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Abstract

The topic of economic growth and convergence of countries has been an active topic

in the 1990’s. This paper investigates the question of whether there is any empirical

evidence that countries are converging, with respect to their relative incomes, over time.

To test for convergence, the evolution of the relative income for a country is modelled

as a first-order Markov chain. Bayesian methods are then used investigate the posterior

distributions of the parameters of the Markov chain and of other functions of interest

related to the Markov chain. Issues of embeddability and mobility are discussed and

Bayes factors are used to test for evidence of convergence across the countries in our

sample. This is achieved through the use of carefully constructed prior distributions for

the transition probabilities of the Markov chain. Contrary to existing studies we find

little evidence in support of convergence of countries either across the whole data set

or conditionally across subsets of countries that we believe are similar in underlying

production technologies. We find that there is strong evidence that countries are

diverging with respect to their relative income even for the conditional case. We also

find that there is strong evidence of a structural break in the data around 1974 and

that the properties of the Markov chain change significantly when this break is taken

into account for all but “poor” countries.
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1 Introduction

The topics of economic growth and convergence of countries and states have been active

topics in the 1990’s. Barro (1991), Barro and Sala-i-Martin (1992), Mankiw, Romer, and

Weil (1992) and Ventura (1995) have all discussed the topic of growth and convergence of

economies. This paper follows Chari, Kehoe, and McGratten (1995) in modeling economic

growth as a first order Markov chain. Bayesian methods are used to estimate the parameters

of the transition matrix along with other functions of interest for various groups of countries.

Questions of convergence and structural change are addressed.

The neoclassical growth model predicts that countries with similar structural makeup,

that is similar technology and preference parameters, will grow at rates inversely proportional

to their size. That is, poorer countries will grow at faster rates than richer countries; and

because of this countries should eventually converge in levels. Barro (1991) pointed out

that the evidence does not support this contention of the model but that the data suggest

that conditional on the stock of human capital, economies will converge. That is, for a

given level of human capital, economic growth is inversely proportional to the initial level

of physical capital. Barro called this type of convergence conditional convergence. Barro

(1991) and Barro and Sala-i-Martin (1992) find strong evidence of conditional convergence

across the states of the United States of America and weaker evidence for conditional con-

vergence across countries. Barro and Sala-i-Martin (1992) look at the original members of

the O.E.C.D. and report that there is some evidence of conditional convergence among these

countries. Mankiw, Romer, and Weil (1992) find that, holding population growth and cap-

ital accumulation constant, there is evidence to support the predictions of the neoclassical

growth model.

Using endogenous growth models, such as Lucas (1988), it would be expected that

rich and poor countries would have different growth rates which would mean either rich and

poor countries would be diverging or converging. Ventura (1995) outlines a model where,

depending on certain preference parameters, convergence can still occur in an endogenous

growth world. Parente and Prescott (1993) find that the disparity of wealth per capita across

rich and poor countries is remaining constant over time. While there are some countries

catching up to the richer countries, there are also countries that are dropping off. These are

called ’growth miracles’ and ’growth disasters’ respectively. They find that rich and poor

countries tend to be growing at the same rate but that the composition of the rich and

poor groups are not necessarily the same over time. There is a lot of movement, both up

and down. This is one of the facts that Chari, Kehoe, and McGratten (1995) are trying to

explain. The findings of Parente and Prescott (1993) suggest that the endogenous growth

models may not be completely correct in their modeling of growth.

The object of this paper is not to try to distinguish between competing models.
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Rather, the aim of this paper is to ascertain, using a first order Markov chain model, whether

the data support the contentions of these models. Following Chari, Kehoe, and McGratten

(1995) we divide countries in our sample into discrete categories, or ‘bins’, according to

their relative Gross Domestic Product (GDP) per worker. We calculate relative GDP per

worker by comparing each country’s level of GDP per worker with the geometric mean of

all of the countries in the sample. Thinking of the world in this way leads us to model

growth as a first order Markov chain. Modeling the world in this way also allows us to

address questions of convergence and divergence. We follow the Bayesian methodology in

our estimation procedures which allows us to use the Bayesian model comparison literature

outlined in Geweke (1994) to test our hypotheses. We also informally discuss issues that

arise from these comparisons. The paper will deal with a number of data sets comprising

of groups of countries with the aim of distinguishing between absolute convergence and

conditional convergence.

Before dealing with the question of convergence there needs to be a determination of

whether there is a structural break in the data. As described in Eichengreen (1994), there was

a breakdown of the Breton Woods agreement in 1973 and as a consequence countries moved

away from fixed exchange rate regimes towards flexible exchange rate regimes. As countries

moved from fixed exchange rate regimes to flexible exchange rate regimes the capital controls

that were in effect for the fixed exchange rate regime were also lifted. The move to flexible

exchange rates would certainly change the environment in which countries operated. A

number of authors have talked about the potential importance of trade between countries as

a determinant of growth (e.g. Ventura (1995) and Grossman and Helpman (1991)), so that it

would be expected that a complete change in the exchange rate regimes would affect growth.

Also, whether there is a structural break in the data could have an effect on results that

were obtained using data that covered the period when the break occurred. For example, the

data that we use for countries covers the years 1960 to 1990. We indeed find evidence, using

Bayesian model comparison techniques, that the Markov chain process is different before and

after 1975. In many cases we find that inference based on a one transition model (covering

1960 to 1990) differs substantively with inference based on a two transition model (from

1960 to 1974 and from 1975 to 1990).

The relative mobility of countries can also be studied. We estimate the parameters of

the transition matrix of the first order Markov chain using standard Bayesian techniques that

are described in Section 3 of this paper. Once we have these estimates we can test whether

the first order Markov chain can be embedded into a continuous time process. If it can, then

we can report continuous time mobility measures for the Markov chain. These measures

will be useful in making inferences about the evolution countries over time. Discrete time

mobility measures will also be reported for the instances when we cannot find evidence for

embeddability. We are, however, most interested in testing for convergence or divergence,
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be it absolute or conditional, of countries in our sample over time. We will use the Bayesian

model comparison literature to test for convergence. Convergence and divergence priors for

the Markov chain will be defined and these will be used to test whether there is evidence

of convergence in the data. For example, to test for convergence against a hypothesis of no

convergence we would estimate the model twice. The first time we would use a convergence

prior and then compare that estimated model with an estimated model with a prior that

suggested no convergence. We could then form the Bayes factor of the convergence model

against the no-convergence model and from that we could make inferences about whether

the data supported convergence or not. As a by-product of estimating the parameters of a

first order Markov chain, we are able to make inferences regarding the proximity of the final

distribution to the invariant distribution implied by the model. We will also test for any

evidence of conditional convergence by using a restricted data set of the O.E.C.D countries.

These countries have a good chance of being economically integrated.

The layout of the paper is as follows. Section 2 will describe the model and inter-

pret the different types of mobility measures that can be used. Section 3 will outline the

econometric techniques used in the paper while Section 4 will describe the data that is used.

Section 5 will present the results and Section 6 will conclude.

2 The Model

The transition of countries will be modelled as a first order discrete Markov chain. Suppose

that a country can be in either of s distinct bins where the membership of a bin will be

based on a country’s relative GDP per worker. Define πit as the probability that a country

is in bin i at time t. Then for each time period t, the state of the model is described by

πt = [π1t, . . . , πst]
′ .(1)

Let the probability that a country is in bin j at time t given that the country was in bin i at

time t − 1 be denoted by pij. Then the transition matrix for the first order Markov chain is

P = [pij] .(2)

The transition of the model from period t − 1 to t is then

π′
t = π′

t−1P.(3)

That is, for each j,

πjt =
s∑

i=1

pijπi,t−1.(4)
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For a given initial state, π0, we can express the state of the model, πt, as

π′
t = π′

t−1P = · · · = π′
0P

t.

Thus, if

π∗′ = lim
t→∞

π′
t

exists and is the same for all initial states, π0, we say that π∗ is the invariant distribution

of the transition matrix P . The invariant distribution is of interest to us as it will give an

indication as to whether transition matrix of the countries of our sample, as described by the

above first order discrete Markov chain, represents a world where countries are converging,

diverging or remaining roughly the same. If we observe an invariant distribution that has

more mass in the middle “bins” than the current distribution then we would say that this is

a world where countries are converging.

The invariant distribution satisfies

π∗′
t = π∗′

t P(5)

and so the invariant distribution is just the left eigenvector of P associated with the eigen-

value equal to one. Note that P is a row stochastic matrix and so at least one of the

eigenvalues of P is equal to one.

Geweke, Marshall, and Zarkin (1986b) describes a number of mobility measures for

a first order discrete Markov chain. As we believe that there may be a structural break

in the data we are therefore interested in how the mobility of countries changed after the

structural break, if any. Because we believe the structural break was caused by the shift of

exchange rate regimes to flexible exchange rates there may be evidence that there is more

mobility after 1974 than before it. Geweke, Marshall, and Zarkin (1986b) describe a number

of properties that mobility indices should have.

