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Abstract

In time series analysis, tests for serial independence, symmetry, and goodness-
of-fit based on divergence measures, such as the Kullback-Leibler divergence or
Hellinger distance are currently receiving much interest. We consider replacing the
divergence measures in these tests by kernel-based quadratic form. In this way we
avoid the common practice of using plug-in estimators. Our approach separates the
problem of consistent estimation of the divergence measure from that of estimating
the underlying joint densities consistently. We construct a test for serial inde-
pendence on the basis of the introduced quadratic forms. An optimal bandwidth
selection is a common problem in the nonparametric econometrics. To confront
this problem we use an adaptive bandwidth procedure over a range of different
bandwidth values. In order to produce an exact test, a permutation procedure is
applied. Our results are illustrated with simulations for various data generating
processes relevant to financial econometrics. We compare the performance of our
test with existing nonparametric tests for serial independence and show that for
many processes our approach produces higher power in comparison with BDS test
and the test of Granger, Maasoumi, and Racine (2004). We apply our method to
the return series of S&P 500.

JEL classification: C10, C12, C22

1 Introduction

Tests for serial independence are important diagnostic tools for time series modelling. A
classical example is the Durbin and Watson (1950, 1951) test for serial correlation, while Li
(2004) describes a range of more recent diagnostic checks in time series. Because in many
applied fields it has been realised that the time series processes encountered are nonlinear
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and non-Gaussian, nonparametric measures of dependence are currently receiving much
interest. In fact nonparametric tests for independence date back to Hoeffding (1948),
followed by the work of, among others, Heer (1991), Rosenblatt and Wahlen (1992) and
Ahmad and Li (1997). However, the methods considered there do not directly provide
tests for serial independence in time series. In the time series context several different
nonparametric approaches have been taken. For instance, Delgado and Mora (2000)
and some references therein use the empirical distribution function, while Hong (2000)
suggested a frequency domain approach for testing serial independence. The approach
we consider in this paper is more closely related to the nonparametric kernel-based BDS
test of Brock, Dechert, Scheinkman, and LeBaron (1996). Before going into details, the
hypothesis of serial independence in time series contexts is made explicit.

We consider a strictly stationary real-valued time series process {Xt}, t ∈ Z. We
introduce the m-dimensional lag ` delay vectors Xm,`

t = (Xt, Xt+`, Xt+2`, . . . , Xt+(m−1)`)
′

and denote the time invariant probability measure of Xm,`
t by νm, suppressing the de-

pendence on `, which we think of as being fixed. The null hypothesis of interest is that
{Xt} is serially independent, i.e. its elements are independent and identically distributed
(i.i.d.). Under the null hypothesis the m-dimensional delay vector measure νm is equal
to the product measure νm

1 = ν1 × · · · × ν1 (m terms) of marginal probability mea-
sures. In cases where the probability density functions (pdfs) of Xm,`

t exist, these are
denoted by fm(x), where x = (x1, . . . , xm)′, and the null hypothesis can be expressed as
fm(x) = f1(x1)× · · · × f1(xm).

Recently, information theoretic measures of divergence such as the Kullback-Leibler
divergence and the Hellinger distance gained much attention in the literature, see Granger
and Lin (1994), Hong and White (2005), Granger, Maasoumi, and Racine (2004). These
measures of divergence, being defined in terms of the joint and marginal pdfs, are usually
estimated on the basis of plug-in kernel estimators of the joint and marginal densities. To
establish consistency of the test statistics thus obtained, it suffices to take the bandwidth
according to the optimal value for kernel density estimation as in Silverman (1986), al-
though it has been recognised that this choice need not be optimal in terms of the power
of the tests. Along the same lines, Feuerverger (1993) reaches the conclusion that the
consistency of the associated density estimator is not required for the consistency of the
quadratic measure of Rosenblatt (1975), given by T =

∫
Rm(f̂1(x)− f̂2(x))2dx, where f̂i are

kernel density estimators. Anderson, Hall, and Titterington (1994) indicate that relative
oversmoothing is appropriate for this type of statistic in a two-sample test. A problem re-
lated to using the consistency of the plug-in estimators is the difficulty to produce efficient
kernel estimates of multivariate densities due to the curse of dimensionality.

In this paper a different perspective on the above issues is offered by defining divergence
measures between distributions using kernel-based quadratic forms. These divergence
measures naturally lead to U - and V -statistic estimators (see e.g. Serfling, 1980), which are
closely related to the statistic T . However, it becomes apparent that the bandwidth plays
an entirely different role here than in nonparametric density estimation, where it controls
the trade-off between the bias and variance of the density estimators f̂i. Starting from
quadratic forms, a different divergence measure is associated with each fixed bandwidth
value. Each of the members of this family of divergence measures, parametrised by the
bandwidth, can be estimated consistently using U - or V -statistics based on a kernel
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function with that same particular bandwidth, even if the distributions are not continuous
(and hence no underlying densities exist). Rather than acting as a bias-variance trade-off
parameter, the bandwidth merely controls the length scale in the sample space at which
two probability measures are compared.

It follows from the results by Denker and Keller (1983) that under strict stationarity
and absolute regularity, the proposed tests for serial independence are consistent against
all fixed alternatives. In contrast to some other tests based on quadratic functionals,
such as that of Székely and Rizzo (2005), there is no need to impose any conditions on
the moments of the time series. Although consistency does not require the bandwidth
to vanish with the sample size, the approach still faces the common bandwidth selection
problem. This is addressed by implementing a multiple bandwidth procedure along the
lines of the approach of Horowitz and Spokoiny (2001).

In section 2 we introduce the notion of the squared distance measures between prob-
ability distributions in terms of kernel-based quadratic forms and derive some of their
properties. Section 3 describes a single bandwidth permutation test for serial indepen-
dence based on squared distances and investigates how the power depends on different
values of the bandwidth. Subsequently the multiple bandwidth procedure to deal with
the bandwidth selection problem is described. In section 4 the finite-sample performance
against fixed and local alternatives is compared with some other nonparametric tests for
serial independence. There we also investigate the behaviour of the test when applied to
estimated residuals. After an application to the log-return series of S&P 500 stock index
in section 5, section 6 summarises and concludes.

