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Abstract

This paper assesses the finite sample refinements of the block bootstrap and
the Non-Parametric Bootstrap for conditional moment models. The study re-
cononsiders inference in the generalized method of moments estimation of the
consumption asset pricing model of Singleton (1986). These dependent bootstrap
resampling schemes are proposed as an alternative to the asymptotic approxima-
tion in small samples and as an improvement upon the conventional bootstrap for
time series data. This paper is a comparative simulation study of these resam-
pling methods in terms of the differences between the nominal and true rejection
probabilities of the test statistics and the nominal and true coverage probabilities
of symmetrical confidence intervals.
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2 Sample Properties of Dependent Bootstrap

1 Introduction

This paper addresses the finite sample statistical inference in the context of generalized
method of moments estimation (GMM) for the nonlinear rational expectations model
of Hansen and Singleton (1982) (HS henceforth) using dependent bootstrap for time
series data. The paper will focus on two bootstrapping schemes: the block bootstrap as
in Hall and Horowitz (1996) (HH ) and the nonparametric bootstrap using Markovian
local resampling. The emphasis lies on assessing the ability of these dependent boot-
strap methods to improve upon the asymptotic approximation and the conventional
bootstrap method. This is a comparative study of the performance of these resampling
schemes in the context of a consumption asset pricing model with GMM estimation.
The purpose is to compare the distortions of the sampling distribution of symmetri-
cal (t-statistic) and non-symmetrical tests (test for overidentifying restrictions) from
their asymptotic approximation, as well as the differences between their empirical and
nominal rejection probabilities. The study also addresses the differences between the
nominal and empirical coverage probabilities of symmetrical confidence interval.

Since Efron [17] first introduced the bootstrap in 1979, many applied statisticians and
econometricians embraced this resampling procedure for estimating the distributions
of estimators and test statistics. The bootstrap provides an alternative to tedious
mathematical statistics when evaluating the asymptotic distribution is difficult. It
resamples from one’s data by treating the observed sample as if it was the population.
The appeal of the bootstrap stems from its ability to provide higher-order accuracy
and improvements over first order asymptotic theory1 by reducing the bias and the
mean square error especially in finite samples.

The relevance and validity of the bootstrap has been the center of focus and concern
in both applied and theoretical literature. The work of Bickel and Freedman (1981)
which established the asymptotic consistency, was followed by a stream of research
on its higher order accuracy properties [see, e.g., Efron (1987), Singh (1981) or Beran
(1988)]. The literature is far more rich when it comes to elucidating the comparative
asymptotic properties of refined bootstrap methods. The asymptotic refinements of the
bootstrap are achieved in situations where the statistic of interest is pivotal, meaning
that its asymptotic distribution does not depend on any unknown parameters of the
data generating process.

The use of bootstrap in hypothesis testing was highly advocated by several authors [see,
e.g. Horowitz (1997, 2003a), Davidson and Mackinnon (1999)]. First order asymptotic
theory often gives poor approximations to the distributions of test statistics in limited
size samples. As a result, the discrepancy between the nominal probability that a test
rejects a true null hypothesis using the asymptotic critical value and the true rejection
probability can be very significant [See Davidson and MacKinnon (1999, 2006),Efron
and LePage (1992)]. The bootstrap can also be used in confidence interval to reduce
errors in coverage probabilities2.

The focus of the literature in the recent decades has shifted away from the polishing

1Efron and Lepage (1992) summarize some of the results concerning higher order accuracy of the
bootstrap.

2The difference between the true and nominal coverage probabilities is often lower when the boot-
strap is used than when first order approximations are used.
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of the bootstrap in the independent data setting towards extending the procedure to
dependent observations. The well known accuracy of the Efron bootstrap to approxi-
mate the distributions of test statistics in the case of independent data is shown to fail
in the case of dependent data in a number of studies [see, e.g., Singh (1992)]. Leger,
Politis and Romano (1992) and Lepage and Billard (1992) show that the distribution
of a statistic will generally heavily depend on the joint distribution of the observations.
The difficulty to use the asymptotic distribution in this case opens the doors for the
bootstrap to play a more fundamental enabling role to bypass problems associated to
the use of asymptotics. However, it is clear that the resampling scheme appropriate
to independent data will fail to provide consistent approximations even with weakly
dependent data. The validity of the bootstrap in the dependent data case is a more
delicate matter. Developments to dependent data models have considered both para-
metric and nonparametric alternatives. Parametrically, the bootstrap can be applied
to structured dependent data models by assuming or estimating the structure of the
dependence in the sample. Papers by Athreya and Fuh (1992), Datta and McCormick
(1992) consider type of parametric methods in the case of Markov chain models.

Most of the interest lies however in nonparametric resampling schemes which divide
the data into blocks. Künsch (1989) [41] and Liu and Singh (1992) propose a “moving
blocks” resampling procedure for stationary time series data. The basic idea is to break
the data into overlapping blocks of observations and the bootstrap data are obtained
by independent sampling with replacement from among these blocks. Consistency
of this bootstrap scheme under m − dependence is achieved if the number of blocks
increases with the sample size. Lahiri (1992) demonstrates that the rate of approxima-
tion of Künsch’s method may be worse than the normal approximation and that second
order correct approximation is obtained only through suitable modification in the boot-
strap statistic. Hall and Horowitz (1996) [24] extends the non-overlapping blocking
scheme first introduced by Carlstein (1986) [6] to the case of generalized method of
moments estimator (GMM ) and proposes some corrections to the formulae used for
the t − statistic and the test for overidentifying restrictions. The authors show that
the new formulae will ensure the asymptotic refinements of the block bootstrap. All
the resampling procedures based on blocking schemes depend on a “tuning parame-
ter”, which is the number of blocks and the length of each block. Hall, Horowitz and
Jing (1995) [23] proposes a rule which depend on whether the distribution of the test
statistic is symmetrical or not. Hansen (1999) suggests that the bootstrap distribu-
tion based on blocks may be an inefficient estimate of the sampling distribution. The
author proposes a non-parametric data-dependent bootstrap which incorporates the
moment restrictions by using a weighted empirical-likelihood of the conditional distri-
bution. Applied to an AR(1) model, Hansen’s procedure performed better than HH
block bootstrap in terms of test size in the monte Carlo study. This paper reexamines
the results of Hansen (1999) and compares the two bootstrap methods in the context
of GMM estimation of a nonlinear rational expectation model. The present study will
evaluate the role of the error term structure in the sampling behavior of the sampling
distribution of the statistics of interest.

The finding of the simulation study can be summarized in the following. First, the
asymptotic approximation results in severe size distortion. The test statistic based
on the asymptotic critical values reject more often than the nominal level. Second,
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both the block bootstrap and the Markov bootstrap outperformed the asymptotic
approximation.

The second section introduces HS rational expectation model and sets the GMM es-
timation frame work along with the asymptotic results. Section 3 lays out the details
of the block bootstrap procedure and summarizes the finding of Hall and Horowitz
(1996). Section 4, discusses the Markov bootstrap and introduces Hansen’s procedure.
The results of the monte Carlo study are presented in section 4. Section 5 concludes
with some remarks and future extensions.

2 The rational expectation Model

2.1 Hansen and Singleton model

Hansen and Singleton (1982) propose a new method which permit direct estimation
and inference of nonlinear rational expectation model. The authors use the popula-
tion orthogonality conditions3 implied by the equilibrium stochastic Euler equations to
construct a generalized method of moments estimator for a multi-period asset pricing
model. HS estimation method circumvents the need of a complete, explicit character-
ization of the environment and do not require strong assumptions on forcing variables
of the equilibrium path.

The model to be estimated is a consumption CAPM. As in HS, the representative
consumer chooses stochastic consumption and investment so as maximizes the present
value of his lifetime utility.

max
Ct

E0[
∞∑

t=0

βtU(Ct)] (1)

where β is a discount factor in the interval [0,1] and U(.) is a strictly concave function.
Suppose that the consumer has the choice to invest in N assets with maturity Mj,
j = 1, .., N. The feasible set of consumption and investment plans must satisfy the
sequence of budget constraints:

Ct +
N∑

t=1

PjtQjt 6 RjtQjt−Mj
+ Wt (2)

where Qjt is the quantity of asset j held at the end of period t. Pjt is the price of asset
j at period t. Rjt is the payoff from holding asset j4.