A mobility index M is a map from the space of transition matrices to the real numbers

with the property that M (I) = 0. Geweke, Marshall, and Zarkin (1986b) outline a number

of criteria that mobility indices need to satisfy. One criteria is the persistence criteria which

states that mobility indices should be consistent with simple interpretations of the transition

matrix. For example, if all of the off diagonal elements of a transition matrix P 1 are greater

than the off diagonal elements of another transition matrix P 2 then we should see more

mobility between bins for the model with transition matrix P 1. Hence we would like to see

M(P 1) > M(P 2). This condition is known as monotonicity (M). Other persistence criteria

are immobility (I), which states that M(P ) ≥ 0; and strict immobility (SI), which states

that M(P ) > 0.

The mobility index

MP (P ) =
s − tr (P )

s − 1
(6)
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suggested by Shorrocks (1978) satisfies (M), (I), and (SI). The above mobility index is s
s−1

times the harmonic mean of the mean length of stay in bin i, 1
1−pii

, over all i. Similar indices

such as

MB (P ) =
s∑

i=1

πi

s∑
j=1

pij|i − j| and(7)

MU (P ) = s
s∑

i=1

πi
(1 − pii)

s − 1
(8)

satisfy (I) and (SI) but do not satisfy (M). The mobility index MU (P ) is the unconditional

probability of leaving the current bin.

Another criteria for mobility indices is the convergence criteria. This criteria states

that the mobility index M should order transition matrices P according to how fast P t

converges to P ∗, which is the limiting transition matrix. We can order the eigenvalues of

P , without loss of generality, so that 1 ≥ |λ2| ≥ · · · ≥ |λs|. As suggested in Sommers

and Conlisk (1979), πt converges to π∗ at the rate at which |λi|t converges to zero for all

i = 2, . . . , s; which is no faster than the rate at which |λ2|t converges to zero. Thus the

larger is λ2, the slower is the rate of convergence to the invariant distribution. Note that

the convergence criteria is valid only for those transition matrices for which P ∗ exists. It

should also be noted that for P ∗ to exist and hence for the convergence criteria to apply, we

require that λ2 < 1. Geweke, Marshall, and Zarkin (1986b) states that any index which is a

strictly decreasing function of the moduli of the eigenvalues of P will satisfy the convergence

criteria. Three such indices are

ME (P ) =
s − ∑s

i=1 |λi|
s − 1

,(9)

MD (P ) = 1 − | det (P ) | and(10)

M2 (P ) = 1 − |λ2|.(11)

In this paper we report the mobility measures defined in equations (6), (9), (10) and

(11). We do not report the mobility indices defined in equations (7) and (8) as these are in-

consistent within the persistence criteria. Using the mobility index described in equation (6)

we will be able to compare the mobility of countries before and after 1974 to see if there is a

change in the mobility of countries between bins after the change of exchange rate regimes.

The last three discrete mobility measures that we report will enable us to compare the rate

of transition to the invariant distribution for the implied transition matrices before and after

1974.

5



While we have modeled the transition of countries as a discrete time first order Markov

chain, we are interested in testing whether the process can be imbedded into a continuous

time process. If we can, then we are able to report more mobility statistics as described in

Geweke, Marshall, and Zarkin (1986b). Suppose that we have a discrete first order Markov

chain with transition matrix P . Geweke, Marshall, and Zarkin (1986a) shows that, if the

discrete time process can be thought of as a process that results from a continuous time

process, the rate of change of the vector of state probabilities can be expressed as

π̇′
t = π′

tR(12)

where the matrix R is referred to as the intensity matrix. In fact, R = QNQ−1 where

Q is the matrix of right eigenvectors of P corresponding to the eigenvalues λ1, . . . , λs and

N = diag (ν1, . . . , νs) where νi = log(λi)
T

. Here, T is the number of time periods between

observations. See Geweke, Marshall, and Zarkin (1986a) and Geweke, Marshall, and Zarkin

(1986b) for a more detailed discussion. A discrete time process is said to be embeddable if

all of the off diagonal elements of R, rij for i 6= j, are non-negative and if all of the diagonal

elements, rii, are non-positive. That is, rij ≥ 0 for all i 6= j and rii ≤ 0 for all i = 1, . . . , s.

The off diagonal elements of R can be interpreted as the instantaneous rates of transition

from bin i into bin j. One problem that can arise is that log (λj) has many solutions for

eigenvalues λj that are complex. This is known as the aliasing problem. Solutions to this

problem include using log (λj) = Log (λj) where Log (λj) is the value of log (λj) whose

imaginary part has smallest absolute value amongst all solutions or to rule out solutions

that are not embeddable.

Continuous time equivalents of the discrete time mobility measures (6) through (11)

can be defined. Geweke, Marshall, and Zarkin (1986b) shows that the continuous time

equivalents of (6), (7) and (10) are equivalent and can be expressed as

M∗
C (R) =

−tr (R)

s
=

− log [det (P )]

s
(13)

Geweke, Marshall, and Zarkin (1986b) also shows that M∗
C satisfies (M), (SI) and velocity,

which is defined as M∗
C (kR) > M∗

C (R) for all k > 1; and that M∗
C is invariant to which

solution of log (λj) we choose. The continuous time mobility measure corresponding to

equation (11) is

M∗
2 (R) = −Re (ν2) = −Re [log (λ2)] .(14)

Embeddability is imposed and moments for continuous time mobility measures are calculated

as described in Section 3. The mobility measures will enable us to determine the degree

of movement of countries between bins and also the degree of convergence to the implied

invariant distribution.
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3 Econometric Model and Algorithms

3.1 Development of the Posterior Distribution

Let N be an s×s matrix, where nij is the observed number of governmental units that move

from bin i in the first period to bin j in the last period and s is the number of bins. As

before, P is an s×s transition matrix of a first order Markov chain. The likelihood function,

i.e. the probability that we see N given P , is

L [N |P ] =
s∏

i=1

s∏
j=1

p
nij

ij .(15)

The natural conjugate prior for this likelihood is a product of Dirichlet distributions

p [P ] =
s∏

i=1

s∏
j=1

p
`ij

ij .(16)

so that the posterior distribution of P given N is

p [P |N ] =
s∏

i=1

s∏
j=1

p
nij+`ij

ij =
s∏

i=1

s∏
j=1

p
aij

ij ∝
s∏

i=1

fi [pi1, . . . , pis](17)

where

fi [pi1, . . . , pis] =
Γ

(∑s
j=1 (aij + 1)

)
∏s

j=1 Γ (aij + 1)

s∏
j=1

p
aij

ij(18)

is the density of the Dirichlet (ai1 + 1, . . . , ais + 1) distribution. Thus, the rows of P are

independent of each other, but the elements within a row are dependent since each row must

sum to one.

Since we know that the rows of P follow a Dirichlet distribution, it follows (see Berger

(1985) page 561) that the mean and variance of the elements of P are

E [pij] =
aij + 1∑s

k=1 (aik + 1)
; ∀i = 1, . . . , s;∀j = 1, . . . , s and

V ar [pij] =
[
∑s

k=1 (aik + 1) − (aij + 1)] · (aij + 1)

[
∑s

k=1 (aik + 1)]
2 · [1 +

∑s
k=1 (aik + 1)]

; ∀i = 1, . . . , s; ∀j = 1, . . . , s.

(19)

Let y be an s× 1 vector equal to (y1, . . . , ys); where yi is distributed as a Gamma(νi) for all

i = 1, . . . , s and yi and yj are independent for all i 6= j. Now let x be an s × 1 vector equal

to (x1, . . . , xs); where xi is defined as

xi =
yi∑s

j=1 yj

(20)
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Press (1972) (page 134) shows that x has a Dirichlet(ν1, . . . , νs) distribution. It is well

known that the χ2 distribution is a special case of the Gamma distribution; so that if z is

distributed as a Gamma
(

ν
2

)
then 2z is distributed as χ2 (ν). In this way, drawing 2yi from a

χ2 (2νi) is equivalent to drawing yi from a Gamma(νi). Thus we can draw from the χ2 (2νi)

distribution and divide the draw by two to get a variable distributed as a Gamma(νi). Note

from the definition of xi that multiplying yi by a constant does not change the value of xi,

so we can simply draw yi from a χ2 (2νi) distribution and apply our definition of xi to get x

distributed as a Dirichlet(νi, . . . , νs).

Given this background, draws from the posterior of pij are made by drawing yij from

a χ2 [2 (aij + 1)] distribution for i = 1, . . . , s and j = 1, . . . , s and then setting

pij =
yij∑s

k=1 yik

, ∀i = 1, . . . , s; ∀j = 1, . . . , s.(21)

It then follows from the above argument that the resulting rows of P will have the appropriate

Dirichlet distribution. As a result, we can make M independent and identically distributed

draws of the transition matrix from the posterior distribution.