2 Quadratic forms and their estimators

In this section we briefly review the distance notions between probability measures in
Rm which will serve as the divergence between the joint probability measure νm and its
counterpart νm

1 . These functionals were first introduced by Diks, Van Zwet, Takens, and
DeGoede (1996) in the context of measuring the divergence between chaotic time series,
and later applied in a test for symmetry Diks and Tong (1999). For two m-dimensional
probability measures µ1 and µ2, consider a quadratic form of the type:

Q = ‖µ1 − µ2‖2 = (µ1 − µ2, µ1 − µ2) = (µ1, µ1)− 2(µ1, µ2) + (µ2, µ2),

where (µi, µj) =
∫

Rm

∫
Rm Kh(x− y)µi(dx)µj(dy) is a bilinear form, which can be concisely

written as (µi, µj) = E(Kh(X − Y )) where X and Y are two independent m-dimensional
vectors, distributed according to µi and µj, respectively. Whenever Kh(·) is a positive def-
inite kernel function this bilinear form defines an inner product, and the squared distance
Q defines a metric on the space of probability measures on Rm. We typically consider
kernels that factorise as Kh(x) =

∏m
i=1 κ(xi/h) where xi refers to the the i’th element of

vector x, κ(·) is a one-dimensional kernel function, which is symmetric around zero, and
h is a bandwidth parameter.

Because Fourier transforms leave the L2 norm invariant by Parseval’s identity, and con-
volution amounts to multiplication in Fourier space, the quadratic form can be expressed
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as

Q =

∫
Rm

∫
Rm

Kh(x− y)(µ1 − µ2)(dx)(µ1 − µ2)(dy)

=

∫
Rm

K̃h(k)|(µ̃1 − µ̃2)(k)|2dk,

where K̃h(·) is the Fourier transform of Kh(·), µ̃i the characteristic function of µi, and | · |
the modulus. It follows that if K̃h(·) is an integrable real-valued positive function, Kh(·)
is positive definite, and Q = 0 if and only if µ1 and µ2 are identical probability measures,
and is strictly positive otherwise. Here we focus on three specific cases of positive definite
kernels: the Gaussian kernel κ(x) = exp(−x2/4), as in Diks and Tong (1999), the double
exponential kernel κ(x) = exp(−|x|/4), and the Cauchy kernel κ(x) = 1/(1 + x2). The
factor 4 in the Gaussian and double exponential kernels is chosen for convenience as it
simplifies some of the derivations discussed below.

The squared distance Q satisfies all the essential “ideal” properties of a dependence
measure summarised by Granger, Maasoumi, and Racine (2004). It is well-defined for
continuous as well as discrete random variables. It is nonnegative, equal to zero only in
the case of independence, and can be related to the correlation coefficient ρ in the case
of a bivariate normal distribution, as shown in Appendix A. Since (·, ·) defines an inner

product on the space of measures on Rm, Q
1
2 is a real distance notion between probability

measures with the usual properties, such as the triangular inequality. Although Q is not
invariant under monotonic transformations of marginals, if desired, invariance of estima-
tors can always be achieved by transforming the data to a known marginal distribution,
e.g. by using empirical probability integral transforms. Moreover, in Appendix B we es-
tablish the equivalence of the quadratic form Q and the quadratic measure of Rosenblatt
(1975).

For convenience we introduce the short-hand notation Qij = (µi, µj). As shown above,
Qij can be expressed in terms of averages of the kernel function: Qij = E(Kh(X−Y )) for
independent vectors X ∼ µi and Y ∼ µj. This suggests estimating Qij using empirical
averages of the values of the kernel function obtained from the data, thus leading naturally
to the use of U - and V -statistics as discussed in detail by Serfling (1980). For example,
given an observed time series {Xt}T

t=1, from which n = T − (m− 1)` delay vectors Xm,`
t ,

t = 1, . . . , n of dimension m can be constructed, for the first term Q11 this leads to the
U -statistic estimator

Q̂11 =
2

n(n− 1)

n∑
t=2

t−1∑
s=1

Kh(X
m,`
t −Xm,`

s )

=
2

n(n− 1)

n∑
t=2

t−1∑
s=1

m−1∏
k=0

κ ((Xt+k` −Xs+k`)/h) .

For the bounded kernel functions considered here, it follows from the work of Denker
and Keller (1983), Theorem 1, part (c), that under strict stationarity and absolute regular-
ity of the time series, both U - and V -statistics are consistent and asymptotically normal.
In particular this implies Q̂11 p→Q11. Similarly one can construct a consistent U -statistic
estimator Ĉh(x) = 1

n

∑n
t=1 κ ((x−Xt)/h) for E[κ((x − X)/h)] and use this to obtain
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consistent estimators for Q12 and Q22 after writing these in terms of E[κ((x−X)/h)]:

Q̂12 =
1

n

n∑
t=1

m−1∏
k=0

Ĉh(Xt+k`),

Q̂22 =
1

nm

m−1∏
k=0

(
n∑

t=1

Ĉh(Xt+k`)

)
.

Taken together, Q̂ = Q̂11 − 2Q̂12 + Q̂22 is a consistent estimator of Q.
Note that there is a connection with the BDS test for serial independence by Brock,

Dechert, Scheinkman, and LeBaron (1996). Using the functional Q11 − Q22 with kernel
function κ(x) = I(−h,h)(x), which is 1 if x ∈ (−h, h) and 0 otherwise, will lead to the BDS
test, with Q11 playing the role of the correlation integral and Q22 of its value under the
null hypothesis of serial independence.

Based on the theory of U -statistics one might develop asymptotic theory for the func-
tional Q, possibly with a suitably chosen rate at which h tends to zero as n → ∞ (cf.
Wolff, 1994). However, as reported by Skaug and Tjøstheim (1993), Granger, Maasoumi
and Racine (2004) and Hong and White (2005) in similar testing contexts, asymptotic
theory provides rather poor finite sample approximations to the null distributions of the
test statistics, and inference based on such tests becomes unreliable. To avoid this prob-
lem we proceed with a permutation procedure.

3 Permutation test

The idea to use a permutation test in the context of serial independence dates back to
Pitman (1937). Due to the decreasing cost of computing power permutation tests have
gained increasing attention (for a practical exposition see Good, 2000). Under the con-
dition of exchangeability of the observations a permutation test is exact for any sample
size n, i.e. the rejection rate under the null hypothesis is equal to the nominal size α.
Moreover, Hoeffding (1952) shows that under general conditions permutation tests are
asymptotically as powerful as certain related parametric tests.