The Euler equation for this maximization problem is:

Et

[
βnj

U ′(Ct+nj
, γ)

U ′(Ct, γ)
xjt+nj

− 1

]
= 0, (3)

3These orthogonality conditions will depend in a nonlinear way on the parameters of the models
and on the variables in the information set.

4In the case of stocks, the one period return from holding one unit of stock j is defined as:

xjt+1 =
Pjt+1 + Djt+1

Pjt
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where xjt+nj
=

Rnjt+nj

Pnjt
, j = 1, ..,m (m 6 N).

Assume that he preferences are of the constant relative risk aversion type U(Ct) =
Cγ

t

γ
,

and that the assets are held for one period nj = 1, then the marginal rate of substitution
U ′(Ct+1,γ)
U ′(Ct,γ)

=
(

Ct+1

Ct

)−α

. Let xkt+1 be the ratio of the ratio of consumption at time t + 1

to the consumption at time t, equation [3] becomes:

Et

[
β(xkt+1)

−αxjt+1 − 1
]

= 0 (4)

where α = 1−γ is the risk aversion parameter (> 0) and β is an impatience parameter.

The stochastic Euler equation (4) implies a family of population orthogonality condi-
tions. The GMM estimation method uses these moment conditions to construct an
objective function whose optimizer is the estimate of the asset pricing model’s param-
eters, α and β. Euler equation in (4) can be written as an error term. Let ut+1 be an
m dimensional error term which measure the deviation from the equilibrium condition.
This error term is a function of the model parameters and the observed variables. For
the simple of two assets, case of m = 2:

ut+1 =

[
β(xkt+1)

αx1t+1 − 1
β(xkt+1)

αx2t+1 − 1

]
= h(xt+1, b)

where b = (α, β). The first order condition is then: Et[h(xt+1, b)] = 0, where, xt+1 =
(xkt+1, xjt+1)

′.Given a set zt of q instruments, available at time t, a family of population
orthogonality conditions can be constructed based on the following moments functions5:

E[f(xt+1, zt, b0)] = 0

f(xt+1, zt, b0) = h(xt+1, b0)⊗ zt

The GMM estimation method sets the sample versions of these moments conditions
close to zero by minimizing the criterion function J(b), at the point estimate b of the
model parameters:

min
b

J(b) = g(X, b)
1×mq

′ Ω−1
n

mq×mq

g(X, b)
mq×1

where g(X, b) = 1
n

∑n
t=1 f(xt+1, zt, b), and Ωn is a weighting matrix.

The first order condition to the minimization problem:[
∂g(X, b)′

∂b
Ω−1

n

]
g(X, b) = 0 (5)

The GMM point estimates have the important feature of being consistent and have a
limiting normal distribution under fairly weak conditions6. The asymptotic covariance
of the estimators will depend on the choice of the weighting matrix. The most efficient
choice is to set

Ωn =
1

n

n∑
t=1

n∑
s=1

E[gt(X, b0)gs(X, b0)
′]

5f(xt+1, zt, b0) = h(xt+1, b0)⊗ zt stands for the Kronecker product of the m× 1 vector h(xt+1, b0)
and the qx1 vector of instruments zt. The product is an mq × 1 vector.

6Sufficient conditions for strong consistency and asymptotic normality are provided in Hansen
(1982).
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Efficient estimation can be achieved by using the heteroskedasticity and autocorrela-
tion consistent (HAC ) covariance estimators. This paper uses Andrews and Monahan
(1992) (AM) prewhitened HAC estimators which estimates the spectral density at
frequency zero by using a prewhitening procedure to transform the data into an un-
correlated sequence before constructing the kernel HAC estimator as in Newey and
West (1987). The estimators considered are prewhitened kernel estimators with vector
autoregressions employed in the prewhitening stage. AM propose the use a vector au-
toregression VAR model to filter some of the temporal dependence in the series of sam-
ple moments gt(X, b). The standard HAC estimator ΩHAC

n is then computed using the

VAR residuals g̃t(b), from the regression model gt(X, b) =
∑κ

s=1 Âsgt−s(X, b) + g̃t(b) :

ΩHAC
n =

n

n− k

n−1∑
j=−n+1

ϕ

(
j

Dn

)[
1

n− k

n∑
t=ι

g̃t(b)g̃t+q(b)
′

]
(6){

ι = j + 1, q = −j if j > 0
ι = −j + 1, q = j if j < 0

}
The kernel used in this paper is the QS kernel defined as ϕ (x) = 25

12π2x2

sin(6πx/5)
6πx/5

−
cos(6πx/5). The QS kernel yields a positive semi-definite HAC covariance matrix es-
timator and Andrews (1991) argues the QS kernel possesses some large sample opti-
mality properties. The data-dependent bandwidth Dn is defined in Andrews (1991) as
Dn = 1.3221(â(2)n)1/5, where

â(2) =

∑p
s=1 ws

4b%2
sbσ2

s

(1−b%s)8∑p
s=1 ws

bσ4
s

(1−b%s)4

; where p = mq (7)

The parameters (%̂c, σ̂
2
c ) are the autoregressive and innovation variance estimates from

the first order autoregressive approximation model for the series gs,t(X, b), with s =
1, ..., p. The weights ws represent the relative importance of each of the disturbance
vectors and are set to be equal to the inverse of the standard deviation of the corre-
sponding residuals.

The prewhitened HAC estimator is computed by recoloring the usual HAC estima-
tor ΩHAC

n to recover the correlation properties of the data. Consequently, the AM
“optimal” weighting matrix being considered is the following:

Ωn = Λ̂ΩHAC
n Λ̂′ (8)

Λ̂ =

(
I −

κ∑
s=1

Âs

)−1

; Wn = Ω−1
n

The covariance matrix of the parameters estimates is given by:

V (̂b) = (M ′
nWnMn)−1M ′

nWnΩ0WnMn(M ′
nWnMn)−1

with

Mn =
∂g(X, b)′

∂b
(9)

Ω0 = E [Ωn(b0)]
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Notice that, if the objective weight matrix is set as a function of the parameters in
the objective function, e.g., J(b) = g(X, b)′Ω−1

n (b)g(X, b), then the covariance matrix

of the parameters is equal to V (̂b) = (M ′
nΩ−1

0 Mn)−1.

Asymptotic theory suggests that the GMM estimator b̂ = (α̂, β̂) is consistent and

normally distributed with mean b0 = (α, β) and covariance matrix V (̂b). The results
hold under conditional heteroskedasticity and serial correlation of the error terms. The
instruments need not to be “econometrically” exogenous, they are only required to be
predetermined at time t.

For the model to be identified and the estimation feasible, the number of orthogonality
conditions r = m× q, should be at least equal to the number k of unknown parameters
in the model, in this case it is required that r ≥ 2. The first order condition [5] sets
the k linear combination of the r moment conditions equal to zero7. Consequently,
there are r − k remaining linearly independent moment conditions that are not set
to zero in estimation, therefore should be close to zero if the model restrictions are
true. Hansen (1982) uses a test statistic Jn, called J − test, to perform a test for these
overidentifying restrictions. Under the null hypothesis of correct specification, the
test statistic, defined as Jn = nJ (̂b), is shown by Hansen (1982) to be asymptotically
distributed as a χ2(r − k).

2.2 Estimation results

This section presents the empirical results for the stock prices model using the gener-
alized method of moments to estimate the parameters of preferences, α and β in [4].
The real per capita consumption series is obtained by dividing each observation of the
monthly and seasonally adjusted aggregate real consumption [nondurable plus services,
obtained from DRI data base] by the corresponding observation on population [also
from DRI data]8. The consumption series is then paired with two measures of stock
returns: the Equally-weighted and the Value-weighted returns obtained from CRSP
data set. The estimation period considered in this exercise is 1960 : 01− 1990− 12.