3.2 Functions of Interest

We will report a number of functions of interest, as discussed in Section 2. The proceeding

discussion is meant to familiarize the reader with the algorithms that were used to calculate

those functions of interest which can not be calculated analytically. It will become apparent

that most of the following functions of interest are highly non-linear functions, the importance

of which will be discussed at the end of the section.

Let g
(
P (i)

)
be any function of the ith draw from the posterior distribution. Note

that g
(
P (j)

)
and g

(
P (k)

)
are independent and identically distributed since P (j) and P (k) are

independent and identically distributed (Lindgren 1993). Let

ḡM ≡ M−1

M∑
i=1

g
(
P (i)

)

and

ḡ ≡ E [g (P ) |N ]

If ḡ < ∞, then the strong law of large numbers implies that ḡM converges almost surely to

ḡ. In addition, if we let

σ2
g = V ar [g (P ) |N ] = E

{
[g (p) − ḡ]2 |N}

and assume that σ2
g < ∞, then the central limit theorem implies that M− 1

2 (ḡM − ḡ) con-

verges in distribution to a normal with mean 0 and variance σ2
g . In addition, the strong law
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of large numbers implies that

s2
M =

1

M − 1

M∑
i=1

[
g

(
P (i)

) − ḡM

]2

converges almost surely to σ2
g . This was shown in Geweke (1995)

In Section 2 we noted that the invariant distribution of the transition matrix is of

interest. We calculate the right eigenvectors and eigenvalues for P (i)′ for each of the M draws

of P from the posterior distribution. We then take g
(
P (i)

)
to be the vector valued function

corresponding to the left eigenvector of P (i) corresponding to the eigenvalue equal to one.

Moments for the invariant distribution are then calculated as above.

We actually calculate two separate sets of results for each model. For the first set

of results, we draw M transition matrices from the posterior distribution without imposing

embeddability. We do not calculate moments for continuous time mobility measures or

the intensity matrix for this set of results. We impose embeddability for the second set of

results so that we are able to calculate moments for the intensity matrix and continuous

time equivalents of the discrete matrix mobility measures defined above. Note that imposing

embeddability is achieved via acceptance sampling (see Geweke (1995)); i.e. we test whether

any of the M draws from the posterior distribution are embeddable by applying the definition

found in Section 2. Let K be the number (less than or equal to M) of the draws from the

posterior that are embeddable. This subset of the K draws is used to calculate functions of

interest and moments of those functions of interest. Of course the moment definitions above

are modified to have K’s rather than M ’s.

Note that statistical inference based on frequentist methods would lead to a very

limited discussion of the above functions of interest. One could certainly calculate the

maximum likelihood estimates of P ,

p̂ij =
nij∑s
j=1 nij

,

and then calculate the functions of interest of P̂ . However, the sampling distributions of

the functions of interest would be very difficult to determine due to the fact that most of

the functions of interest are highly non-linear functions of P . In addition, the question of

embeddability (as noted in Geweke, Marshall, and Zarkin (1986a)) is almost intractable.

Frequentist methods would simply indicate that either P̂ is embeddable or it is not

embeddable. There is no sense in which we could get an idea of the probability that P is

embeddable. Both the question of the distribution of functions of interest and the poste-

rior probability of events are highly tractable when one conditions on the data and applies

Bayesian methods. For instance, we can report the posterior probability that P is embed-

dable. We accomplish this feat using the function of interest g
(
P (i)

)
, where g

(
P (i)

)
is equal

to zero if P (i) is embeddable and one otherwise. Using the notation established above, the
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posterior probability of embeddability is simply K
M

. Similarly, we can report the probability

that |λ2| is between 0.20 and 0.25 using the function of interest g
(
P (i)

)
, where g

(
P (i)

)
is

equal to one if |λ2| is between 0.20 and 0.25 and zero otherwise.

3.3 Bayes Factor

It is going to be desirable to compare models. For instance, as discussed in Section 2, we

have interest in testing whether the data support the hypothesis that there are actually

two transition periods, one from 1960 to 1974 and another from 1975 to 1990, rather than

one transition period from 1960 to 1990. Similarly, it is going to be of interest to compare

different priors on P . Fortunately, we can draw from the literature on Bayesian model

comparison. Following Geweke (1994), we define the marginal likelihood for model j as

MjN =

∫
P

pj (Pi) · Lj [N |Pi] dPi(22)

where pj [Pi] is the prior on Pi for model j, Lj [N |Pi] is the likelihood of N given Pi for model

j and

P =

{
pij : pij ≤ 1,

s∑
j=1

pij = 1 ∀i = 1, . . . , s

}
.

It is important that both the prior and likelihood are proper densities. We can then define

the Bayes factor of model j in favor of model k as

Bjk =
MjN

MkN

(23)

The Bayes factor will give us a sense of how likely model j is relative to model k.

We can modify the notation used above to distinguish between priors and transitions.

Denote the prior number of degrees of freedom under model q for pij in the first transition

as q1`ij. Denote the likelihood number of degrees of freedom for pij in the first transition as
1nij. Then we can write the marginal likelihood for a model q with one transition as

MqN =

∫
P

s∏
i=1

Γ
[∑s

j=1 (q1`ij + 1)
]

∏s
j=1 Γ [q1`ij + 1]

s∏
i=1

p
q1`ij

ij ·
s∏

i=1

Γ
[∑s

j=1 (1nij + 1)
]

∏s
j=1 Γ [1nij + 1]

s∏
i=1

p
1nij

ij dP

=

∏s
i=1

{
Γ

[∑s
j=1 (q1`ij + 1)

]
· Γ

[∑s
j=1 (1nij + 1)

]}
∏s

i=1

∏s
j=1 Γ (q1`ij + 1) · ∏s

j=1 Γ (1nij + 1)

∫
P

s∏
i=1

p
q1`ij+

1nij

ij dP

(24)

Notice that the integrand is simply the kernel for a Dirichlet so that the marginal likelihood

is

MqN =

∏s
i=1

{
Γ

[∑s
j=1 (q1`ij + 1)

]
· Γ

[∑s
j=1 (1nij + 1)

]}
∏s

i=1

∏s
j=1 Γ (q1`ij + 1) · ∏s

j=1 Γ (1nij + 1)
·

∏s
i=1

∏s
j=1 Γ [q1`ij +1 nij + 1]∏s

i=1 Γ
[∑s

j=1 (q1`ij +1 nij + 1)
]

(25)
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The marginal likelihood for a model with two transitions is simply the product of two

one-transition marginal likelihoods since we are assuming that the two transition matrices

are independent of each other. If we make a small modification to the notation above, we

can denote the marginal likelihood for two transition model q quite simply. Let

M
(1)
qN =

∏s
i=1

{
Γ

[∑s
j=1 (q1`ij + 1)

]
· Γ

[∑s
j=1 (1nij + 1)

]}
∏s

i=1

∏s
j=1 Γ (q1`ij + 1) · ∏s

j=1 Γ (1nij + 1)
·

∏s
i=1

∏s
j=1 Γ [q1`ij +1 nij + 1]∏s

i=1 Γ
[∑s

j=1 (q1`ij +1 nij + 1)
]

(26)

and

M
(2)
qN =

∏s
i=1

{
Γ

[∑s
j=1 (q2`ij + 1)

]
· Γ

[∑s
j=1 (2nij + 1)

]}
∏s

i=1

∏s
j=1 Γ (q2`ij + 1) · ∏s

j=1 Γ (2nij + 1)
·

∏s
i=1

∏s
j=1 Γ [q2`ij +2 nij + 1]∏s

i=1 Γ
[∑s

j=1 (q2`ij +2 nij + 1)
]

(27)

Then the marginal likelihood, MqN , for two transition model q is

MqN = M
(1)
qN · M (2)

qN .(28)

The intuition behind the marginal likelihood is relatively straight forward. The

marginal likelihood will be large when the prior number of degrees of freedom “resemble”

the likelihood number of degrees of freedom.

4 Data

The data used for this paper were obtained from the Penn World Tables version 5.6 that

can be found at the Penn World Tables World Wide Web site at the University of Toronto.1

The data consist of observations on real GDP per worker for 104 countries for the

years 1960 through 1990. The criterion for a country to be included in our sample is that

there are observations for each year 1960 through 1990. As described in Summers and Heston

(1991), the real GDP per worker series is based on a measure of GDP that is weighted using

a price series that is a blend of current year prices and international prices of the base year

1985. This allows us to be able to compare countries for each year as well as across years.

Version 5.6 of the Penn World Tables is essentially the same as version 5 that is described in

Summers and Heston (1991). The changes in version 5.6 that affect the data we used are the

corrections to some errors in population and labor force participation rate estimates. For

a complete description of the changes to versions 5 and 5.5 that were made in version 5.6

see the World Wide Web page at the University of Toronto. For a complete description of

the Penn World Tables version 5 see Summers and Heston (1991). We then followed Chari,

1The address for this site is http://www.epas.utoronto.ca:8080/epas.
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Kehoe, and McGratten (1995) and expressed our data relative to the geometric mean of the

whole sample for each year.