3.1 Single bandwidth

First we consider a standard procedure using a single fixed bandwidth h. Since deviations
from the null lead to positive values of Q, a test based on this squared distance would
reject whenever the estimate Q̂ is too large. Thus, a one-sided test is appropriate in
this context. Conditional on the observed values of the data under the null hypothesis of
serial independence, each permutation of the observed data is equally likely. We denote the
estimate Q̂ based on the original data as Q̂0. Under the null the values of Q̂i, i = 0, . . . , B,
computed using the original data and B permutations, respectively, are exchangeable. An
exact p-value (in that it is uniformly distributed on 1/(B + 1), . . . , 1 under the null) is
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calculated as

p̂ =

∑B
i=0 I(Q̂i > Q̂0) + L

B + 1
, (1)

where I(·) denotes the indicator function taking the value 1 if the condition in brackets

is true and 0 otherwise. Let Z =
∑B

i=0 I(Q̂i = Q̂0) ≥ 1 denote the number of ties plus
one. In case Z = 1, L = 1, while for Z > 1, for L we take a random variable, uniformly
distributed on 1, . . . , Z. That is, each rank of Q̂0 among the Q̂i that happen to be equal
to Q̂0, is taken to be equally probable. This is equivalent to adding a very small amount
of noise to each of the Q̂i’s before determining their ranks, thus making the rank of Q̂0

among the Q̂i unique. If 0 < α = k/(B + 1) < 1 for some integer k, rejecting whenever
p̂ ≤ α yields an exact level-α test. Generally, the power of a permutation test decreases
if the number of permutations B decreases. The results by Marriott (1979) indicate that
little power is lost by taking B + 1 = 5/α.

Notice that the term Q̂22 is constant under permutations, and hence can be left out of
consideration while determining the significance of Q̂. This reflects the fact that Q22 is a
functional of the marginal distribution, which plays a role here as an infinite dimensional
nuisance parameter.

So far we have only considered the calculation of p-values for a fixed bandwidth. To
deal with the problem of bandwidth selection, subsection 3.3 describes a method for de-
termining a single p-value over a range of different bandwidth. However, we first motivate
the multiple bandwidth procedure by presenting some bandwidth-related simulation re-
sults.

3.2 Bandwidth-related simulations

Hereafter we refer to the bandwidth that yields the highest empirical power for a fixed
size α as the optimal bandwidth h∗. We investigate the dependence of the optimal band-
width on three parameters, namely the data generating process (DGP), the delay vector
dimension m and the sample size n. A description of the DGPs used, along with broader
simulation results, are presented in section 4. Here we only display bandwidth-related
simulations. We consider d = 30 different bandwidth values hi ranging from 0.01 to 3.0,
equidistant on a logarithmic scale:

hi = hmax(hmin/hmax)
d−i
d−1 , i = 1, . . . , d. (2)

The number of permutations was set to B + 1 = 100, including the original series and
the number of simulations was set to 1, 000. Since the Cauchy and double exponential
kernels gave similar results, we here only discuss the results for the Gaussian kernel.

Figure 1 shows the power as a function of the bandwidth for series of various lengths
n, (left panel, DGP 1, m = 2, ` = 1), and for various DGPs, (right panel, n = 100,
m = 2, ` = 1). The left panel shows no clear shift in the optimal bandwidth h∗ as n
increases. Similar results were observed for other DGPs. Intuitively, the reason is that
the optimal bandwidth depends on the typical length scale of the differences between the
joint delay vector measure νm and the product measure νm

1 . As long as this length scale
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Figure 1: Observed power as a function of bandwidth h. The left panel shows results for
various series lengths n, for a nonlinear MA(1) process (NLMA(1), DGP 1); the right
panel for various DGPs for n = 100. In all cases: dimension m = 1, lag ` = 1, nominal
size α = 0.05, number of permutations B + 1 = 100 and number of simulations 1, 000.

is not taken to decrease with n, the optimal bandwidth may asymptotically tend to some
finite positive value. Analytical support for a fixed optimal bandwidth was reported by
Anderson, Hall, and Titterington (1994) in a two-sample test based on a statistic of the

type T =
∫

Rm(f̂1(x) − f̂2(x))2dx. However, the right panel of Figure 1 illustrates that
the optimal bandwidth h∗ depends on the particular DGP, e.g. for the nonlinear MA(1)
process (DGP 1), h∗ ' 0.7, and for the bilinear process (DGP 7), h∗ ' 1.2. This suggests
that using a single bandwidth value in a practical situation, when the underlying DGP is
not known, may not be optimal.

3.3 Multiple bandwidth procedure

Motivated by the above findings, we require a procedure that produces a single test
statistic (p-value) incorporating a range of bandwidth values. Horowitz and Spokoiny
(2001) suggest an adaptive rate-optimal test that uses many different bandwidths. Since
the theoretical distribution of their test statistic under the null is not known, they find
critical values by simulation. We develop a similar procedure in the Monte Carlo context
and implement it in the form of a multiple bandwidth permutation test. The procedure
is based on determining the significance of the smallest single-bandwidth p-value over a
range of different bandwidths, and can be summarised as follows:

1. Calculate the vector of Q̂h,0-values for a range of bandwidths: h ∈ H = {h1, . . . , hd}.
We define h on a geometric grid as in Eq. (2).
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2. Randomly permute the data and calculate a bootstrap vector Q̂h,1. Repeat this B

times, to obtain Q̂h,i for h ∈ H, and i = 1, . . . , B.

3. Transform Q̂h,i into a p-value: p̂h,i = (
∑B

j=0 I(Q̂h,j > Q̂h,i) + L)/(B + 1), with L
defined similarly to Eq. (1).

4. Select the smallest p-value among all bandwidths and call it T̂i: T̂i = infh∈H p̂h,i.

5. Calculate an overall p-value on the basis of the rank of T̂0 among the T̂i, i.e. p̂ =
(
∑B

i=0 I(T̂i < T̂0) + L)/(B + 1) using a ties randomisation procedure as in Eq. (1).