The vector of instruments is formed using lagged values of consumption and stock
returns paired with a constant term. The number of lagged values, lag , is chosen to
be 1, 2 and 4. The number of instruments9 q, increases the number of orthogonality
conditions and thus increases the number of overidentifying restrictions being tested.
HS argues that the asymptotic covariance matrix of the estimates becomes smaller as
the number of orthogonality conditions and might affect the sampling properties of the
point estimates. Table 11 represents the estimation results for the model parameters
as well as the test for model fit. The point estimate for the discounted factor β,
is stable and does not vary significantly with the number of lags considered in the
instruments. However the corresponding p− value changes dramatically from 71% for
lag = 1 to 1.9% for lag = 4. The null hypothesis that β = 1 is almost never rejected for

7Through the columns of the k × r matrix ∂g(X,b)′

∂b W.
8The DRI and CRSP data were provided by wrds.wharton.upenn.edu.
9In this application, since the instruments used are lagged values of consumption and a constant

term, the number of instruments is equal to: q = (lag × 3) + 1. The number of degrees of freedom
is therfore: df = m × q − k, where m is the number of returns, here m = 2 and k is the number of
parameters, here k = 2.
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Table 1: GMM Estimation for the CAPM with Value- and Equally-weighted Returns

lag α̂ pbα β̂ Ĵ df p bJ
1 0.197

( bseα=0.1028)

tα=1.9208

CI(90%)=[−0.027;0.367]

ME=0.394

0.054

0.9999
( bseβ=0.0004)

(tβ=−0.3676)

pbβ = 0.713
CI(90%)=[0.9993;1.000]

ME=0.0007

17.35 6 0.0084

2 0.0610
( bseα=0.0942)

tα=0.647

CI(90%)=[−0.0953;0.2173]

ME=0.311

0.0809

0.9994
( bseβ=0.0003)

tβ=−1.745

pbβ = 0.5174
CI(90%)=[0.9989;1.000]

ME=0.0011

25.12 12 0.0342

4 0.0815
( bseα=0.0542)

tα=1.504

CI(90%)=[−0.0083;0.1713]

ME=0.18

0.1336

0.9994
( bseβ=0.0003)

tβ=−2.345

pbβ = 0.0190
CI(90%)=[0.9989;0.9998]

ME=0.0009

29.19 24 0.2211

lag = 1 and 2. When the number of orthogonality conditions increases to lag = 4, the
null hypothesis will be rejected for significance level larger than 1.9%. The confidence
interval for the estimated discounted factor is very narrow and precise with a maximum
width of 0.0011.

The results are somewhat different for the coefficient of relative risk aversion (RRA) α.
The estimated values are significantly affected by the number of lags in the estimation.
The p − value for the null hypothesis α = 0 ranges from 5.4% to 13.3% and thus the
null is more likely to be rejected in the case with fewer lags and more likely to be
true for the multiple lags case. The precision of the 90% confidence intervals for the
coefficient of RRA significantly increases [53% reduction in the width when lag goes
from 1 to 4] with the number of lags in the instruments. The increase in the precision is
due to the decrease in the standard errors of the estimates. This confirms the effect of
the number of orthogonality conditions on the covariance matrix as argued by Hansen
and Singleton (1982).

Table-1 displays the estimated values Ĵ for the test statistic for overidentifying restric-
tions. The number of overidentifying restrictions is given by the number of degrees of
freedom df (= r − k). The p − value for the J − statistic is based on the asymptotic

theory that under the null hypothesis Ĵ ∼ χ2(df). Therefore, the p-value is defined

as p bJ = Prob[χ2(df) > Ĵobs], where Ĵobs is the observed value of the J − statistic
from the sample data. The J − test based on the asymptotic theory provides greater
evidence against the model when fewer lags are included the instruments vector. For
example, with lag = 1, there is little evidence to support the null hypothesis since
the p bJ = 0.85%. However, when 4 lags are included in the instruments, the p− value
increased to 22%.
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3 Asymptotic refinements of Efron’s Bootstrap

The asymptotic distribution theory is an approximation to the distribution of an esti-
mator or a test statistic obtained from first-order asymptotic expansions [Edgeworth
expansion]. Most of the test statistic are asymptotically pivotal, which means that
the asymptotic approximation does not depend on unknown population parameters.
However this approximation can be very poor in finite samples10. In the context of
generalized-method-of-moments, monte Carlo experiments have shown that tests have
the true levels that differ greatly from their nominal levels when asymptotic critical
values are used. Moreover, not all statistics are pivotal and some distributions are
difficult or impossible to estimate analytically.

The bootstrap is an alternative to first order expansion to approximating the distri-
bution of a function gn(X, F0) of the observations and the underlying distribution F
by a bootstrap distribution gn(X, Fn) . This resampling method consists of replacing
the unknown distribution by the empirical distribution of the data in the statistical
function, and then resampling the data to obtain a Monte Carlo distribution for the
resulting random variable.

In the case of GMM estimation, the bootstrap method operates as follows. It is
required to estimate the distribution of the test of overidentifying restriction, J =
J(X1, .., Xt, .., Xn, F0) and the t − statistic, t = t(X1, .., Xt, .., Xn, F0) for the param-
eters estimates. These random variables depend on the data X1, .., Xt, .., Xn, which
are considered as a random sample drawn from an unknown probability distribution
whose cumulative distribution is F . This probability distribution must satisfy the null
hypothesis for the tests to have any power. The bootstrap method approximates the
sampling distribution of J(X1, .., Xt, .., Xn, F0) (respectively t(.)) under F0 by that of
J(Y1, .., Yt, .., Yn, FT ) under the empirical distribution Fn, where {Y1, .., Yt, .., Yn} de-
notes a random sample from Fn.

The bootstrap method is shown to improve upon first asymptotic approximations under
mild regularity conditions11. The bootstrap ability to provide asymptotic refinements
is very important for bias reduction and hypothesis testing. It is not unusual that an
asymptotically unbiased estimator to have a large finite-sample bias. There is a well
established body of the literature on the asymptotic refinements of the bootstrap over
the first order approximation. In many cases, the bootstrap can be used to reduce both
the finite sample bias and the mean-square error.

Theorem 3.1 (Horowitz 2001, [30]) Suppose the data are a random sample,{Xi, i =
1, ..., n}. Assume that the parameter of interest θ can be expressed as a smooth function
of a vector of population moments. Suppose that the true value of θ is θ0 = g(µ), where
µ = E(X).

• θ can be consistently estimated by θn = g(X) . The bias of θn,Bn = E[θn − θ0] is
of order O (n−1).

10The information matrix test of White (1982) [55] is an example of a test in which large finite-
sample distortions of level can occur when asymptotic critical values are used. See Taylor (1987),
Orme (1990)

11Assumption of gn(X, Fn) a smooth function, continuously differentiable with respect to any mix-
ture of components of Fn in the neighborhood of F0.
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• Let X∗
i , i = 1, ..., n be the bootstrap sample. The bootstrap estimate for θ is θ∗n =

X
∗
, where X

∗
= 1

n

∑n
j=1 X∗

j .

• The bootstrap bias is given by: B∗
n = E[θ∗n − θn]

• Horowitz (2001) shows that: E(B∗
n) = Bn + O(n−2)

• The use of the bias corrected estimator, θn−B∗
n will result in a bias reduction of

order O(n−1).

In small samples, the nominal probability that a test based on asymptotic critical value
rejects a true null hypothesis can be very different from the true rejection probability.
The use of first-order approximation may also result in a significant gap between the
nominal and the true coverage probabilities when estimating confidence intervals. The
first-order asymptotic approximation to the exact finite sample distribution of a sym-
metrical statistic (e.g., the t − statistic) makes an error of size O(n−

1
2 ), respectively

O(n−1) for a one sided pivotal distribution. In contrast, the error made by the boot-

strap approximation is O(n−
3
2 ), respectively O(n−1) for the one sided function (See,

e.g., Horowitz (2001, 2003a)).