5 Results

5.1 Evidence for convergence

The results in this section are based on the data set containing all of the countries. A number

of different models are considered. For the purposes of this section, we use two different

classification systems. We present results for a model with five bins (relative real GDP per

worker from 0.000 to 0.350, 0.350 to 0.700, 0.700 to 1.400, 1.400 to 2.800 and 2.800 to 5.600)

and for a model with four bins (relative real GDP per worker from 0.000 to 0.300, 0.300 to

1.000, 1.000 to 3.000 and 3.000 to 6.000). Both classification systems have advantages and

disadvantages. The five bin classification has greater detail and allows us to think about

“middle” countries as belonging to only one bin. However, the five bin classification thinly

spreads the data. This artificially hinders the possibility of finding embeddable transition

matrices (Geweke, Marshall, and Zarkin 1986b). The four bin classification allows for fewer

“empty cells”, but also decreases the detail of the inference.

We consider four general classes of priors. The priors have been created to be consis-

tent with various theories of growth. Flat priors give equal prior probability to moving from

any bin i to any bin j. Diagonal priors have been created so that the number of degrees of

freedom declines exponential away from the main diagonal. The invariant distribution im-

plied by these priors can be characterized as having essentially equal measures of countries

in each bin. Convergence priors use the diagonal priors as a base, and then give additional

weight to the middle bin. The invariant distribution implied by convergence priors is charac-

terized by having more weight in the middle bins relative to the end bins. Divergence priors

also use the diagonal priors as a base, but put additional weight in the top and bottom bins.

This causes the implied invariant distribution to have more weight at the end bins relative to

the middle bins. One can consider the prior number of degrees of freedom as a notional data

set, where the number of degrees of freedom, `ij, is interpreted as the number of countries

in the artificial data that move from bin i to bin j. Each prior has been set up so that the

number of notional data points in a given bin is small relative to the number of actual data

points in that bin. These priors are combined with assumptions regarding the number of

transitions to arrive at the priors used. Tables 1 through 3 list the prior number of degrees

of freedom and the implied transition matrix mean and invariant distribution for each 5 bin

prior considered. Four bin priors are similar.

Bayes factors for all the models considered can be found in Tables 4 and 5 . Several

patterns are apparent. There is strong evidence in favor of two transition models. For
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instance, model D5 is a two transition generalization of model D3. The Bayes factor in favor

of model D5 versus model D3 is 147.1089 and 22.9768 in the five bin and four bin models

respectively. This implies that one needs to give model D3 a prior probability 147 times the

prior probability given to model D5 in order to have equal posterior probability for the two

models. In fact, model F1 is the only one transition model that has a Bayes factor greater

than one versus its two transition counterpart. In addition, priors which are consistent

with the divergence of nations are strongly favored to priors which are consistent with the

convergence of nations. The Bayes factor for model D5 versus C5 is 35.9977 and 51.3290 in

the five bin and four bin models respectively. Notice that “divergence” priors like D5 are

slightly favored to simple “diagonal” priors like F5. Nonetheless, results are robust across

priors given the number of bins. In the spirit of brevity, we will present results for model

D5, the model which has a Bayes factor greater than one versus all other priors considered,

and its one transition counterpart D3.

We will start by presenting the results for the version of model D5 which has five bins.

The posterior probability of embeddability is 0.00072 in the first transition and 0.00022 in

the second transition. We have 50,000 draws from the posterior distribution for P, which

implies that only 36 of the first transition draws were embeddable and only 11 of the second

transition draws were embeddable. Due to the small sample size, we do not present results

for the subset of draws which are embeddable.

Table 6 presents the first and second (analytical) moments for the transition matrices

for model D5. In both the first and the second transition, the probability of staying in

either the top or the bottom bin is much greater than the probability of staying in one of

the middle bins. This is exactly the opposite of what one would expect if countries were

converging. In spite of this similarity across transitions, the convergence story is different

in the two transitions. If we use the probability of leaving bins as a measure of mobility, it

is apparent that nations are more mobile in the second transition period than they are in

the first transition period. The probability of staying in bins one, three and five are similar

across the two transitions. However, the probability of staying in bin two is more than

one and a half standard deviations smaller in transition two than in transition one. The

probability of staying in bin four is almost a standard deviation smaller in transition two

than it is in transition one. In general, we see that there is much more movement from the

top bins to the middle bins in transition two than there is in transition one. While we can

not say that there is evidence for convergence of nations in transition two, we should notice

that transition two is more consistent with the convergence of nations than is transition one.

Finally, note that the mean transition matrix for model D3, presented in Table 8, masks the

difference between the two transition periods. The mean transition matrix is generally more

similar to transition one of D5 than it is to transition two of D5.

Inference using the transition matrix is somewhat difficult because there are a large
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number of parameters at which to look. Inference using the invariant distribution is some-

what more straight-forward. Table 7 presents the posterior moments for the invariant dis-

tribution of the transition matrix for model D5 along with the distribution of countries in

1960, 1974, 1975 and 1990. Table 9 presents similar information for model D3. The data

suggest that countries are becoming increasingly different over time. Comparing the distri-

bution of nations in 1960 and 1990, it appears that countries are diverging. There were more

many countries in the top and bottom bins in 1990 than there were in 1960. The invariant

distribution for model D3 tells the same story.

There is a high posterior probability (above 0.90) that the invariant distribution for

model D3 has more nations in either of the two extreme bins than does the initial distribution

of nations in 1960. Furthermore, the invariant distribution for model D3 is more “extreme”

than the distribution of nations in 1990. That is, model D3 suggests continued divergence

of nations. The first transition of model D5 provides the same message. Comparisons of

the 1960 distribution of nations with both the 1974 distribution of nations and the mean

invariant distribution indicate a divergence of nations. Transition two of model D5 suggests

weaker evidence that the divergence of nations will continue. The invariant distribution

for the top three bins is somewhat different in the second transition than it is in the first

transition. We see a movement of countries from the top bin to the third and fourth bin in

transition two relative to transition one. In fact, the invariant distribution for the top three

bins in transition two is not much more extreme than the distribution of nations in 1990.

There is only a 0.4993 posterior probability that the proportion of countries in the top bin

in the invariant is greater than the proportion of countries in the top bin in 1990.

We can interpret the posterior probability that the invariant distribution is greater

than the final distribution as a measure as how similar the two distributions are. That is, if

the posterior probability is either close to one or close to zero we can infer that the invariant

distribution and the final distribution are not close. For the one transition model D3 we

find that there is little evidence to suggest that the final distribution and the invariant

distribution are close. However, for the second transition for model D5 we see relatively

strong evidence that the two distributions are close. We can also see this by noting that the

final distribution is within one half of a standard deviation of the invariant distribution for

each bin.

As a final note, the speed of convergence to the invariant distribution, as measured by

the modulus of the second eigenvalue of the transition matrix, is essentially the same across

the two transitions. The mean of |λ2| is 0.7886 with standard deviation of 0.0694 in the first

transition of model D5 and mean of |λ2| is 0.7982 with standard deviation of 0.0563 in the

second transition of model D5. The posterior probability that the |λ2| is bigger in transition

two than in transition one is 0.5343.

Matrix mobility measures are reported in Table 10. Consistent with the discussion of
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the transition matrix moments, Mp (P ) is probably larger in transition one than in transition

two. The posterior probability that nations are more mobile in transition two than in

transition one, using Mp (P ) as the mobility measure, is 0.8185. The question of speed

of convergence to the invariant distribution is ambiguous. There is very high posterior

probability that either MD (P ) or ME (P ) is greater in the second transition than it is in the

first transition. However, there is only a 0.4657 posterior probability that M2 (P ) is greater

in the second transition as compared to the first transition. Given these results, there seems

to be reasonable evidence that nations are more mobile in transition two than they are in

transition one.

The four bin first order Markov chain model results are similar to the five bin model.

The posterior probability of embeddability is non-trivial for both of the transition matrices

in model D5. The posterior probability of embeddability is 0.1688 for the first transition

and 0.0477 for the second transition.

The transition matrix moments for model D5 and model D3 can be found in Tables 11

and 12 respectively. Relative to transition one, there is more movement out of bins in the

second transition in model D5. Most of the additional movement is to lower bins. In general,

we see the pattern that divergence of countries in the bottom two bins is prevalent in both

transitions, while the divergence of countries in the top two bins is less extreme in the second

transition than it is in the first transition. The same pattern can be seen in the intensity

matrices reported in Table 13 and 14. Finally, one should also note that inference made from

a one transition model (model D3) is more consistent with the inference made for the first

transition of model D5 than for the second transition of model D5.