In step 3 we pretend each of the permuted series to be the originally observed series
and determine the corresponding p-values p̂h,i that would have been obtained for series
i for each of the different bandwidths. In step 4, for each series the smallest p-value
over the different bandwidths is selected (denoted by T̂i, i = 0, . . . , B). We finally use
the exchangeability of the B series under the null to calculate an overall p-value by
establishing the significance of T̂0 for the actually observed data (step 5). As in the
single bandwidth case, the multiple bandwidth procedure yields an exact α-level test if
the null hypothesis is rejected whenever p̂ ≤ α. The power of this multiple-bandwidth
procedure depends on the width of the region R = [hmin, hmax], the number d of elements
in the bandwidth set H and the number of permutations B. The region R should be
wide enough to contain h∗ for various DGPs. The number of bandwidths d chosen in
R is important for the power. Taking d too small we risk losing the optimal bandwidth
h∗ through the grid. Our simulations suggest that the empirical power of the multiple
bandwidth procedure reduces as the bandwidth region R becomes wider. Therefore, in
practice we suggest taking R = [0.5, 2.0] which includes h∗ for all considered DGPs. For
this region reasonable power is achieved using d = 5 bandwidths.

Also the number of permutations B + 1 has an important impact on the power of
our multiple bandwidth procedure. Figure 2 shows the power as a function of the single
bandwidth in contrast to the power under the multiple bandwidth procedure on region
R = [0.5, 2.0] with d = 5 for various numbers of permutations B +1 = 20, 100, 500 for the
nonlinear MA(1) series (DGP 1) of length n = 100, embedding dimension m = 2 and lag
` = 1. We observe that the power for the multiple bandwidth procedure is more sensitive
to the number of permutations B + 1 than for the single bandwidth procedure. This has
been observed for other DGPs. The reason for the higher sensitivity to B is that the T̂i

are discrete multiples of 1/(B + 1), which for small B leads to many identical T̂i-values
(ties) which reduces the power. We find that for the considered region R = [0.5, 2.0] with
d = 5, taking B + 1 = 100 produces good results. These are the parameter values we
recommend in practical applications of the test.

4 Test performance

We next investigate the power of the proposed test, hereafter Q-test, and compare it with
that of similar nonparametric tests such as the BDS test and the recent test of Granger,
Maasoumi, and Racine (2004), which we refer to as the GMR test. Permutation tests
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Figure 2: Observed power as a function of the single bandwidth in contrast to the power
under the multiple bandwidth procedure on region R = [0.5, 2.0] with d = 5 for various
numbers of permutations B +1 = 20, 100, 500 for the nonlinear MA(1) series (DGP 1) of
length n = 100, dimension m = 2, and lag ` = 1, nominal size α = 0.05 and number of
simulations 1, 000.

differ from asymptotic tests (based on the derived asymptotic distribution of test statis-
tic) in that the critical value in the former is a random variable. This fact makes the
analytic evaluation of its power function difficult. However, Hoeffding (1952) has shown
that under certain conditions the random critical value of the permutation test converges
in probability to a constant if the number of permutations B tends to infinity as n →∞.
Relying on this fact Hoeffding (1952) investigated the large-sample power properties of
permutation tests based on a relatively simple test statistic and demonstrated that under
general conditions the permutation tests are asymptotically as powerful as the correspond-
ing parametric tests. In the present context the test statistic is much more complex and
therefore we rely heavily on simulations.

4.1 Fixed alternatives

We compare the rejection rates of the tests against fixed alternatives for the following
stationary DGPs, where {εt} is an i.i.d. sequence of N(0, 1) random variables:

DGP 0. Yt = εt
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DGP 1. Yt = εt + 0.8ε2
t−1

DGP 2. Yt = εt + 0.6ε2
t−1 + 0.6ε2

t−2

DGP 3. Yt = εt + 0.8εt−1εt−2

DGP 4. Yt = 0.3Yt−1 + εt

DGP 5. Yt = 0.8|Yt−1|0.5 + εt

DGP 6. Yt = sign(Yt−1) + εt

DGP 7. Yt = 0.6εt−1Yt−2 + εt

DGP 8. Yt =
√

htεt, ht = 1 + 0.4Y 2
t−1

DGP 9. Yt =
√

htεt, ht = 0.01 + 0.80ht−1 + 0.15Y 2
t−1

DGP 10. Yt =

{
−0.5Yt−1 + εt, Yt−1 < 1
0.4Yt−1 + εt, else

DGP 11. Yt = 4Yt−1(1− Yt−1) 0 < Yt < 1

DGP 12. Yt = 1 + 0.3Yt−2 − 1.4Y 2
t−1

DGP 13. Yt = Zt + σεt, Zt = 1 + 0.3Zt−2 − 1.4Z2
t−1.

The above DGPs or slight modifications of these were previously considered by Granger,
Maasoumi, and Racine (2004), Granger and Lin (1994), Hong and White (2005), Brock,
Dechert, Scheinkman, and LeBaron (1996) and others. DGP 0 satisfies the null hypoth-
esis and is included to assess the empirical size of the tests. DGPs 1 − 3 are nonlinear
MA processes of order 1, 2 and 2 respectively. Granger, Maasoumi, and Racine (2004)
suggested that a good measure of dependence should reflect the theoretical properties of
these MA processes, i.e. zero dependence at lags beyond their nominal lags. DGP 4 is a
linear AR(1) process. DGPs 5 and 6 are nonlinear AR(1) processes. The properties of
DGP 6 were investigated by Granger and Teräsvirta (1999). DGP 7 is a bilinear process
introduced by Granger and Andersen (1978). DGPs 8 and 9 are instances of ARCH(1) and
GARCH(1, 1) processes proposed by Engle (1982) and Bollerslev (1986) respectively. The
coefficients of the GARCH(1, 1) process are taken close to the corresponding estimates
of Bollerslev (1986). DGP 10 is a TAR process proposed by Tong (1978). DGPs 11 and
12 are the logistic map and the Hénon map respectively, generating deterministic chaotic
time series, while DGP 13 is the Hénon map with additive Gaussian observational noise
σεt where σ equals 20 percent of the standard deviation of the clean Hénon process. We
used series of length n = 100 (except n = 50 for DGP 6 and n = 20 for DGPs 11−13), and
the total number of permutations, including the original series, was set to B + 1 = 100.
The bandwidth set H included d = 5 different values in the range R = [0.5, 2.0] after
normalising the series to unit variance. The three different kernels mentioned earlier were
used for comparison: the Gaussian, double exponential and Cauchy kernels. We consid-
ered different lags ` = 1, 2, 3 for a delay vector dimension m = 2, and extended the delay
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Figure 3: Observed rejection rates (size/power) for various DGPs. Nominal size α = 0.05,
sample size n = 100, lag ` = 1, dimension m = 3, number of permutations B + 1 = 100
(200 for BDS), number of simulations 1, 000.

vector dimension to m = 3, 4, 5, 10 for lag ` = 1. All tests were conducted at a nominal
size of α = 0.05, and the number of simulations was set to 1, 000. To lower the standard
error of the actual size, we increased the number of simulations to 5, 000 for DGP 0, which
is true under the null.