The bootstrap also provides an improved approximation to the finite sample distribu-
tion of an asymptotically pivotal statistic. Under the assumptions of smooth function
model, the following theorem explains why the bootstrap provides higher order accu-
racy.

Theorem 3.2 (Horowitz 2001, [30]) Suppose the data are a random sample,{Xi, i =
1, ..., n} from a probability distribution whose CDF is F0. Let Tn = Tn (X1, ..., Xn) be
a statistic. Let Gn(τ, F0) = P (Tn 6 τ), be the exact , finite sample CDF of Tn.

• The Asymptotic CDF G∞(τ, F0) of Tn satisfies supτ |Gn(τ, F0)−G∞(τ, F0)| =
O
(
n−1/2

)
.

• The bootstrap CDF Gn(τ, Fn) provides a good approximation for the asymptotic
CDF. Indeed, supτ |Gn(τ, Fn)−G∞(τ, F0)| → 0

• The error of the bootstrap approximation to a one sided distribution function is
Gn(τ, Fn)−Gn(τ, F0) = O (n−1) almost surely over τ .

• The error of the bootstrap approximation to a symmetrical distribution function
is [Gn(τ, Fn)−Gn(−τ, Fn)]− [Gn(τ, F0)−Gn(−τ, F0)] = O

(
n−3/2

)
almost surely

over τ .

However, in the case of GMM estimation, this is not necessarily true for the tests of
overidentifying restrictions. In an overidentified model, the population moment condi-
tion E(h(X, θ0)) does not hold in the bootstrap sample, E(h(X∗, θn)) 6= 0. The boot-
strap estimator of the distribution of the J − test is inconsistent, [5]. One way to solve
this problem is to use of the recentered bootstrap moment condition E(h∗(Xt, θ)) = 0,

where h∗(Xt, θ) = h(X∗
t , θ̂∗)−h(X, θ̂). Hall and Horowitz (1996) shows that recentering

provides asymptotic refinements in terms the rejection probabilities for hypothesis test-
ing and the distribution of the J−test. Brown and Newey (1995) propose an alternative
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approach to recentering. The authors replace the empirical distribution of X with an
empirical likelihood estimator which satisfies the moment condition E(h∗(Xt, θ)) = 0.
This likelihood estimator assigns probability mass πt to each observation Xt such that∑n

t=1 πt = 1 and
∑n

t=1 πth(Xt, θ̂) = 0. Horowitz (2001) argues that with either method,
the differences between the nominal and true rejection probabilities and between the
nominal and true coverage probabilities of symmetrical confidence intervals is of order
O(n−2).

4 Bootstrap with dependent data

The independent bootstrap resampling method raises serious concerns in the case of
dependent data. Resampling with replacement individual observations will destroy
any dependence properties that might exists in the original data sample. To capture
the dependence in he data, a number of alternative modifications to the bootstrap are
proposed. If the dependence structure is known, a parametric model can be used to
estimate this structure and reduce the data generation process to a transformation
of independent random variables. This equivalent to first filtering the data before
resampling and then recoloring the bootstrap[ sample. If there is no parametric model
to filter data dependence, an alternative bootstrap can be implemented by dividing the
sample data into blocks, either non-overlapping [See, Carlestein (1986)] or overlapping
[See, Hall (1985), Paparodits and Politis(2001,2002), and randomly resample the blocks
with replacement.

In this section, the block bootstrap method will be implemented following Hall and
Horowitz (1996). This section will describe the blocking rule and lay out the correc-
tions proposed by the authors to achieve the asymptotic refinements in the context of
generalized method of moment estimator. A simulation experiment is carried out to
compare the performance of the asymptotic approximation, the recentered bootstrap
and the corrected block bootstrap.

The relatively poor performance of block bootstrap in terms of the convergence rates
which are only slightly faster than the first order approximation. The Markov bootstrap
offers an alternative to the block bootstrap for processes which can be approximated
by a Markov process. Horowitz (2003) derives the rates of convergence of the Markov
bootstrap and shows that the errors made by Markov bootstrap converge to zero faster
than the block bootstrap errors. However, this result is true under stronger conditions
than the conditions required for the block bootstrap, mainly the Markov structure
of the data. If the distribution of the data is not sufficiently smooth, the Markov
bootstrap performs poorly and its errors converge slower than the block bootstrap.

4.1 Block Bootstrap

4.1.1 Non-overlapping Block resampling

Let {Xt, t = 1, .., n} denote the observations from a stationary time series. The non-
overlapping blocking method divides the sample into blocks of length l such that, the
first block consists of observations {Xt, , t = 1, .., l}, block s consists of observations
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{Xt, , t = l(s−1)+1, .., ls} and so forth. The blocks (there are φ = n/l ) are then sam-
pled randomly with replacement and laid end to end to obtain the bootstrap sample.
This blocking methods does not replicate the exact the dependence structure in the
data. As a result, the asymptotic refinements through O(n−1) cannot be achieved by
using the usual formulae for the bootstrap statistics. HH develops new versions of the
later and proposes new formulae which correct for the differences between the asymp-
totic covariances of the original sample and bootstrap versions of the test statistics
without distorting the higher order expansions that produce refinements.

The revised formulae of the bootstrap statistics depend on the blocking rule (number
and length of blocks). Consider the symmetrical test statistic for the parameters hy-
pothesis testing. Let Hn be the exact CDF of t− statistic: HT (z, F ) = P (t 6 z). The
rejection rule for the double sided hypothesis H0 : θ = θ0 at the level p is as follows:
reject H0 if |t| > zp, where zp satisfies Hn(zp, F ) − Hn(−zp, F ) = 1 − p. HH shows
that the corrected formula for the bootstrap t− statistic is: t̃∗(X∗, Fn) = Sn

Sφ
t(X∗, Fn),

t(X∗, Fn) is the usual t − statistic applied to the bootstrap sample, Sn is the usual
GMM standard errors of the parameter being tested from the original sample, the sec-
ond term in the correction factor, Sφ, represents the standard deviation of the bootstrap
estimate of the parameter of interest.

Since the estimation procedure in this paper uses a continuously updated GMM, in
the sense that the weighting matrix is not fixed but is replaced with an asymptotically
optimal estimate, then the covariance matrix of the parameters estimates is given by:

V (̂b) = (M ′
nWnMn)−1M ′

nWnΩ0WnMn(M ′
nWnMn)−1 =

[
σ̂11 σ̂12

σ̂21 σ̂22

]
where Wn and Mn are given by [8] and [9] respectively. Let φ be the number of blocks
and l be the corresponding length, the bootstrap estimate for the covariance matrix of
the parameters is shown by HH to be equal to:

Ṽ (b∗) = (M ′
nWnMn)−1M ′

nWnW̃nWnMn(M ′
nWnMn)−1 =

[
σ̃11 σ̃12

σ̃21 σ̃22

]
where

W̃n =
1

n

φ−1∑
i=1

l∑
j=1

l∑
k=1

g∗(Xil+j, b̂)g
∗(Xil+k, b̂)

′

The GMM covariance matrix applied to the bootstrap sample is given by: V (b∗)∗ =

(M∗′
n W ∗

nM∗
n)−1 =

[
σ∗11 σ∗12

σ∗21 σ∗22

]
, where M∗

n = ∂g∗(X∗,b)′

∂b
and W ∗

n is the prewhitened HAC

estimator for the bootstrap covariance matrix.