The evidence from the invariant distributions again points to a divergence of nations.

This pattern is also evident in the change in of the actual distribution of nations from 1960

to 1990. However, it is instructive to analyze this pattern in the two transition periods we

have been discussing. It is especially interesting to note that the single transition model

D3 (invariant distributions are listed in Tables 15 and 16) indicates general divergence. The

invariant distribution for first transition in model D5 also suggests divergence; but with more

countries moving into the top bin than into the bottom bin. This pattern reverses itself in

the second transition period. We see no evidence that the final distribution of countries

in 1990 is close to the implied invariant distribution in the case of the single transition.

However, as was the case for the five bin model, there is relatively strong evidence that the

final distribution in 1990 is close to implied invariant distribution for the second transition.

Measures of mobility are found in Table 17. We see that there is overwhelming

evidence that nations are more mobile in the second transition period than in the first,

both in the sense of transition across states and in the sense of speed of convergence to the

invariant distribution. For a subset of matrix mobility measures, the posterior probability

that the second period transition matrix displays more mobility than the first period mobility
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matrix is greater than 0.90.

As a brief summary, both the four and five bin first order Markov chain models

of nations suggests that nations are diverging rather than converging. However, it is also

apparent that this divergence has not been as marked since 1975. In addition, the type

of divergence is different across the two transition periods discussed. From 1960 to 1974,

more countries were becoming richer than were becoming poorer. From 1975 to 1990, we see

exactly the opposite phenomenon. It is important to note that the one transition models

mask this pattern. Finally, the five bin Markov chain model suggests that countries that are

in the top three bins are not diverging in the second transition period.

5.2 Evidence for Conditional Convergence

Given results from Barro (1991) and Barro and Sala-i-Martin (1992), it is not surprising

that countries do not appear to be converging. However we have yet to discuss conditional

convergence. We will now consider subsets of the 104 countries discussed above. In par-

ticular, we have attempted to group countries so that the national stock of human capital

within the group is roughly the same; so that we can apply Barro’s definition of conditional

convergence. We follow Barro (1991) and Barro and Sala-i-Martin (1992) by looking at the

countries in the O.E.C.D.. In addition, we naively group countries based on their relative

real GDP per worker in 1960. We group all countries with a relative real GDP per worker

greater than 2.00 (“rich countries”) and we group all countries with a relative real GDP per

worker less than 0.50 (“poor countries”). Table 18 lists the countries in each group.

For each group, the relative (with respect to other countries in the group) real GDP

per worker was obtained by calculating the geometric mean of real GDP per worker within

the group and then dividing actual real GDP per worker by the group’s geometric mean.

As is expected, we see much less variation in relative real GDP per worker within groups

than we see in the all country models. Due to the lack of variation, we use a three bin

classification system. The bins for the “poor” countries are: 0.00 to 0.80, 0.80 to 1.20, 1.20

to 3.60; the bins for the “rich” countries and the O.E.C.D. countries are: 0.00 to 0.80, 0.80

to 1.20, 1.20 to 2.40. The three bin priors are similar to the five bin priors listed in Tables 1

to 3. In the interest of brevity, the full set of results will not be presented for each group,

though they are available upon request. The results are robust across priors. Model D3 has

a Bayes factor greater than one against all one transition models for all three groupings,

while model D5 has a Bayes factor greater than one against all two transition models for the

three groupings. Therefore we will only present results for models D3 and D5. Tables 19

through 21 contains the Bayes factors for all three groupings.

Inference for the “poor” countries does not change substantially when going from a

one transition model to a two transition model. The invariant distributions for models D3
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and D5 can be found in Tables 22 and 23. The data and both model D3 and model D5

indicate that the distribution for “poor” countries is shifting down. This is weak evidence

that the “poor” countries are diverging. For the “poor” countries, we see little evidence

that the final distribution is close to the implied invariant distribution for either the single

transition model or the two transition model. The mobility measures reported in Table 28

indicate little difference between the mobility of countries across the two transitions in Model

D5; further evidence that no structural break exists for the “poor” countries.

Quite to the contrary, results for the “rich” countries are very different across the two

transitions in model D5. The first transition in model D5 strongly suggests that the “rich”

countries are converging. The posterior probability that the proportion of countries in the

middle bin of the invariant distribution is greater than the proportion of countries actually

in the middle bin in 1960 is over 0.97 (see Table 24). The second transition on model D5

presents exactly the opposite picture. There is less than 0.01 posterior probability that the

proportion of countries in the middle bin of the invariant distribution is greater than the

proportion of countries actually in the middle bin in 1975. Notice that model D3 does not

suggest strong evidence for either divergence or convergence. It is less clear for the “rich”

countries whether the final distribution is close to the implied invariant distribution. The

middle bin is not very close to its invariant distribution while the other bins are somewhat

close.

The evidence for convergence of the O.E.C.D. countries depends on the model one

considers. Evidence from the actual distributions of countries in a one transition model like

model D3 points to convergence of the O.E.C.D. countries; the proportion of countries in

the middle bins goes from 0.2222 in 1960 to 0.4444 in 1990 (see Table 26). The invariant

distribution for model D3 suggests weaker evidence for convergence; movement from the

top bin to the middle is apparent, but the proportion of countries in the bottom bin stays

roughly the same. Evidence from the two transition model D5 suggests even weaker evi-

dence of convergence. The results from the first transition of model D5 are very similar to

the results from model D3. However, there is additional movement into the bottom bin in

the second transition of model D5. Thus, it appears that the O.E.C.D. countries are con-

verging if one considers a one transition model, while the evidence for convergence is much

weaker when a two transition model is entertained. Note that the mobility measures for the

O.E.C.D. countries (presented in Table 29) suggest that the O.E.C.D. countries are more

mobile in transition two than in transition one of model D5. The evidence from the invariant

distributions suggest that the O.E.C.D. countries have not reached their implied invariant

distributions for either of the models considered.

In summary, we can note several interesting patterns. First, “poor” countries do not

seem to be affected by the phenomenon that indicates a structural break in 1974. Second,

both the “rich” countries and O.E.C.D. countries do seem to behave differently after 1974.
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We find some evidence for conditional convergence of the O.E.C.D. countries especially if we

consider a one transition model. However, we do not have strong evidence for conditional

convergence of countries that have been naively grouped together as “rich” in 1960.

6 Conclusion

A first order Markov chain model was estimated using Bayesian techniques. We used

Bayesian model comparison techniques to check for a structural break in the data, and

given those results, we looked for evidence of convergence. We then selected the best model

according to the Bayes Factor criteria and reported a number of function of interest regard-

ing the posterior distribution of the model in an attempt to address whether the distribution

of countries has converged to its implied invariant distribution.

A number of patterns emerged from the analysis. There is strong evidence for a

structural break, in the early 1970’s, for the data and the model that we used. This has

implications for researchers who wish to make inferences based on data from the Penn World

Tables. In particular, using a one transition Markov chain model to make inferences regarding

the transition of countries across time, on the weight of the evidence, is not appropriate. It

was found that the first transition of a two transition model was consistent with a one

transition model but that the second transition was quite different. It is interesting to note

that the evidence for a structural break is not strong for “poor” countries. If the structural

break was indeed caused by an increased movement of capital, then this would suggest that

the “poor” countries have yet to benefit from increased capital mobility.

For the sample as a whole, there is little evidence supporting convergence of countries

in levels. In fact the Bayes factors consistently favour divergence priors. There is strong

evidence in favor of divergence of countries across the full data set. However we do see

evidence of convergence when we restrict our attention to O.E.C.D. countries. This evidence

is stronger for the first transition of the two transition model than the second transition in

regard to the O.E.C.D. countries. An interesting result is that, when restricting attention to

“rich” countries rather than O.E.C.D. countries, we see evidence for divergence after 1974

rather than convergence. The reason for this could be the mobility of capital after the change

in exchange rate regime. Countries that offer the best return for capital would benefit from

increased capital flows while countries that have net capital outflow could perform worse.

We also see evidence of countries being more mobile after 1974 than before. The evidence

for “poor” countries is significantly different from that of the “rich” countries in our sample.

We do not see evidence of a structural break around 1974 which suggests that the change

in exchange rate regimes has had little effect on the economic growth for these countries.

“Poor” countries have not benefited from capital flows as much as the ‘rich” countries. This

could be due to owners of capital preferring investments that have a lower risk of failure.
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We addressed the question of whether countries had converged to their implied in-

variant distribution. We saw that the conclusions we drew were vastly different if we were

looking at a single transition model or a two transition model. By looking at the posterior

probability that the implied invariant distribution was greater than the actual distribution

we could infer whether the two were close. Posterior probabilities that were either close to

one or close to zero led us to infer that the invariant distribution and the actual distribution

were not close. We found that, using the complete sample, the distribution of countries

in 1990 was close to the implied invariant distribution for the second transition of the two

transition model. We could not make the same inference for the one transition model. This

is further evidence that the issue of whether there is a structural break in the data is indeed

an important one. The question of whether an economic process has settled down to its sta-

tionary or equilibrium state is important to researchers wanting to use the data to contrast

results obtained from models assumed to be in equilibrium. Our results suggest that if we

think of the growth of countries across time as a first order Markov chain, with a structural

break at 1974, then the data suggests that countries are close to the invariant or stationary

distribution implied by the second period’s transition matrix.
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Table 1: “Flat and diagonal” priors

Priors Expected Value Inv. Dist.