Generally, the BDS test statistic is not necessarily positive under the alternative. This
was confirmed by simulations for certain alternatives, e.g. for the logistic map (DGP 11)
the rejection rate was smaller than the nominal size while using a one-sided test. There-
fore, we implemented it as a two-sided test. To make the BDS test comparable with the
Q-test we applied a similar multiple bandwidth permutation procedure and doubled the
number of permutations to B + 1 = 200 to take into account the two-sizedness. The
bandwidth range R = [0.5, 2.0], which is typical for the BDS test, coincides exactly with
that used in the Q-test. We set the number of bandwidths to d = 5 also for the BDS test.

We used the original routine for the GMR test to compute rejection rates for the
considered DGPs. Since their test embeds likelihood cross validation of Silverman (1986,
Sec. 3.4.4) to select optimal bandwidths (determining separate optimal bandwidth values
under the null and the alternative), no bandwidth selection was required. For dimensions
higher than two we used their “portmanteau” version of the test.

Figure 3 reports the observed rejection rates (at size α = 0.05, ` = 1, m = 3) for the
considered processes for the introduced Q-test based on the Gaussian kernel, the BDS
test and the GMR test. See Appendix C for the numerical values and extended results
(higher lags ` and dimensions m) of these tests and the Q-tests based on other kernels.
As expected, for all tests the nominal size of 0.05 is within the 95% confidence interval
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DGP Qgaus BDS GMR
m abs orig abs orig abs orig
2 0.29 0.13 0.25 0.26 0.12 0.13
3 0.39 0.18 0.31 0.35 0.15 0.15
5 0.46 0.26 0.40 0.43 0.18 0.18
10 0.53 0.38 0.42 0.48 0.15 0.17

Table 1: Observed power against GARCH(1, 1) (DGP 9) after (abs) and before (orig)
transforming the data to absolute values, nominal size α = 0.05, sample size n = 100, lag
` = 1, number of permutations B + 1 = 100 (200 for BDS) and number of simulations
1, 000.

of the actual size estimate. The Q-test yields powers comparable to those obtained using
the BDS and GMR procedures and in 8 out of 13 cases outperforms them, i.e. for the
nonlinear MA(1) – MA(2), linear, fractional and sign function AR(1) and TAR processes
and the Hénon map without and with the observational noise (DGPs 1, 2, 4−6, 10, 12, 13).
In absolute terms the power of the Q-test is smaller for the nonlinear MA(2) and bilinear
processes and the logistic map (DGPs 3, 7, 11), but still comparable to that obtained by
the best performing test (for a particular DGP). In comparison with the BDS test, the
Q-test shows less power for the ARCH(1) and GARCH(1, 1) processes (DGPs 8 and 9).
The GMR test behaves similar to the Q-test in this situation. Comparing the performance
of the Q-test based on the Gaussian, double exponential and Cauchy kernels we do not
observe large differences (see Appendix C). Therefore, we proceed with the analysis based
on the Gaussian kernel only.

The ARCH(1) process (DGP 8) and its generalisation, the GARCH(1, 1) process
(DGP 9), are used in financial econometrics to model periods of consecutive large de-
viations from the mean, interchanged by periods of moderate deviations, mimicking ob-
served behaviour of stock returns. Since the GARCH(1, 1) process is of special interest in
financial econometrics we undertake a more detailed analysis of this process. The power
of the Q-test increases if we consider higher delay vector dimensions m for this DGP.
To obtain an even further increase in power against the GARCH(1, 1) process we can
adopt a semi-parametric approach and transform the data to their absolute values before
testing. Table 1 shows the rejection rates obtained with the test for GARCH(1, 1) using
this transformation in contrast to no transformation. After this transformation the Q-test
becomes more powerful than the BDS and the GMR test conducted on the transformed
and original data. The intuition behind this increase in power lies in the local nature of
the kernel. Initially distant delay vectors with differently signed elements can be mapped
locally close to each other upon replacing the vector elements by their absolute values,
enabling the test to capture more of the dependence. We conclude from this that applying
the Q-test to the absolute values of the data is preferable when structure in volatility is
to be detected.
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Figure 4: Observed power against local alternatives converging to the null at rate n−1/2,
as a function of sample size n = 100, . . . , 5, 000 at nominal size α = 0.05 (left panel); as
a function of nominal size for the Q-test (right panel). Lag ` = 1, dimension m = 2,
number of permutations B + 1 = 100 (B + 1 = 200 for BDS), number of simulations
1, 000.

4.2 Local alternatives

We next consider power against local alternatives. For a test similar to that of GMR, Hong
and White (2005) found nontrivial power as the distance between the null distribution
and a local alternative reduces at the rate n−1/2h−1/2 with h → 0, which is required for
consistent kernel estimation of the density. The test statistic for the Q-test is estimated
using U -statistics, which in the non-degenerate case converge at the parametric rate n−1/2.
Moreover, the consistency of the Q-test does not require the bandwidth to diminish with
the sample size. Therefore, we expect the test to have nontrivial asymptotic power at
the rate n−1/2 and illustrate this via simulations. For the same reasons a similar rate is
expected for the BDS test. Following Hong and White (2005) we consider a sequence of
processes with lag j dependence with the following joint probability function:

fjn(yt, yt+j) = f(yt)f(yt+j)[1− anqj(yt, yt+j) + rjn(yt, yt+j)], (3)

where qj(yt, yt+j) is a function characterising the deviation from the null hypothesis, an

governs the rate of convergence to the null as n → ∞, and rjn(yt, yt+j) is a higher order
term obtained from the Taylor series expansion of fjn(yt, yt+j) around the point an = 0.
See Hong and White (2005) for assumptions on qj(·, ·) and rjn(·, ·) which ensure that
fjn(·, ·) is a proper density function.