Ω̃∗
n =

n

n− k

n−1∑
j=−n+1

ϕ

(
j

Bn

)[
1

n− k

n∑
t=ι

g̃∗t (b
∗)g̃∗t+q(b

∗)′

]

g∗t (X, b) =
κ∑

s=1

Âsg
∗
t−s(X, b) + g̃∗t (b)

Ω∗
n = Λ̂Ω̃∗

nΛ̂′ where Λ̂ =

(
I −

κ∑
s=1

Âs

)−1

W ∗
n = (Ω∗

n)−1
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The QS kernel and the bandwidth are computed by applying the formulae in [2.1]
and [7] to the bootstrap data. Following this notation, the correction factor for the
first parameter will be τ1 = bσ11eσ11

and for the second τ2 = bσ22eσ22
. The corrected bootstrap

t− statistic for the parameter θi :

t̃∗ = τi

√
n(θ∗i − θ̂i)√

σ∗ii
=

σ̂ii

σ̃ii

√
n(θ∗i − θ̂i)√

σ∗ii
(10)

Hall and Horowitz (1996) demonstrate that this corrected version of the bootstrap test
statistic for the parameters estimate provides asymptotic refinements to the asymptotic
approximation. The levels for the test based on the corrected bootstrap critical values,
z̃∗t , for t̃∗(X∗, Fn) are correct through O(n−1), e.g., P

(∣∣t̃∗∣∣ > z̃∗t (p)
)

= p + O(n−1).

The usual formula for the bootstrap test for overidentifying restriction is obtained by
applying the test formula to the bootstrap sample. In the case of dependent data, HH
proposes the use of a new version to the re-sampled blocks of data. The corrected
formula is given by:

J̃∗(X∗, Fn) = ng∗(X∗, b)′W ∗ 1
2 VNW ∗ 1

2 g∗(X∗, b)

where the correction matrix VN is equal to:

VN = MNW
1
2

n W̃nW
1
2

n MN (11)

MN = I − Ω
− 1

2
n Mn[M ′

nΩ−1
n Mn]−1M ′

nΩ
− 1

2
n (12)

The level of the test for overidentifying restrictions based on the corrected bootstrap
critical value z̃∗J(p) is also shown in HH to converge to the nominal level at a rate
O(T−1), thus

P
(
J̃∗(X, Fn) > z̃∗J(p)

)
= p + O(n−1).

4.1.2 Moving Block resampling

let {Xt, t = 1, .., n} denote the observations from a stationary time series. Let Qi =
{Xi, ..., Xi+l−1},with 1 6 i 6 N be the collection of all overlapping blocks of length l,
where N = n − l + 1. From these moving N blocks Qi’s, a sample of φ = n

l
blocks

is drawn with replacement. These blocks are then paste together to form a bootstrap
sample.

The overlapping block resampling method was first introduced by Künsch (1989). [41]
gave conditions under which the overlapping-blocks bootstrap consistently estimates
the CDF in the case of a sample average. The asymptotic refinements to the estimation
of distribution function were later investigated by Lahiri ( [34], [35]).

Theorem 4.1 (Lahiri’s Results [28], [34] and [35]) In the case of estimating the
CDF of a normalized or a Studentized function of a sample mean for an M-dependent
DGP, the error in the bootstrap estimator of the one-sided distribution function is

o
(
n−

1
2

)
almost surely. This is an improvement over the asymptotic approximation

which makes errors of order O
(
n−

1
2

)
.
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The relative accuracy of the Bootstrap with overlapping and non-overlapping blocks
has been investigated by, Hall, et al. (1995) [23] and Lahiri (1999) [37]. Using the
asymptotically optimal block length, their results show that the rates of convergence
of the two blocking methods are the same. The bias of the bootstrap estimator is
the same for non-overlapping and overlapping blocks. However, the asymptotic mean
squared error, AMSE, is approximately 31% larger with non-overlapping blocks. In
terms of AMSE in estimating a one-sided distribution function of a normalized sample
average, [23] find that the AMSE is 22% larger with non-overlapping blocks.

4.1.3 Blocking rule

One of the issues which arises when using the block based resampling method to pre-
serve the asymptotic refinements of the bootstrap is the choice of the blocking rule.
The sampling properties of the bootstrap statistic and their performances as approxi-
mations to the true distributions depends on the number of blocks and their lengths.

The block length must increase with the sample size to enable the block bootstrap to
produce consistent estimators of moments and and distribution functions and to achieve
asymptotically correct rejection probabilities and coverage probabilities for confidence
intervals.

The asymptotically optimal block length will depend on the function to be estimated.
If the obejective is to estimate a moment condition or distribution function, the asymp-
totically optimal block length is defined as the one that minimizes the AMSE of the
block bootstrap estimator. If however, the aim is to form confidence intervals (resp.
test a hypothesis), an optimal block is one which minimizes the error in coverage prob-
abilities (resp. the error in the rejection probability). Hall textitet al. (1995) show that
the asymptotically optimal blocking rule is defined as: l ∼ nω where ω is set to mini-
mize the mean square error of the block bootstrap estimator. The authors show that
setting ω = 1

5
is the optimal blocking rule for estimating a double sided distribution,

e.g., the t − statistic for parameters estimates, and ω = 1
4

for estimating a one-sided
distribution such as the test of over-identifying restrictions.

4.2 The Markov Bootstrap

If the parametric structure of the dependence in the data is not available, then the
block bootstrap works reasonably well under very week conditions on the dependency
structure and no specific assumptions are made on the structure of the data generating
process. However blocking will distort the dependence structure, and the resulting
serial dependence patterns in the bootstrap samples can be very different from the
original data. This will increase the error made by the bootstrap and will result in
inefficient estimates of the sampling distribution. This poor performance of the block
bootstrap methods has led to a search for alternative nonparametric resampling meth-
ods for time series data. If the data can be approximated by high order Markov process,
then the Markov bootstrap is an attractive alternative with faster convergence rates
than the block bootstrap.

The Markovian local resampling scheme introduced by Paparodits and Politis (1997)
generates bootstrap data by reshuffling the original data according to a particular
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probability mechanism. This method applies to Markov processes or processes which
can be approximated by one with sufficient accuracy. The resampling is based on
nonparametric estimation of the Markov transition density, and sampling the process
implied by this estimated density.

In the case of a conditional moment restrictions model like the CAPM example of this
paper, the Markovian structure is derived from the conditional moments implied by
the model. Hansen (1999) describes this resampling method based on the localized
empirical likelihood and the moment restrictions of the model.

The resampling method is based on a nonparametric estimate of the transition density
f(Xt+1|Xt). Using a kernel density estimate for the density of Xt and the joint density
of (Xt, Xt+1), the transition density can be estimated by:

ws = P (Xt+1 = Xs|Xt = x) =
Kh(Xs−1 − x)∑n−1
r=1 Kh(Xr − x)

; 2 ≤ s ≤ n

where Kh(u) is the kernel function with bandwidth h. Following Hansen (1999), we

choose a multivariate kernel Kh(u) = r−1 exp
(
−
(

u′Σ−1u
2r

))
with Σ = 1

n

∑n
t=1(xt −

x)(xt − x)′. The localized empirical likelihood must satisfy the conditional moment
conditions implied by the theoretical model. Therefore the likelihood estimator assigns
probability mass πt to each observation Xt such that

∑n
t=1 πt = 1 and

∑n
t=1 πth(Xt, θ̂) =

0. The weights are found by solving the maximization problem given by:

π̂ = arg max
π

n∑
t=1

wt log(πt)

s.t. πt > 0; t = 1, .., n
n∑

t=1

πt = 1 and
n∑

t=1

πth(Xt, θ̂) = 0

The localized resampling scheme can be summarized in the following steps.

1. Select a bandwidth h for the kernel estimator Kh(u). In this paper we follow
Hansen’s suggestion to use the plug-in-rule of Silverman (1986) and set h =(

4
1+2m

) 1
4+m T− 1

4+m for a Markov process of order m. Select a set of starting values
Y ∗

m,m = {X∗
j , j = 1, ..,m}. A simple choice for the starting sequence is Ym,m =

{Xj, j = 1, ..,m}, or as in Hansen (1999), select randomly a block of size m from
the original sample.

2. To draw a bootstrap sample of size n, for any time point t+1 ∈ {m + 1, ..., n + m},
the kernel weights for the transition from the actual state Y ∗

t,m = {X∗
j , j = t, t−

1, .., t−p} to the state Y ∗
s,m = {X∗

j , j = s, st−1, .., s−p} for s ∈ {m, ..., n + m− 1}
are given by

ws =
Kh(Y

∗
s,m − Y ∗

t,m)∑n+m−1
r=m Kh(Y ∗

r,m − Y ∗
t,m)

3. The transition probabilities πs are then estimated using the localized empirical
likelihood as described above.
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4. Draw a random number U from the uniform (0, 1). The bootstrap replicate is
drawn from this discrete transition probability by selecting X∗

t+1 = XJ+1, where∑J−1
s=1 πs < U <

∑J
s=1 πs.