F1-One Transition

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

F2-Two Transition/Transition 1

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

F2-Two Transition/Transition 2

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

0.500 0.500 0.500 0.500 0.500 0.200 0.200 0.200 0.200 0.200 0.200

F3-One Transition

1.333 0.490 0.180 0.066 0.024 0.329 0.210 0.166 0.150 0.144 0.193

0.490 1.333 0.490 0.180 0.066 0.197 0.309 0.197 0.156 0.141 0.203

0.180 0.490 1.333 0.490 0.180 0.154 0.194 0.304 0.194 0.154 0.207

0.066 0.180 0.490 1.333 0.490 0.141 0.156 0.197 0.309 0.197 0.205

0.024 0.066 0.180 0.490 1.333 0.144 0.150 0.166 0.210 0.329 0.193

F4-Two Transition/Transition 1

2.000 0.736 0.271 0.100 0.037 0.368 0.213 0.156 0.135 0.127 0.191
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Table 1: “Flat and diagonal” priors

0.736 2.000 0.736 0.271 0.100 0.196 0.339 0.196 0.144 0.124 0.205

0.271 0.736 2.000 0.736 0.271 0.141 0.193 0.333 0.193 0.147 0.207

0.100 0.271 0.736 2.000 0.736 0.124 0.144 0.196 0.339 0.196 0.205

0.037 0.100 0.271 0.736 2.000 0.127 0.135 0.156 0.213 0.368 0.191

F4-Two Transition/Transition 2

1.666 0.613 0.226 0.083 0.031 0.350 0.212 0.161 0.142 0.135 0.192

0.613 1.666 0.613 0.226 0.083 0.197 0.325 0.197 0.149 0.132 0.205

0.226 0.613 1.666 0.613 0.226 0.147 0.193 0.320 0.193 0.147 0.207

0.083 0.226 0.613 1.666 0.613 0.132 0.149 0.197 0.325 0.197 0.204

0.031 0.083 0.226 0.613 1.666 0.135 0.142 0.161 0.212 0.350 0.192

F5-Two Transition/Transition 1

2.000 0.736 0.271 0.100 0.037 0.368 0.213 0.156 0.135 0.127 0.191

0.736 2.000 0.736 0.271 0.100 0.196 0.339 0.196 0.144 0.124 0.205

0.271 0.736 2.000 0.736 0.271 0.141 0.193 0.333 0.193 0.147 0.207

0.100 0.271 0.736 2.000 0.736 0.124 0.144 0.196 0.339 0.196 0.205

0.037 0.100 0.271 0.736 2.000 0.127 0.135 0.156 0.213 0.368 0.191

F5-Two Transition/Transition 2

2.000 0.736 0.271 0.100 0.037 0.368 0.213 0.156 0.135 0.127 0.191

0.736 2.000 0.736 0.271 0.100 0.196 0.339 0.196 0.144 0.124 0.205

0.271 0.736 2.000 0.736 0.271 0.141 0.193 0.333 0.193 0.147 0.207

0.100 0.271 0.736 2.000 0.736 0.124 0.144 0.196 0.339 0.196 0.205

0.037 0.100 0.271 0.736 2.000 0.127 0.135 0.156 0.213 0.368 0.191
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Table 2: “Convergence” priors

Priors Expected Value Inv. Dist.

C3-One Transition

0.297 0.232 0.180 0.031 0.005 0.226 0.205 0.214 0.179 0.175 0.174

0.109 0.630 0.490 0.085 0.015 0.175 0.257 0.235 0.171 0.160 0.199

0.040 0.232 1.333 0.232 0.040 0.151 0.179 0.339 0.179 0.151 0.253

0.015 0.085 0.490 0.630 0.109 0.160 0.171 0.235 0.257 0.175 0.201

0.005 0.031 0.180 0.232 0.297 0.175 0.179 0.205 0.214 0.226 0.173

C4-Two Transition/Transition 1

0.446 0.347 0.271 0.047 0.008 0.236 0.220 0.208 0.171 0.165 0.165

0.164 0.944 0.736 0.128 0.022 0.166 0.278 0.248 0.161 0.146 0.198

0.060 0.347 2.000 0.347 0.060 0.136 0.172 0.384 0.172 0.136 0.274

0.022 0.128 0.736 0.944 0.164 0.146 0.161 0.248 0.278 0.166 0.199

0.008 0.047 0.271 0.347 0.446 0.165 0.171 0.208 0.220 0.236 0.163

C4-Two Transition/Transition 2

0.372 0.290 0.226 0.039 0.007 0.231 0.217 0.207 0.175 0.170 0.169

0.137 0.787 0.613 0.107 0.019 0.171 0.268 0.242 0.166 0.153 0.199

0.050 0.290 1.666 0.290 0.050 0.143 0.176 0.363 0.176 0.143 0.264

0.019 0.107 0.613 0.787 0.137 0.153 0.166 0.242 0.268 0.171 0.201

0.007 0.039 0.226 0.290 0.372 0.170 0.175 0.207 0.217 0.231 0.168

C5-Two Transition/Transition 1

0.446 0.347 0.271 0.047 0.008 0.236 0.220 0.208 0.171 0.165 0.165

0.164 0.944 0.736 0.128 0.022 0.166 0.278 0.248 0.161 0.146 0.198

0.060 0.347 2.000 0.347 0.060 0.136 0.172 0.384 0.172 0.136 0.274

0.022 0.128 0.736 0.944 0.164 0.146 0.161 0.248 0.278 0.166 0.199

0.008 0.047 0.271 0.347 0.446 0.165 0.171 0.208 0.220 0.236 0.163

C5-Two Transition/Transition 2

0.446 0.347 0.271 0.047 0.008 0.236 0.220 0.208 0.171 0.165 0.165

0.164 0.944 0.736 0.128 0.022 0.166 0.278 0.248 0.161 0.146 0.198

0.060 0.347 2.000 0.347 0.060 0.136 0.172 0.384 0.172 0.136 0.274

0.022 0.128 0.736 0.944 0.164 0.146 0.161 0.248 0.278 0.166 0.199

0.008 0.047 0.271 0.347 0.446 0.165 0.171 0.208 0.220 0.236 0.163
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Table 3: “Divergence” priors

Priors Expected Value Inv. Dist.

D3-One Transition

1.333 0.297 0.066 0.015 0.003 0.347 0.193 0.159 0.151 0.149 0.219

0.297 0.490 0.109 0.024 0.015 0.219 0.251 0.187 0.173 0.171 0.193

0.066 0.109 0.180 0.109 0.066 0.193 0.201 0.213 0.201 0.193 0.178

0.015 0.024 0.109 0.490 0.297 0.171 0.173 0.187 0.251 0.219 0.190

0.003 0.015 0.066 0.297 1.333 0.149 0.151 0.159 0.193 0.347 0.219

D4-Two Transition/Transition 1

2.000 0.446 0.100 0.022 0.005 0.396 0.191 0.145 0.135 0.133 0.227

0.446 0.736 0.164 0.037 0.022 0.226 0.271 0.182 0.162 0.160 0.190

0.100 0.164 0.271 0.164 0.100 0.190 0.201 0.219 0.201 0.190 0.171

0.022 0.037 0.164 0.736 0.446 0.160 0.162 0.182 0.271 0.226 0.188

0.005 0.022 0.100 0.446 2.000 0.133 0.135 0.145 0.191 0.396 0.225

D4-Two Transition/Transition 2

1.666 0.372 0.083 0.019 0.004 0.373 0.192 0.152 0.143 0.141 0.222

0.372 0.613 0.137 0.031 0.019 0.222 0.261 0.184 0.167 0.165 0.190

0.083 0.137 0.226 0.137 0.083 0.191 0.201 0.216 0.201 0.191 0.174

0.019 0.031 0.137 0.613 0.371 0.165 0.167 0.184 0.261 0.222 0.191

0.004 0.019 0.083 0.372 1.666 0.141 0.143 0.152 0.192 0.373 0.223

D5-Two Transition/Transition 1

2.000 0.446 0.100 0.022 0.005 0.396 0.191 0.145 0.135 0.133 0.227

0.446 0.736 0.164 0.037 0.022 0.226 0.271 0.182 0.162 0.160 0.190

0.100 0.164 0.271 0.164 0.100 0.190 0.201 0.219 0.201 0.190 0.171

0.022 0.037 0.164 0.736 0.446 0.160 0.162 0.182 0.271 0.226 0.188

0.005 0.022 0.100 0.446 2.000 0.133 0.135 0.145 0.191 0.396 0.225

D5-Two Transition/Transition 2

2.000 0.446 0.100 0.022 0.005 0.396 0.191 0.145 0.135 0.133 0.227

0.446 0.736 0.164 0.037 0.022 0.226 0.271 0.182 0.162 0.160 0.190

0.100 0.164 0.271 0.164 0.100 0.190 0.201 0.219 0.201 0.190 0.171

0.022 0.037 0.164 0.736 0.446 0.160 0.162 0.182 0.271 0.226 0.188

0.005 0.022 0.100 0.446 2.000 0.133 0.135 0.145 0.191 0.396 0.225
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Table 4: Bayes Factors: Five State Models