The simulations are based an MA(1) process Yt = εt + anεt−1 where {εt} is a se-
quence of i.i.d. standard normal random variables. The joint density of (Yt, Yt+1) can be

13



DGP 1 2 3 4 5 6 7 8 9 10 11 12 13
Q 0.61 0.63 0.12 0.04 0.13 0.08 0.12 0.21 0.11 0.37 0.79 0.66 0.54

BDS 0.68 0.70 0.27 0.06 0.06 0.06 0.21 0.47 0.21 0.13 0.52 0.26 0.13
GMR 0.70 0.72 0.15 0.04 0.11 0.07 0.12 0.24 0.07 0.33 0.68 0.63 0.42

Table 2: Observed rejection rates (size/power) for estimated residuals of the parametric
AR (1) model (DGP 4), nominal size α = 0.05, sample size n = 100, lag ` = 1, dimension
m = 2, number of permutations B + 1 = 100 (200 for BDS) and number of simulations
1, 000.

represented in the form (3) with qj(yt, yt+j) = ytyt+j. Figure 4 (left panel) shows the re-
jection rates (powers) of the considered test against a sequence of local alternatives which
converges to the null at the usual parametric rate an = Cn−1/2, where C is a constant
and n = 100, . . . , 5, 000. A horizontal line in the graph would indicate the parametric
rate. After an initial transient period for small n, the curves level out, suggesting that
all tests asymptotically approach the parametric rate. The Q-test has a substantially
larger nontrivial asymptotic power at this rate than the two other tests. The nontrivial
asymptotic power for the Q-test against this sequence of local alternatives can also be
observed for other values of the nominal size, as illustrated by the power-size plots for
increasing sample sizes n shown in the right panel of Figure 4.

4.3 Application to estimated residuals

So far our theory and simulations were concerned only with the independence hypothesis
for raw data. However, in practice the tests of independence are often used as specifica-
tion tests while applied to the estimated residuals of some parametric model. Generally,
estimated residuals are not independent and thus not exchangeable, even if they are based
on i.i.d. innovations. The main question which determines the validity of the tests based
on residuals is whether the dependence in the residuals introduced by parameter estima-
tion affects the test statistic. A test employing parametrically estimated residuals will
in general remain consistent if its rate is slower than the parametric rate, which is the
case in the asymptotic test of Hong and White (2005), which is similar to the GMR
test. Brock, Dechert, Scheinkman, and LeBaron (1996) show that the presence of the
estimated parameters does not affect the asymptotic distribution of their test statistic.
Our simulations on estimated residuals show that the GMR and the BDS tests remain
correct in terms of size. This is not the case, however, for the Q-test, at least for mod-
erate sample sizes. Our simulations on the residuals of DGP 0 and DGP 4 showed that
for n = 100, 500, 1000 the actual size of the Q-test was around 0.01 with nominal size
α = 0.05. This indicates a bias in the estimated p-values, which does not vanish with
increasing sample size. In order to use the Q-test as a specification test on the estimated
residuals we employ a parametric bootstrap (Efron, 1979). In this procedure we condition
on a number of original observations, equal to the order of the model, and the marginal
distribution of the original residuals. The BDS and GMR permutation tests were applied
directly to the residuals.
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Figure 5: Daily series of the S&P500 Stock Index and PACF plots of log-return and
absolute log-return series (n = 500) for the two periods.

Table 2 shows rejection rates of the tests applied to residuals of the AR(1) model
estimated by OLS from previously considered DGPs. Under the null, that is, for DGP 4,
the observed size of all tests is close to the nominal level 0.05. The power of all tests
drops compared to the tests of subsection 4.1 based on raw data, which indicates that
indeed some of the dependence structure is captured by the AR(1) model. The power of
the Q-test on estimated residuals is comparable with that of the other tests, i.e. its power
is lower for the nonlinear MA and bilinear processes (DGPs 1 − 3, 7), but it performs
slightly better for the TAR model (DGP 10) and the logistic map (DGP 11).

5 Application to financial time series

We consider an application to the Standard and Poor’s 500 Stock Index daily log-returns
Xt = ln(Pt/Pt−1), where Pt is the dividend-adjusted closing price index on day t, in
the period 06/2001–05/2005 (source DATASTREAM). The sample was divided into two
subsamples: period 1 (06/2001–03/2003) and period 2 (03/2003–05/2005), each having
500 observations.

Figure 5 shows the daily time series in levels of the S&P500 Stock Index as well as
the partial autocorrelation function (PACF) plots of the log-returns and absolute log-
returns series for the two periods. The sample division was made on the basis of visual
inspection and basic statistics: period 1 corresponds to a downward trend and exhibits
strong volatility while period 2 corresponds to an upward trend with moderate volatility.
First, we test for a geometric random walk hypothesis, which is equivalent to the null
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Period 1 Period 2
m ` orig abs ARCH orig abs ARCH
2 1 0.09 0.13 0.24 0.01 0.06 0.15
2 2 0.04 0.01 0.18 0.14 0.26 0.39
2 3 0.15 0.01 0.14 0.93 0.45 0.58
2 5 0.13 0.01 0.27 0.64 0.40 0.56
2 10 0.36 0.06 0.41 0.04 0.73 0.16
5 1 0.02 0.01 0.03 0.02 0.08 0.21
5 2 0.01 0.01 0.05 0.08 0.03 0.09
5 3 0.05 0.01 0.25 0.54 0.04 0.19
5 5 0.01 0.01 0.14 0.04 0.60 0.19
5 10 0.81 0.13 0.16 0.02 0.05 0.06

Table 3: P-values based on the series of S&P 500 log-returns, their absolute values, and
ARCH(1) filtered series for two periods. Nominal size α = 0.05, sample size n = 500,
number of replication B + 1 = 100 and number of simulations 1 000.

hypothesis of serial independence of the log-returns, using the Q-test for lags ` = 1, . . . , 10
and dimensions m = 2, 5. The results (Table 3, columns “orig”) suggest that H0 is rejected
for most of the lags for both periods. The evidence is stronger in the downward period
and for the higher dimension (m = 5). Next, we apply the test to the absolute values
of the log-returns in search for a structure in volatility and detect a stronger structure
in volatility in the downward period (Table 3, columns “abs”). Comparing the results of
the Q-test (m = 2) with the PACFs in Figure 5 we notice that both tests reject the null
at the same lags. This shows that the fully nonparametric Q-test is able to detect the
same structure as a commonly used parametric test. In an attempt to model the detected
volatility structure we use an ARCH(1) specification and apply the Q-test on the absolute
values of estimated residuals as a model specification test. Table 3, columns “ARCH”
shows that the ARCH(1) filter is indeed able to capture the volatility structure for most
of the lags and embedding dimensions in the two periods.