5 Simulation Study

5.1 Monte Carlo Experiment

This paper investigates the small sample properties of the GMM based Wald test
(J − test) and the coverage probabilities of the parameters confidence intervals and
compares the performances of the asymptotic theory, recentered bootstrap and the
block bootstrap.

The data generating process considered in the experiment is based on the CAPM
model. Given the series of consumption, the series of asset returns are generated under
the null hypothesis that Euler equation [4] holds for given values of alpha and beta.
The simulation experiment uses the observed series of the monthly consumption growth
κt = Ct+1

Ct
and the returns R are randomly generated as follows:

βRi,t+1κ−α
t+1 = 1 + ui,t+1 where Et (ui,t+1) = 0

Ri,t+1 =
κα

t+1

β
(1 + ui,t+1) (13)

log(xt) = c + ρ log(xt−1) + εt (14)

where, εt ∼ IID(0, σ2) (15)

Euler equation implies Et (ζi,t+1) = 1, which is equivalent to setting Et (ui,t+1) = 0.
For the null model, we will consider the simple case of ui,t ∼ iid N(0, 1).

In the alternative model we will consider two potential situations where the equilibrium
condition represented by the Euler equation does not hold.

Case 1 of Ha The alternative hypothesis corresponds to a situation where there is
measurement errors in the consumption series. Suppose that the consumption
series is observed subject to a multiplicative error: Ct = C∗

t ηt. The measurement
error is stationary and independent of all information in the model. In this case

κt = Ct+1

Ct
=

C∗
t+1

C∗
t

ηt+1

ηt
.

βRi,t+1κ−α
t+1 = ζi,t+1

(
ηt+1

ηt

)−α

ζi,t+1 = 1 + ui,t+1

Et

(
ζi,t+1

ηt+1

ηt

)
= Et (ζi,t+1)

Et

(
ηt+1

ηt

)−α

= Et

(
ηt+1

ηt

)−α

If we assume that the measurement error is iid N(a, δ), then the conditional

mean of the ratio of the measurement errors, Et

(
ηt+1

ηt

)−α

= exp(α2δ) = κ, a = 0,

δ = 2.
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Case 2 of Ha , The alternative model represents a situation where the expectation
errors are serially correlated:

ui,t = wi + δiui,t−1 + νi.t where νi.t = ei,t

√
w + γe2

i,t−1

ei,t ∼ iid N(0, 1) and let w = 1, γ = 0

wi = {0, 2}; δi = 0.95

The comparison of interest in this study is that between the performance of the three
different methods of inference, asymptotic, block bootstrap and Markov bootstrap.
The performance is measured through the distortion from the nominal level of the test
statistic and the coverage probabilities of the confidence interval.

Let the model in [13] be the null hypothesis H0, we wish to test. Let Ĵ be the realization
calculated from the data of the test statistic for overidentifying restrictions. The p −
value for inference based on Ĵ is defined as: p bJ = Probθ0(J(X,F0) � Ĵ). Since the true
parameters of the population are unknown, the bootstrap p− value, defined as p∗bJ =

Probbθ(J∗(X, F0) � Ĵ) for the recentered bootstrap and p̃∗bJ = Probbθ(J̃∗(X,F0) � Ĵ) for
the blocking method, is used to estimate p bJ . The size of the test is measured by the
rejection probabilities of the null hypothesis under the DGP in [13]. Let z∗J and z̃∗J be
the J − test critical values based on the recentered bootstrap and the block bootstrap
respectively. The rejection probability for the recentered bootstrap, RP ∗ = P (Ĵ > z∗J)

and R̃P
∗

= P (Ĵ > z̃∗J) for HH block bootstrap. Notice that the asymptotic rejection
probabilities are given by the χ2(df) critical values.

The asymptotic confidence interval for the parameter θi, at confidence level 1 − p, is
θ̂i ± z p

2
sbθi

, where z p
2

is the standard normal critical value, Prob(N(0, 1) > zp/2) = p
2
.

With the bootstrap critical values, the confidence interval for the recentered bootstrap

is θ̂i ± z∗p
2
ŝ∗θi

, where z∗p
2

is defined as Prob(|t∗| > z∗p
2
) = p

2
with t∗ =

√
T(bθ∗i−bθi)bs∗θi

, and

θ̂i ± z̃∗p
2
ŝ∗θi

Prob(|t̃∗| > z̃∗p
2
) = p

2
with t̃∗(X∗, Fn) = bσiieσii

√
n(bθ∗i−bθi)bs∗θi

in equation [10]. The

coverage probabilities of these confidence intervals are given by the likelihood that the
estimated interval will cover the true population values.

The sample size considered in the experiment is n = [60, 200, 330] and the number of
assets N = 2. The number of lags in the instruments is set to 1, 2 and 4. The number of
bootstrap iterations is set to B = 500. Because the computations are time consuming,
the number of monte Carlo replications is limited to M = 5000. The experiment is
conducted as described in the following steps:

Step 1 Generate a random sample of size T based on the DGP in equation [13]. Use

the data to compute the parameters estimates θ̂i, the standard deviations sbθi
and

the test statistic for overidentifying restrictions Ĵ .

Step 2 Generate a bootstrap sample by resampling with replacement the individual
observations or the blocks from the sample data or using the Markov process.
Compute the bootstrap estimates for the parameters, standard deviations, the
t− statistic and the J − test from the bootstrap sample, e.g., θ̂∗i , t∗ and Ĵ∗ for
both the conventional bootstrap and the block bootstrap using the formulas in
[10] and [11].
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Step 3 • Repeat step2 for B = 300 times and use the results to compute the empirical
distribution of the bootstrap t − statistic, t∗ and t̃∗and the bootstrap J −
statistic, J∗ and J̃∗.

• Set the critical values z∗J , z̃∗J equal to the 1− p percentile of the distribution

of J∗ and J̃∗, for nominal level p = 1%, 5% and 10%.

• Compute the critical values for the t − statistic by setting z∗p
2

(resp. z̃∗p
2
)

equal to the 1− p quantile of the empirical distribution of |t∗| (resp. |t̃∗|).

• Compute the bootstrap p− value, for both the conventional and the block
bootstrap, by setting p∗bJ (resp. p̃∗bJ) equal to the percentage of J∗ (resp. J̃∗)

which are greater than Ĵ .

Step 4 • Replicate step1-3 for M = 5000 times. Use the results to compute the
rejection probabilities by setting RP ∗ equal to the percentage of Ĵ that are

greater than z∗J and R̃P
∗

to the fraction of Ĵ larger than z̃∗J .

• The expected bootstrap p-value can be estimated by its sample average over
the 5000 replications: E(p∗bJ) ' 1

500

∑
p∗bJ and E(p̃∗bJ) ' 1

5000

∑
p̃∗bJ .

• Set the coverage probability equal to the fraction of intervals covering the
true values of parameters used to generate the data.

5.2 Fast Methods to compute the RP and the Modified P
values

The algorithm described above is computationally extremely costly especially with the
Markovian bootstrap. For each of the M monte Carlo samples, we need to compute
B + 1 test statistic. Thus a total of M(B + 1) test statistics.

In this section we will describe the simulation techniques proposed by Davidson and
Mackinnon( [16], [13])to estimate the rejection probabilities and (modified) bootstrap
P value at a fraction of the cost.

i. For each iteration m, m = 1, ...,M , generate a random sample of size n based
on the DGP in equation [13]. Use the data to compute the parameters esti-

mates θ̂
(m)
i , the standard deviations sbθi

and the test statistic for over-identifying

restrictions Ĵm.

ii. Generate one single (instead of B) bootstrap sample for each resampling scheme
(blocking or Markovian method). Compute the corresponding bootstrap test

statistics t∗m and Ĵ∗m.

iii. Set the critical values Q̂J(p) and Q̂∗
J(p) equal to the 1 − p percentile of the

sampling distribution of J and J∗.