F1 F2 F3 F4 F5 C3 C4 C5 D3 D4 D5

F1 1.0000 1.3943 0.0301 0.0006 0.0006 0.0659 0.0042 0.0045 0.0184 0.0001 0.0001

F2 0.7172 1.0000 0.0216 0.0004 0.0004 0.0473 0.0030 0.0032 0.0132 0.0001 0.0001

F3 33.2362 46.3414 1.0000 0.0187 0.0185 2.1913 0.1390 0.1498 0.6121 0.0047 0.0042

F4 1778.8722 2480.2904 53.5221 1.0000 0.9903 117.2835 7.4406 8.0165 32.7597 0.2515 0.2227

F5 1796.3299 2504.6318 54.0474 1.0098 1.0000 118.4340 7.5137 8.0952 33.0812 0.2539 0.2249

C3 15.1662 21.1469 0.4564 0.0085 0.0084 1.0000 0.0634 0.0684 0.2793 0.0021 0.0019

C4 239.0568 333.3281 7.1932 0.1344 0.1331 15.7626 1.0000 1.0774 4.4028 0.0338 0.0299

C5 221.8843 309.3837 6.6765 0.1247 0.1235 14.6303 0.9282 1.0000 4.0865 0.0314 0.0278

D3 54.2964 75.7081 1.6338 0.0305 0.0302 3.5801 0.2271 0.2447 1.0000 0.0077 0.0068

D4 7073.2519 9862.5649 212.8342 3.9766 3.9379 466.3836 29.5882 31.8781 130.2711 1.0000 0.8856

D5 7987.3207 11137.0936 240.3385 4.4905 4.4405 526.6538 33.9977 35.9977 147.1059 1.1292 1.0000
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Table 5: Bayes Factors: Four State Models

F1 F2 F3 F4 F5 C3 C4 C5 D3 D4 D5

F1 1.0000 1.1312 0.1440 0.0206 0.0222 0.3084 0.1392 0.1692 0.0738 0.0034 0.0032

F2 0.8840 1.0000 0.1273 0.0182 0.0196 0.2726 0.1231 0.1457 0.0652 0.0030 0.0028

F3 6.9447 7.8557 1.0000 0.1431 0.1543 2.1415 0.9669 1.1449 0.5125 0.0236 0.0223

F4 48.5446 54.9132 6.9902 1.0000 1.0783 14.9696 6.7585 8.0032 3.5825 0.1647 0.1559

F5 45.5446 50.9281 6.4829 0.9274 1.0000 13.8833 6.2680 7.4224 3.3225 0.1527 0.1446

C3 3.2428 3.6682 0.4670 0.0668 0.0720 1.0000 0.4515 0.5346 0.2393 0.0110 0.0104

C4 7.1826 8.1248 1.0343 0.1480 0.1595 2.2149 1.0000 1.1842 0.5301 0.0244 0.0231

C5 6.0655 6.6812 0.8734 0.1250 0.1347 1.8705 0.8445 1.0000 0.4476 0.0206 0.0195

D3 13.5500 15.3276 1.9512 0.2791 0.3010 4.1785 1.8865 2.2340 1.0000 0.0460 0.0435

D4 294.8030 333.4771 42.4516 6.0730 6.5482 90.9106 41.0442 48.6034 21.7567 1.0000 0.9469

D5 311.3353 352.1782 44.8323 6.4136 6.9154 96.0088 43.3460 51.3290 22.8768 1.0561 1.0000
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Table 6: Transition matrix moments for model D5: 5 states

Transition 1

From 1960 to 1974

0.7636 0.1038 0.0467 0.0434 0.0426

(0.0857) (0.0615) (0.0425) (0.0411) (0.0408)

0.2532 0.5692 0.1076 0.0353 0.0348

(0.0789) (0.0898) (0.0562) (0.0335) (0.0332)

0.0299 0.1132 0.5237 0.3034 0.0299

(0.0277) (0.0515) (0.0812) (0.0748) (0.0277)

0.0456 0.0463 0.0966 0.5238 0.2877

(0.0431) (0.0434) (0.0611) (0.1032) (0.0936)

0.0409 0.0416 0.0448 0.0588 0.8139

(0.0392) (0.0395) (0.0409) (0.0465) (0.0770)

Transition 2

From 1975 to 1990

0.7777 0.1165 0.0372 0.0346 0.0340

(0.0752) (0.0580) (0.0342) (0.0330) (0.0328)

0.3181 0.4160 0.1779 0.0433 0.0437

(0.0943) (0.0998) (0.0774) (0.0417) (0.0414)

0.0396 0.1138 0.5493 0.2577 0.0396

(0.0363) (0.0592) (0.0927) (0.0815) (0.0363)

0.0387 0.0393 0.2713 0.4445 0.2062

(0.0368) (0.0371) (0.0849) (0.0949) (0.0773)

0.0329 0.0334 0.0360 0.1454 0.7523

(0.0317) (0.0320) (0.0331) (0.0627) (0.0768)

28



Table 7: Invariant distributions for Model D5: 5 states

Transition 1

Invariant Post. Prob. Post. Prob

State 1960 1974 Distribution ID > 1960 ID > 1974

1 0.1538 0.2019 0.2588 0.8416 0.6697

(0.1074)

2 0.2212 0.1827 0.1364 0.0788 0.1897

(0.0412)

3 0.2981 0.2019 0.1128 0.0009 0.0403

(0.0454)

4 0.1538 0.1923 0.1462 0.3941 0.1850

(0.0546)

5 0.1635 0.2115 0.3458 0.9511 0.8618

(0.1262)

Transition 2

Invariant Post. Prob. Post. Prob Post. Prob.

State 1975 1990 Distribution ID > 1975 ID > 1990 ID2 >ID1

1 0.2115 0.2500 0.2763 0.7059 0.5525 0.5514

(0.1042)

2 0.1635 0.1154 0.1146 0.1198 0.4448 0.3852

(0.0412)

3 0.2115 0.2212 0.1926 0.3431 0.2905 0.8601

(0.0612)

4 0.1923 0.1827 0.1748 0.3398 0.4078 0.6583

(0.0526)

5 0.2212 0.2308 0.2417 0.5415 0.4993 0.2521

(0.0916)
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Table 8: Transition matrix moments for model D3: 5 states

0.7631 0.1011 0.0469 0.0447 0.0442

(0.0873) (0.0619) (0.0434) (0.0424) (0.0422)

0.4250 0.2934 0.1766 0.0699 0.0251

(0.0904) (0.0832) (0.0697) (0.0466) (0.0336)

0.0292 0.1399 0.4703 0.2494 0.1113

(0.0275) (0.0566) (0.0815) (0.0706) (0.0513)

0.0463 0.0467 0.1873 0.4326 0.2871

(0.0439) (0.0441) (0.0815) (0.1035) (0.0945)

0.0423 0.0428 0.0450 0.1390 0.7309

(0.0405) (0.0407) (0.0417) (0.0696) (0.0892)

Table 9: Invariant distributions for model D3: 5 states

Invariant Post. Prob. Post. Prob

State 1960 1990 Distribution ID > 1960 ID > 1990

1 0.1538 0.2500 0.2928 0.9145 0.6065

(0.1121)

2 0.2212 0.1154 0.0948 0.0024 0.2561

(0.0351)

3 0.2981 0.2212 0.1388 0.0033 0.0551

(0.0475)

4 0.1538 0.1827 0.1673 0.5613 0.3552

(0.0542)

5 0.1635 0.2308 0.3063 0.9334 0.7845

(0.1044)

Table 10: Discrete mobility measures

Mp Me Md M2

Transition 1 0.4513 0.4496 0.9241 0.2114

(0.0493) (0.0486) (0.0338) (0.0694)

Transition 2 0.5150 0.5134 0.9698 0.2018

(0.0495) (0.0480) (0.0233) (0.0563)

PP 0.8185 0.8233 0.8766 0.4657

PP = Posterior probability that the transition two measure is

greater than the transition one measure
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Table 11: Transition matrix moments for model D5: 4 states