6 Concluding remarks

We introduced a new nonparametric test for serial independence based on quadratic forms.
The test does not require the use of plug-in density estimators and remains consistent
without letting the bandwidth diminish with sample size. We showed that the dependence
measure used has desirable theoretical properties and several connections with other de-
pendence measures. In particular we noticed that the test statistics are closely related to
the statistics introduced by Rosenblatt (1975). Our findings imply that the latter statis-
tics for fixed bandwidths have an interpretation as quadratic forms, so that they can be
meaningfully used even if the underlying distributions are discontinuous.

We suggested a multiple bandwidth procedure to avoid the problem of optimal band-
width selection while providing good power for various DGPs. Numerous simulations
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showed that the Q-test implemented on the basis of the exact permutation procedure has
good finite sample performance against local and fixed alternatives in comparison with
two other recent nonparametric tests: the BDS and GMR tests. The Q-test showed re-
markably better power against TAR models. Further, we addressed the issue of using the
Q-test as a parametric model specification test while applying it to residuals series and
compared its performance in this situation with the BDS and the GMR tests. Finally, the
test was applied to recent S&P 500 log-return series in downward- and upward-trend peri-
ods. The hypothesis of serial independence of the log-returns was rejected, with stronger
rejection in the downward period. An application to residuals indicated that much of the
structure in the volatility could be successfully accounted for by an ARCH(1) model.
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Appendices

A Relation between Q and correlation coefficient

Our aim here is to find an analytic expression for the introduced distance measure, the
quadratic form Q between the time series {Xt} of the above structure and a time series
{Yt} independently sampled from a multivariate normal distribution. The expression will
be derived for the Gaussian product kernel Kh(x − y) =

∏m
i=1 exp (−(xi − yi)

2/(4h2)) .
We consider a strictly stationary and weakly dependent time series {Xt} generated by
a Gaussian process such that the m-dimensional delay vectors Xm,`

t = (Xt, Xt+`, . . . ,
Xt+(m−1)`)

′ are multivariate normal random variables (standardised to unit variances)
with correlation matrix Ω. In the case of independence the correlation matrix reduces
to the identity matrix. To simplify the integration we transform the multivariate normal
pdf of the form f(x) = |Ω|−1/2 (2π)−m/2 exp(−1

2
(x′Ω−1x)) to z coordinates defined by

z = V x, where V is an orthogonal matrix and Ω = V DV ′ by the spectral theorem, where

D = diag(η2
1, . . . , η

2
m): f ∗(z) = (2π)−m/2

m∏
i=0

η−1
i exp(−z2

i /(2η
2
i )). The absolute value of the

determinant of the Jacobian is one (property of an orthogonal matrix). Using the above
transformation we can compute the elements of Q, letting f0(·) denote the product of
marginal pdfs:

Q11 =

∫
Rm

∫
Rm

Kh (r − s) f ∗(r)f ∗(s) drds = hm
m∏

i=1

1√
h2 + η2

i

,

Q12 =

∫
Rm

∫
Rm

Kh (r − s) f ∗(r)f0(s) drds = hm
m∏

i=1

1√
h2 + (η2

i + 1) /2
,

Q22 =

∫
Rm

∫
Rm

Kh (r − s) f0(r)f0(s) drds = hm
m∏

i=1

1√
h2 + 1

.

Combining terms we can express Q as a function of the eigenvalues η2
i which are de-

termined by the autocorrelations ρi, the bandwidth h, and the delay vector dimension
m:

Q = hm

(
m∏

i=1

1√
h2 + η2

i

− 2
m∏

i=1

1√
h2 + (η2

i + 1) /2
+

m∏
i=1

1√
h2 + 1

)
.

In the case of a bivariate standard normal distribution with a correlation coefficient ρ,
the eigenvalues are simply expressed as η2

1 = 1 + ρ, η2
2 = 1 − ρ and one obtains a direct

correspondence between Q and ρ2.

B Equivalence of Q and quadratic distance

We establish the equivalence of the quadratic distance of Rosenblatt (1975) T =
∫

Rm(f̂1(x)−
f̂2(x))2dx and the U -statistics estimator of quadratic form Q̂. For simplicity we consider a
Gaussian kernel for density estimation. Rewrite T explicitly in terms of the kernel density
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estimators:

T =

∫
Rm

(
1

n1

n1∑
t=1

(
1√
2πh

)m

e
−‖Xt−x‖2

2h2 − 1

n2

n2∑
s=1

(
1√
2πh

)m

e
−‖Ys−x‖2

2h2

)2

dx.

Expanding the square, one arrives at the form T = T 11 − 2T 12 + T 22. For brevity we will
derive the T 11 term only, derivations for T 12 and T 22 being similar:

T 11 =
1

n2
1

(
1√
2πh

)2m ∫
Rm

n1∑
t=1

n1∑
s=1

e
−‖Xt−x‖2−‖Xs−x‖2

2h2 dx

=
1

n2
1

(
1√
2πh

)2m ∫
Rm

n1∑
t=1

n1∑
s=1

e
−‖Xt−Xs‖2

4h2 e
−2‖x−(Xt+Xs)/2‖2

2h2 dx

=
1

n2
1

(
1

2
√

πh

)m n1∑
t=1

n1∑
s=1

e
−‖Xt−Xs‖2

4h2 .