Davidson and Mackinnon (2006) proposed the following two approximations for the
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rejection probabilities:

R̂P 1 ≡
1

M

M∑
m=1

I
(
Jm > Q̂∗

J(p)
)

R̂P 2 ≡ 2p− 1

M

M∑
m=1

I
(
J∗m > Q̂J(p)

)
where I(.) is an indicator function taking a value of 1 if its argument is true. These
approximations can be used to compute the errors in rejection probabilities, which
measures the difference between the actual and nominal level.

ÊRP 1 ≡ R̂P 1 − p

ÊRP 2 ≡ R̂P 2 − p

This method is quite inexpensive and requires computing only 2M test statistics. The
accuracy of these fast approximations requires that the test statistics and the bootstrap
DGP are independent or asymptotically independent, see [16]. R̂P 1 is shown to be more

accurate than R̂P 2. However, the authors suggest that substantial differences between
the two approximations may indicate that neither of them is accurate. Based on the
same idea, [16] proposed modified bootstrap P value that are potentially more accurate
than the conventional procedure described in Step 3.The procedure is described as
follows:

1. For each of the B bootstrap replications, a first bootstrap sample is generated in
similar way as in Step-2 and is used to compute the bootstrap test statistic τ ∗j
and a second-level bootstrap DGP. The latter is used to generate a new bootstrap
sample and a second level bootstrap statistic τ ∗∗j is computed.

2. The conventional bootstrap P value is

p̂∗ ≡ 1

B

B∑
j=1

I
(
τ ∗j > τ̂

)
3. Let Q̂∗(p̂∗) be the 1− p̂∗ percentile of τ ∗∗j ,

p̂∗ ≡ 1

B

B∑
j=1

I
(
τ ∗∗j > Q̂∗(p̂∗)

)
4. Davidson and Mackinnon (2000) proposed two versions of the fast double boot-

strap P value:

p̂∗∗1 ≡ 1

B

B∑
j=1

I
(
τ ∗j > Q̂∗(p̂∗)

)

p̂∗∗2 ≡ 2p̂∗ − 1

B

B∑
j=1

I
(
τ ∗∗j > τ̂

)
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In total, 2B + 1 test statistics are computed compared to B + 1 for the conventional
bootstrap P value. [16] found that this modified version has the potential of reducing
quite substantially the errors in rejection probabilities which may occur for bootstrap
tests. Once gain, comparing the improved P value to the conventional P value may
shed light on their accuracy.

5.3 Results and discussion

5.3.1 Results for Non-overlapping Blocks using the full monte carlo

First, lets look at the sampling distribution of the estimated statistic for the J −
test. Panel 1 represents a graphical representation of the kernel density estimates of
the probability density function for the random variable Ĵ . Different values of serial
correlation in the errors are considered and the GMM estimation in done with lag = 1
and thus a plot of the theoretical χ2(6) is also included. The series of consumption used
in the simulation is the same observed data series used in the empirical estimation.

This graphical representation of Ĵ and χ2(6) confirms the finding in the literature that
the asymptotic theory is a poor approximation in small samples. More precisely, the
empirical distribution of Ĵ is more skewed to the right and flatter than the asymptotic
χ2(6). As a result, the asymptotic theory will overestimate the rejection probability

of the null hypothesis. For any value of Ĵ , the true empirical p-value is larger than
the [estimated] asymptotic p-value. The sampling distribution becomes flatter with
thicker tails as the degree of correlation in the errors increases. In the extreme case
of ρu = 0.9, the distribution spans a larger range and is almost flat (the p.d.f at the
modal value is 16× 10−6).

Panel 4 represents the distribution of the bootstrap J-statistic along with the empirical
distribution of the random variable Ĵ . The GMM estimation is performed with four
lags in the instruments, the series of consumption is iid normal and the error terms have
a moderate degree of correlation, ρu = 0.25. The graph suggests that the distribution
of conventional bootstrap test (φ = T ) is very close to the true empirical distribution.

Secondly, the numerical results in tables below reinforce the graphical finding. The
level of the asymptotic rejection probability RP is far larger than the nominal level.
For example, in the case of lag = 1 and ρu = 0, Table-2 shows that the true rejection
probability for the asymptotic χ2(6) is 79% which significantly larger than the 10%
nominal level. The confidence level for interval estimation is equal to 81% for α and
only 24% for β, which is very low compared to the 95% nominal confidence level. The
same conclusion holds when the GMM estimation includes more lags, e.g., lag = 2,
4. The discrepancy between the true level nominal levels when using the asymptotic
approximation becomes more severe in the case of serial correlation, e.g., ρu = 0.70.

5.3.2 Results under the null using Fast methods

In this section, we consider a DGP under the null model 13. We consider two processes
for the consumption growth rate in 14, an AR(1) with ρ = 0.95 and an AR(4) with
rho = (0.95, 0.8, 0.01, 0.7) with normal innovations. In these experiments, we consider
two sample sizes,n = 100 and n = 200. We use the Fast bootstrap method to esti-
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Table 2: Block Bootstrap Confidence Intervals and Bootstrap p-value,lag = 1, T = 330

CI(90%) α̂ β̂ p bJ
Asy [−0.027; 0.368] [0.999; 1.000] 0.0084

Conv −Boot [−0.239; 0.525] [0.998; 1.004] 0.90
φ Hall & Horowitz

n1−ρ1 = 234 [−0.136;−0.031] [0.9981; 0.9985] 0.53

n
4
5 = 104 [−0.262; 0.1793] [0.9984; 0.9987] 0.99

n
3
4 = 78 [−0.170;−0.107] [0.9988; 0.9990] 1.00

n1−ρ2 = 79 [−0.202;−0.154] [0.9985; 0.9988] 1.00
n1−ρ3 = 27 [−0.280;−0.180] [0.9985; 0.9988] 1.00

Table 3: Block Bootstrap Confidence Intervals and Bootstrap p-value,lag = 4, T = 330

CI(90%) α̂ β̂ p bJ
Asy [−0.008; 0.171] [0.9989; 0.9998] 0.22

Conv −Boot [−0.540; 0.341] [0.9978; 1.0000] 0.88
φ Hall & Horowitz

n1−ρ1 = 232 [−0.695;−0.485] [0.9962; 0.9970] 0.54

n
4
5 = 104 [−0.435;−0.399] [0.9977; 0.9979] 0.22

n
3
4 = 78 [−0.567;−0.414] [0.9975; 0.9979] 0.23

n1−ρ2 = 76 [−0.424;−0.243] [0.9974; 0.9984] 0.24
n1−ρ3 = 25 [−0.510;−0.390] [0.9972; 0.9979] 0.49

mate the two versions of rejection probabilities, RP1 and RP2. We also report the
corresponding size discrepency, ERP1 and ERP2.

5.4 Asset Pricing: Updated Inference

In light of the simulation results discussed in the previous section, it is apparent that
using the asymptotic theory to conduct statistical inference will most likely lead to
incorrect conclusions. The monte Carlo study clearly states that the asymptotic ap-
proximation will inflate the rejection probabilities and the resulting p − value of the
test statistics will be severely bias downwards.

In this section, an estimation of the bootstrap p-value and the bootstrap confidence
intervals is conducted. The results are represented in Table 2 and Table 3 and are
compared to the asymptotic inference of Table-1.

