by both EIV and MRW logit.    The asymptotic standard 

errors of EIV and MRW logit do a reasonable job of reflecting the true variability of 

the respective estimators. However, EIV logit tends to produce ASE’s that are larger 

than the true variability and thus tend to be too conservative. MRW logit is somewhat 

better performed on this metric, although does sometimes have a tendency to 

understate true variability.  

 

Admittedly this represents a limited exploration of the finite sample properties of 

these estimators and a more extensive investigation would be required to provide 

more refined recommendations. However, some broad conclusions are supported by 

the evidence. The MRW approach does seem to provide gains over the EIV approach 

in terms of computational robustness and relative efficiency. These key features of the 

results are consistent over all of the design points.   
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Conclusion 

This study has extended the Hausman, Abrevaya and Scott-Morton (1998) ML 

estimation procedure when the survey contains questions over multiple recall 

windows in an effort to better accommodate measurement error caused by recall 

errors.  The estimation procedure developed is illustrated in an analysis of Australian 

data on GP utilisation and by way of a small simulation study.  We found that 

exploiting information on GP utilisation over multiple recall windows in the 

estimation procedure improves the precision of the estimates and this is supported by 

the Monte Carlo simulations.  

 

If self-reported survey responses could be routinely validated using say medical 

provider records then problems caused by measurement errors could be eliminated or 

at least minimized. However, the combination of comprehensive survey data and 

accurate utilisation data from external sources is not common.  For those involved in 

survey design, the use of multiple recall windows may be a simple and useful device 

to provide more precise estimates when recall errors are likely to occur in asking 

utilisation questions over policy-relevant recall periods and where validation samples 

are not available.  
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Table 1: Data description and means 
Variables Description Mean 
GP1 1 if consulted a GP in the last two weeks 0.28 
GP2 1 if consulted a GP in the last six months 0.73 
AGEYRS Age in years 46.78 
HINC1 1 if household income in first decile 0.12 
HINC2 1 if household income in second decile 0.09 
HINC3 1 if household income in third decile 0.09 
HINC4 1 if household income in fourth decile 0.08 
HINC5 1 if household income in fifth decile 0.08 
HINC6 1 if household income in sixth decile 0.07 
HINC7 1 if household income in seventh decile 0.07 
HINC8 1 if household income in eighth decile 0.07 
HINC9 1 if household income in ninth decile 0.07 
HINC10 1 if household income in tenth decile 0.07 
HINCMISS 1 if household income figure missed 0.19 
FEMALE 1 if female 0.54 
HLTHEX 1 if self assessed health status excellent 0.17 
HLTHVG 1 if self assessed health status very good 0.32 
HLTHG 1 if self assessed health status good 0.31 
HLTHF 1 if self assessed health status fair 0.15 
HLTHP 1 if self assessed health status poor 0.05 
TERT 1 if tertiary qualifications 0.16 
DIPLOMA 1 if diploma 0.09 
TRADE 1 if trade 0.27 
NOQUAL 1 if only high school qualification 0.48 
METRO 1 if reside in the metropolitan regions 0.66 
INNER 1 if reside in the inner regions 0.21 
OTHERREG 1 if reside in other regions 0.13 
AUBORN 1 if Australian born 0.73 
HPHI 1 if have hospital private health insurance 0.47 
APHI 1 if have ancillary private health insurance 0.40 
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Table 2: GP Utilisation: Logit Estimation Results 
  Binary logit GP2 Multiple recall windows 

  
Without misclassification 

(logit) 
With misclassification 

(EIV logit) 
with misclassification 

(MRW logit) 

Constant 
3.3956** 
(0.2247) 

3.0806** 
(0.3308) 

3.0061** 
(0.3078) 

AGEYRS 
-0.0832** 
(0.0074) 

-0.1003** 
(0.0131) 

-0.0889** 
(0.0099) 

AGEYRS^2 
0.0011** 
(0.0001) 

0.0014** 
(0.0002) 

0.0012** 
(0.0001) 

HINC2 
0.1830* 
(0.0963) 

0.2502** 
(0.1241) 

0.2452** 
(0.1147) 

HINC3 
0.0932 

(0.0917) 
0.1621 

(0.1195) 
0.1129 

(0.1113) 

HINC4 
-0.1374 
(0.0889) 

-0.1435 
(0.1208) 

-0.1666 
(0.1124) 

HINC5 
-0.0798 
(0.0894) 

-0.1116 
(0.1201) 

-0.2009* 
(0.1128) 

HINC6 
-0.2403** 
(0.0899) 

-0.3644** 
(0.1268) 

-0.3473** 
(0.1129) 

HINC7 
-0.1088 
(0.0918) 

-0.1437 
(0.1254) 

-0.2375** 
(0.1176) 

HINC8 
-0.0009 
(0.0938) 

-0.0305 
(0.1253) 

-0.1293 
(0.1182) 

HINC9 
-0.0278 
(0.0949) 

-0.0677 
(0.1273) 

-0.1563 
(0.1201) 

HINC10 
-0.1480 
(0.0966) 

-0.1945 
(0.1333) 

-0.2804** 
(0.1251) 

HINCMISS 
-0.2130** 
(0.0764) 

-0.3002** 
(0.1032) 

-0.3782** 
(0.0943) 

FEMALE 
0.7580** 
(0.0366) 