Above we used the Gaussian kernel factorisation that allows to reduce the analysis of the
m-dimensional norm ‖·‖2 to one dimension (·)2. In this form T 11 is exactly the same as

the V -statistic estimator of Q11 times a factor
(

1
2
√

πh

)m

which does not depend on the

data. Analogously, one can establish equivalence of T 12, T 22 and the V -statistic estima-
tors of Q12 and Q22 respectively. Given the asymptotic equivalence of V -statistics and

U -statistics we establish that T ≈
(

1
2
√

πh

)m

Q̂.

C Performance for various kernels

The tables below report the rejection rates for five nonparametric tests for serial indepen-
dence. The Q-columns correspond to the tests based on quadratic forms with Gaussian,
double exponential and Cauchy kernels respectively, and the remaining two columns to
the BDS test and the GMR test, respectively. The nominal size of the tests was set to
0.05. We consider three lags ` = 1, 2, 3 for delay vector dimension m = 2, and only
one lag ` = 1 for higher dimensions (m = 3, 4, 5, 10). The bandwidth set H included
d = 5 different values in the range R = [0.5, 2.0] (after normalisation of the series to the
unit variance). We used series of length n = 100 (n = 50 for DGP 6 and n = 20 for
DGP 11 − 13), the total number of permutations was set to B + 1 = 100 (for BDS test
B + 1 = 200). The number of simulations was set to 1, 000 (5, 000 for DGP 0).

0. Yt = εt 1. Yt = εt + 0.8ε2
t−1

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.054 0.059 0.051 0.057 0.052 0.71 0.81 0.76 0.76 0.78
2 2 0.051 0.048 0.050 0.049 0.054 0.06 0.06 0.07 0.06 0.04
3 1 0.050 0.047 0.050 0.052 0.047 0.71 0.78 0.77 0.68 0.57
5 1 0.050 0.052 0.049 0.052 0.056 0.57 0.64 0.62 0.46 0.39
10 1 0.051 0.049 0.052 0.055 0.049 0.32 0.37 0.35 0.22 0.20
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2. Yt = εt + 0.6ε2
t−1 + 0.6ε2

t−2 3. Yt = εt + 0.8εt−1εt−2

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.94 0.94 0.93 0.83 0.83 0.14 0.13 0.12 0.34 0.21
2 2 0.26 0.30 0.28 0.25 0.25 0.12 0.11 0.11 0.20 0.11
3 1 0.96 0.96 0.95 0.84 0.78 0.29 0.23 0.25 0.46 0.22
5 1 0.93 0.93 0.91 0.76 0.60 0.35 0.26 0.31 0.39 0.14
10 1 0.76 0.80 0.75 0.46 0.39 0.26 0.20 0.26 0.24 0.07

4. Yt = 0.3Yt−1 + εt 5. Yt = 0.8|Yt−1|0.5 + εt

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.70 0.67 0.59 0.21 0.40 0.55 0.60 0.53 0.15 0.34
2 2 0.12 0.11 0.09 0.05 0.07 0.07 0.07 0.07 0.05 0.06
3 1 0.68 0.64 0.56 0.16 0.31 0.53 0.57 0.50 0.11 0.25
5 1 0.61 0.58 0.46 0.13 0.20 0.43 0.48 0.40 0.09 0.18
10 1 0.45 0.45 0.32 0.07 0.15 0.29 0.35 0.25 0.06 0.12

6. Yt = sign(Yt−1) + εt 7. Yt = 0.6εt−1Yt−2 + εt

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.98 0.98 0.98 0.77 0.90 0.18 0.17 0.16 0.32 0.17
2 2 0.70 0.72 0.68 0.33 0.37 0.20 0.18 0.18 0.41 0.22
3 1 0.98 0.98 0.97 0.75 0.86 0.39 0.31 0.33 0.50 0.26
5 1 0.96 0.97 0.95 0.64 0.74 0.48 0.38 0.43 0.51 0.21
10 1 0.90 0.92 0.87 0.40 0.54 0.38 0.33 0.35 0.34 0.14

8. Yt = εt

√
1 + 0.4Y 2

t−1 9.
Yt =

√
htεt,

ht = 0.01 + 0.80ht−1 + 0.15Y 2
t−1

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.25 0.22 0.23 0.55 0.32 0.13 0.12 0.12 0.26 0.13
2 2 0.07 0.07 0.06 0.12 0.09 0.12 0.12 0.11 0.23 0.11
3 1 0.24 0.22 0.24 0.51 0.26 0.18 0.15 0.16 0.35 0.15
5 1 0.24 0.20 0.21 0.39 0.18 0.26 0.23 0.24 0.43 0.18
10 1 0.20 0.16 0.18 0.24 0.11 0.38 0.32 0.36 0.48 0.17

10. Yt =

{
−0.5Yt−1 + εt, Yt−1 < 1

0.4Yt−1 + εt, else
11. Yt = 4Yt−1(1− Yt−1), 0 < Yt < 1

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.91 0.94 0.90 0.07 0.49 0.98 0.97 1.00 0.85 0.96
2 2 0.10 0.09 0.10 0.06 0.05 0.08 0.12 0.23 0.16 0.74
3 1 0.87 0.91 0.87 0.06 0.34 0.90 0.92 1.00 0.71 0.95
5 1 0.77 0.83 0.76 0.04 0.23 0.54 0.59 0.79 0.35 0.88
10 1 0.49 0.61 0.47 0.03 0.14 0.17 0.24 0.31 0.11 0.59
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12. Yt = 1 + 0.3Yt−2 − 1.4Y 2
t−1 13.

Yt = Zt + σεt,
Zt = 1 + 0.3Zt−2 − 1.4Z2

t−1

m ` Qg Qd Qc BDS GMR Qg Qd Qc BDS GMR
2 1 0.99 0.99 1.00 0.46 0.99 0.93 0.91 0.95 0.30 0.59
2 2 0.16 0.22 0.50 0.13 0.55 0.15 0.15 0.26 0.06 0.13
3 1 0.97 0.97 1.00 0.46 0.96 0.83 0.84 0.91 0.22 0.41
5 1 0.86 0.89 0.96 0.35 0.87 0.74 0.73 0.81 0.10 0.25
10 1 0.40 0.39 0.51 0.12 0.46 0.37 0.34 0.45 0.39 0.12
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