The bootstrap p-value shown in Table 2 and Table 3 suggest that the test statistic of
overidentifying restrictions almost never rejects the null hypothesis of correct model
specification. For the case of GMM estimation with lag = 1, the asymptotic p-value
leads to a rejection for all nominal levels higher than 0.8%, however the p-value for
the block bootstrap exceeds 53% for all values of the tuning parameter φ. The results
are similar for lag = 2 and 4. The bootstrap interval estimates for the population
parameters are more precise than the asymptotic intervals. Furthermore, the bootstrap
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Table 4: Inference using Asymptotic Theory, Recentered and Block Bootstrap, ρu =
0.70, η = 0, lag = 1, T = 330

RP E[p bJ ] PREJ(5%) CIα CI
β

Nominal − level 0.01 0.05 0.10 - 0.05 0.95 0.95

Asymptotic 0.98 1.00 1.00 − 0.68 0.11
Recentered−Boot 0.00 0.00 0.02 0.67 0.00 0.73 0.98

number − block Hall & Horowitz
T 4/5 = 104 0.03 0.06 0.11 0.44 0.10 0.99 0.98
T 3/4 = 78 0.02 0.03 0.08 0.35 0.07 0.96 0.97

48 0.05 0.09 0.16 0.31 0.06 0.94 0.94
37 0.03 0.04 0.11 0.31 0.06 0.97 0.96
30 0.03 0.06 0.11 0.32 0.06 0.96 0.98

T 1−ρu = 10 0.02 0.04 0.08 0.31 0.06 0.99 0.97
8 0.02 0.13 0.27 0.19 0.06 0.97 0.99

confidence intervals achieve a higher level of coverage compare to the extremely low
levels of coverage probability of the asymptotic interval estimates.

6 Concluding Remarks

This paper has provided an empirical investigation of the sampling properties of the
test statistics and symmetrical confidence intervals in the case of nonlinear model
using GMM estimation. It is well known that the first order asymptotic may be a poor
approximation of the empirical distribution of the static of interest in small samples
and that the bootstrap provides higher order refinements over the asymptotic test. In
the case of temporal dependence, block bootstrap is used as an alternative resampling
method to preserve the ability of the bootstrap to improve upon the asymptotic theory.
However, little is known about the sampling properties of block bootstrap and its
ability to improve upon the conventional (recentered) bootstrap method. This paper
takes a close look at the properties of the three approximation methods and provides
a comparative analysis of their performance in the context of the consumption asset
pricing model.

The simulation analysis confirms the well known size distortion of the asymptotic
approximation. The asymptotic test of overidentifying restrictions has a very small
p-value leading to a high level of rejection probability. The differences in terms of
coverage probabilities of the confidence intervals are significantly large when using the
asymptotic theory.

The conventional bootstrap test generally tends to underestimate the rejection proba-
bility but the error is significantly low compared to the asymptotic approximation. The
interval estimation of the population parameters using the usual bootstrap percentile-t
method results in high levels of coverage probabilities which are close to the nominal
confidence level.

The results concerning the block bootstrap are somewhat inconclusive. In general, the
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size distortion is lower than the conventional bootstrap, especially when only one or
two lags are included as instruments in the estimation. The coverage probabilities are
higher and although the discrepancy is low, they tend to overestimate the nominal
levels.
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Table 5: Inference using Asymptotic Theory, Recentered and Block Bootstrap, ρu =
0.70, η = 0, lag = 2, T = 330

RP E[p bJ ] PREJ(5%) CIα CI
β

Nominal − level 0.01 0.05 0.10 − 0.05 0.95 0.95

Asymptotic 0.86 0.91 0.92 − − 0.68 0.11
Recentered−Boot 0.015 0.037 0.071 0.77 0.02 0.78 0.81
Number − block Hall & Horowitz

T 4/5 = 104 0.09 0.10 0.13 0.44 0.11 0.97 0.83
T 3/4 = 78 0.01 0.03 0.03 0.81 0.11 0.99 0.84

47 0.02 0.02 0.03 0.73 0.11 0.99 0.88
37 0.02 0.03 0.03 0.73 0.11 0.99 0.90
30 0.01 0.02 0.03 0.76 0.11 0.99 0.90
10 0.03 0.07 0.15 0.23 0.11 0.99 0.87
8 0.02 0.08 0.17 0.21 0.11 0.98 0.93

Table 6: Inference using Asymptotic Theory, Recentered and Block Bootstrap, ρu =
0.70, η = 0, lag = 2, T = 330

RP E[p bJ ] PREJ(5%) CIα CI
β

Nominal− level 0.01 0.05 0.10 − 0.05 0.95 0.95

Asymptotic 1.00 1.00 1.00
Recentered−Boot 0.00 0.01 0.02 0.69 0.00 0.70 0.94
Number − block Hall & Horowitz

T 4/5 = 104 0.16 0.23 0.25 0.37 0.22 0.99 0.98
T 3/4 = 78 0.04 0.08 0.13 0.49 0.22 0.97 0.98

47 0.06 0.12 0.20 0.33 0.22 0.96 0.96
37 0.05 0.11 0.22 0.33 0.22 0.95 0.96
30 0.03 0.11 0.18 0.36 0.22 0.96 0.98

T 1−ρu= 10 0.09 0.37 0.77 0.08 0.22 0.97 0.96
8 0.12 0.37 0.65 0.10 0.22 0.98 0.99
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Figure 1: Fast Bootstrap RP1 for J-test under the Null. The consumption growth is
AR(1) process with coefficients, ρ = 0.95. The sample size is T = 100 and the number
of simulation is M = 103. The block size is l = T 1−ω, ω = [0.4, 0.5, 0.6, 0.75, 0.9] and
Markov lag m = 2
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Figure 2: Fast Bootstrap ERP1 for J-test under the Null. The consumption growth is
AR(1) process with coefficients, ρ = 0.95. The sample size is T = 100 and the number
of simulation is M = 103. The block size is l = T ω, ω = [0.6, 0.5, 0.4, 0.3, 0.1] and
Markov lag m = 2
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Figure 3: Fast Bootstrap RP2 and RP1 for J-test under the Null. The consumption
growth is AR(1) process with coefficients, ρ = 0.95. The sample size is T = 100 and the
number of simulation is M = 103. The block size is l = T ω, ω = [0.6, 0.5, 0.4, 0.3, 0.1]
and Markov lag m = 2
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Figure 4: Fast Bootstrap RP2 for J-test under the Null. The consumption growth is
AR(1) process with coefficients, ρ = 0.95. The sample size is T = 100 and the number
of simulation is M = 103. The block size is l = T ω, ω = [0.6, 0.5, 0.4, 0.3, 0.1] and
Markov lag m = 2
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Figure 5: Fast Bootstrap ERP2 for J-test under the Null. The consumption growth is
AR(1) process with coefficients, ρ = 0.95. The sample size is T = 100 and the number
of simulation is M = 103. The block size is l = T ω, ω = [0.6, 0.5, 0.4, 0.3, 0.1] and
Markov lag m = 2
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Figure 6: Fast Bootstrap RP1 for J-test under the Null. The consumption growth
is AR(4) process with coefficients, ρ = [0.95, 0.8, 0.01, 0.7]. The sample size is T =
100 and the number of simulation is M = 103. The block size is l = T 1−ω, ω =
[0.6, 0.5, 0.4, 0.3, 0.1] and Markov lag m = 2
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Figure 7: ERP1 for J-test under the Null: AR(4), ρ = [0.95, 0.8, 0.01, 0.7]. The
sample size is n = 100, M = 103. The block size is l = T ω, ω = [0.6, 0.5, 0.4, 0.3, 0.1]
and Markov lag m = 2
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Figure 8: J-test under the Null: AR(4), ρ = [0.95, 0.8, 0.01, 0.7]. The sample size is
n = 100, M = 103. The block size is l = T ω, ω = [0.6, 0.5, 0.4, 0.3, 0.1] and Markov lag
m = 2
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Figure 9: Fast Bootstrap RP2 for J-test under the Null. The consumption growth
is AR(4) process with coefficients, ρ = [0.95, 0.8, 0.01, 0.7]. The sample size is
T = 100 and the number of simulation is M = 103. The block size is l = T ω, ω =
[0.6, 0.5, 0.4, 0.3, 0.1] and Markov lag m = 2
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Figure 10: Effect of sample size on RP1 for J-test under the Null. The consumption
growth is AR(4) process with coefficients, ρ = [0.95, 0.8, 0.01, 0.7]. The sample size is
T = 100, 200 and the number of simulation is M = 103. The block size is l = T ω, ω =
[0.1, 0.3] and Markov lag m = 2
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