1.0376** 
(0.1070) 

0.9665** 
(0.0514) 

HLTHEX 
-2.2919** 
(0.1500) 

-2.9318** 
(0.3068) 

-3.0549** 
(0.1874) 

HLTHVG 
-1.8617** 
(0.1479) 

-2.2431** 
(0.2482) 

-2.5166** 
(0.1802) 

HLTHG 
-1.4748** 
(0.1479) 

-1.7208** 
(0.2188) 

-1.9907** 
(0.1758) 

HLTHF 
-0.7104** 
(0.1568) 

-0.7941** 
(0.1928) 

-0.9485** 
(0.1725) 

TERT 
0.0863 

(0.0537) 
0.1164 

(0.0752) 
-0.0064 
(0.0713) 

DIPLOMA 
0.2292** 
(0.0657) 

0.3285** 
(0.0940) 

0.2755** 
(0.0842) 

TRADE 
0.1350** 
(0.0444) 

0.2006** 
(0.0642) 

0.1867** 
(0.0574) 

INNER 
-0.2280** 
(0.0463) 

-0.3004** 
(0.0705) 

-0.2892** 
(0.0609) 

OTHERREG 
-0.2780** 
(0.0543) 

-0.4042** 
(0.0858) 

-0.4761** 
(0.0731) 

AUBORN 
0.1244** 
(0.0423) 

0.1952** 
(0.0614) 

0.1347** 
(0.0542) 

HPHI 
0.1033* 
(0.0569) 

0.1653** 
(0.0811) 

0.1184 
(0.0751) 

APHI 
0.0605 

(0.0556) 
0.0798 

(0.0776) 
0.1147 

(0.0733) 
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α     
0.4982** 
(0.0091) 

01π    
0.0058 

(0.0083) 
0.0000 

(0.0125) 

10π    
0.3349** 
(0.0481) 

0.4033** 
(0.0102) 

Log-
likelihood -9236.24 -9228.80 -17701.21 

The asterisks (*) and (**) indicate significant at 0.10 and 0.05 levels, respectively. Because the 
probability parameters are bounded, standard t-tests are not strictly appropriate but could be 
legitimately taken to be testing whether the probabilities are arbitrarily small. 

 
 
 
Table 3: Predicted probability of visiting a GP in the last six months for different 

types of people using alternative estimation methods 
Variable logit EIV logit MRW logit
Baseline case  0.761 0.616 0.619 
    
Variation in age    
  Age = 20 years 0.813 0.696 0.685 
  Age = 30 years 0.769 0.626 0.624 
  Age = 40 years 0.761 0.616 0.619 
  Age = 50 years 0.793 0.669 0.672 
  Age = 60 years 0.852 0.771 0.767 
  Age = 70 years 0.916 0.880 0.872 
Variation in self assessed health status    
  Excellent  0.396 0.159 0.165 
  Very good 0.502 0.273 0.253 
  Good 0.598 0.388 0.365 
  Fair 0.761 0.616 0.619 
  Poor 0.867 0.780 0.808 
Variation in income    
  Household income in tenth decile  0.734 0.569 0.552 
Variation in gender    
  Female 0.872 0.819 0.811 
Variation in birthplace    
  Australian born 0.853 0.703 0.701 
      
Notes:  

• The baseline case is a 40 year old male, in the lowest income decile who has fair SAHS, less 
than complete high school, has no private health insurance, is not Australian born and lives in 
a metropolitan area. 

• Only selected variations have been tabulated and the baseline case has been repeated when 
varying age and SAHS in order to better see the gradients. 
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Table 4: Monte Carlo simulation results 
 
  α = 0.35   α = 0.5  
(π10 , π01) logit EIV  

logit 
MRW  
logit 

logit EIV  
logit 

MRW 
logit 

 Means 
(0.1, 0.3) 0.461 1.023 1.003 0.624 1.033 1.002 
(0.2, 0.2) 0.425 1.008 1.001 0.616 1.003 0.996 
(0.3, 0.1) 0.401 1.013 1.000 0.645 1.018 1.003 
       
 RMSE 
(0.1, 0.3) 0.539 0.126 0.054 0.376 0.095 0.049 
(0.2, 0.2) 0.575 0.137 0.054 0.384 0.105 0.043 
(0.3, 0.1) 0.599 0.178 0.060 0.356 0.085 0.041 
       
 ASE/RMSE 
(0.1, 0.3) 0.024 1.066 1.037 0.038 1.054 0.874 
(0.2, 0.2) 0.022 1.084 1.040 0.038 0.980 0.975 
(0.3, 0.1) 0.022 0.922 0.962 0.045 1.181 0.975 
       
 
 
 
 
 

Figure 1: Expected and observed frequencies of GP visits in 20 classes 

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4

Estimated Index

pr
ob

ab
ili

ty

logistic
observed frequencies

 
 

 17


	A Discrete Choice Model with Misclassification and Multiple Recall Periods
	Rochelle Belkar, Waranya Pim Chanthapun and Denzil G. Fiebig
	School of Economics Discussion Paper: 2007/10

	fiebig1.pdf
	Version: 13 February, 2007
	Introduction

	 Table 1: Data description and means
	 Table 2: GP Utilisation: Logit Estimation Results
	Figure 1: Expected and observed frequencies of GP visits in 20 classes