Transition 1

From 1960 to 1974

0.8157 0.0790 0.0553 0.0500

(0.0834) (0.0580) (0.0492) (0.0469)

0.1075 0.7444 0.1216 0.0265

(0.0467) (0.0657) (0.0492) (0.0242)

0.0265 0.0751 0.7212 0.1773

(0.0242) (0.0397) (0.0676) (0.0575)

0.0419 0.0463 0.1068 0.8050

(0.0396) (0.0415) (0.0610) (0.0783)

Transition 2

From 1975 to 1990

0.7544 0.1537 0.0483 0.0437

(0.0868) (0.0727) (0.0432) (0.0412)

0.2672 0.5838 0.1174 0.0316

(0.0727) (0.0810) (0.0529) (0.0288)

0.0271 0.1482 0.6670 0.1577

(0.0248) (0.0542) (0.0718) (0.0556)

0.0348 0.0385 0.1563 0.7704

(0.0331) (0.0348) (0.0656) (0.0760)

Table 12: Transition matrix moments for model D3: 4 states

0.7665 0.1246 0.0563 0.0526

(0.0937) (0.0731) (0.0510) (0.0494)

0.2696 0.4885 0.2161 0.0258

(0.0674) (0.0759) (0.0625) (0.0241)

0.0258 0.1689 0.5593 0.2460

(0.0241) (0.0569) (0.0754) (0.0654)

0.0436 0.0467 0.1460 0.7637

(0.0413) (0.0427) (0.0715) (0.0860)
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Table 13: Intensity matrix moments for model D5: 4 states

Transition 1

From 1960 to 1974

-0.1980 0.0926 0.0568 0.0486

(0.1079) (0.0756) (0.0528) (0.0489)

0.1282 -0.3037 0.1430 0.0325

(0.0625) (0.0957) (0.0659) (0.0315)

0.0321 0.0928 -0.3403 0.2154

(0.0313) (0.0550) (0.1023) (0.0836)

0.0403 0.0446 0.1357 -0.2206

(0.0399) (0.0414) (0.0842) (0.1068)

Transition 2

From 1975 to 1990

-0.2994 0.2041 0.0523 0.0430

(0.1328) (0.1135) (0.0476) (0.0405)

0.3519 -0.5480 0.1537 0.0424

(0.1246) (0.1514) (0.0832) (0.0425)

0.0336 0.1802 -0.4138 0.2000

(0.0330) (0.0758) (0.1135) (0.0797)

0.0361 0.0442 0.1911 -0.2715

(0.0340) (0.0420) (0.0936) (0.1083)

Table 14: Intensity matrix moments for model D3: 4 states

-0.2691 0.1470 0.0722 0.0500

(0.1318) (0.1062) (0.0654) (0.0485)

0.3674 -0.7316 0.3262 0.0380

(0.1189) (0.1637) (0.1191) (0.0364)

0.0373 0.2381 -0.5924 0.3169

(0.0359) (0.1064) (0.1537) (0.1077)

0.0427 0.0572 0.1761 -0.2760

(0.0427) (0.0525) (0.0996) (0.1218)
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Table 15: Invariant distributions for Model D5: 4states

Transition 1

Invariant Post. Prob. Post. Prob

State 1960 1974 Distribution ID > 1960 ID > 1974

1 0.1250 0.1538 0.2408 0.8451 0.7426

(0.1210)

2 0.3558 0.3077 0.1936 0.0363 0.0883

(0.0799)

3 0.3558 0.3269 0.2436 0.0992 0.1593

(0.0840)

4 0.1635 0.2115 0.3220 0.9268 0.8161

(0.1215)

Transition 2

Invariant Post. Prob. Post. Prob Post. Prob.

State 1975 1990 Distribution ID > 1975 ID > 1990 ID2 >ID1

1 0.1538 0.2115 0.3068 0.9471 0.8038 0.6796

(0.1087)

2 0.2885 0.2500 0.2118 0.1233 0.2601 0.5832

(0.0649)

3 0.3462 0.3077 0.2291 0.0637 0.1405 0.4537

(0.0724)

4 0.2115 0.2308 0.2523 0.6192 0.5378 0.3334

(0.1001)
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Table 16: Invariant distributions for model D3: 4 states

Invariant Post. Prob. Post. Prob

State 1960 1990 Distribution ID > 1960 ID > 1990

1 0.1250 0.2115 0.2972 0.9617 0.7479

(0.1184)

2 0.3558 0.2500 0.1650 0.0013 0.0686

(0.0537)

3 0.3558 0.3077 0.2158 0.0242 0.0877

(0.0651)

4 0.1635 0.2308 0.3221 0.9384 0.7751

(0.1146)

Table 17: Mobility measures

Mp Me Md M2 M∗
c M∗

2

Transition 1 0.3047 0.3043 0.6706 0.1858 0.2657 0.1851

(0.0494) (0.0492) (0.0727) (0.0611) (0.0538) (0.0622)

Transition 2 0.4084 0.4082 0.8136 0.2053 0.3832 0.2253

(0.0529) (0.0528) (0.0592) (0.0610) (0.0685) (0.0672)

PP 0.9230 0.9240 0.9360 0.5855 0.9266 0.6766

PP = Posterior probability that the transition two measure is

greater than the transition one measure
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Table 18: Group classifications

O.E.C.D Countries “Rich” Countries “Poor” Countries

Australia Argentina Benin

Austria Australia Burkina Faso

Belgium Austria Burundi

Canada Belgium Cameroon

Czechoslovakia Canada Cape Verde Is.

Denmark Chile Central African Rep.

Finland Denmark Chad

France Finland China

Greece France Comoros

Iceland Iceland Gambia

Ireland Iran Ghana

Italy Ireland Guinea

Japan Israel Guinea-Biss.

Luxemborg Italy India

Mexico Luxemborg Indonesia

Netherlands Mexico Ivory Coast

New Zealand Netherlands Kenya

Norway New Zealand Lesotho

Portugal Norway Malawi

Spain Sweden Mali

Sweden Switzerland Mozambique

Switzerland Trinidad & Tobago Nigeria

Turkey United Kingdom Pakistan

United Kingdom Uraguay Rwanda

U.S.A U.S.A. Thailand

West Germany Venezuela Togo

West Germany Uganda
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Table 19: Bayes Factors: “Poor” countries

F1 F2 F3 F4 F5 C3 C4 C5 D3 D4 D5

F1 1.0000 0.7927 0.6007 0.2612 0.2701 0.6634 0.3938 0.4110 0.4885 0.1558 0.1553

F2 1.2615 1.0000 0.7578 0.3295 0.3407 0.8369 0.4967 0.5185 0.6163 0.1965 0.1959

F3 1.6648 1.3197 1.0000 0.4348 0.4497 1.1044 0.6555 0.6842 0.8133 0.2593 0.2585

F4 3.8289 3.0352 2.3000 1.0000 1.0342 2.5401 1.5077 1.5737 1.8705 0.5964 0.5945

F5 3.7023 2.9349 2.2239 0.9670 1.0000 2.4561 1.4578 1.5217 1.8087 0.5767 0.5749

C3 1.5074 1.1949 0.9055 0.3937 0.4071 1.0000 0.5936 0.6195 0.7364 0.2348 0.2341

C4 2.5396 2.0132 1.5255 0.6633 0.6859 1.6848 1.0000 1.0438 1.2407 0.3956 0.3943

C5 2.4331 1.9287 1.4615 0.6355 0.6572 1.6141 0.9581 1.0000 1.1886 0.3790 0.3778

D3 2.0470 1.6226 1.2296 0.5346 0.5529 1.3580 0.8060 0.8413 1.0000 0.3188 0.3178

D4 6.4201 5.0892 3.8564 1.6767 1.7341 4.2591 2.5280 2.6387 3.1364 1.0000 0.9969

D5 6.4401 5.1051 3.8685 1.6820 1.7395 4.2724 2.5359 2.6469 3.1462 1.0031 1.0000
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Table 20: Bayes Factors: “Rich” countries

F1 F2 F3 F4 F5 C3 C4 C5 D3 D4 D5

F1 1.0000 0.7273 0.5715 0.2226 0.2194 0.6465 0.3598 0.3654 0.4590 0.1328 0.1265

F2 1.3750 1.0000 0.7859 0.3061 0.3017 0.8890 0.4948 0.5025 0.6312 0.1826 0.1740

F3 1.7497 1.2725 1.0000 0.3895 0.3839 1.1313 0.6296 0.6394 0.8032 0.2323 0.2214

F4 4.4917 3.2666 2.5671 1.0000 0.9856 2.9041 1.6163 1.6414 2.0619 0.5964 0.5684

F5 4.5573 3.3144 2.6046 1.0146 1.0000 2.9465 1.6399 1.6654 2.0920 0.6051 0.5767

C3 1.5467 1.1248 0.8840 0.3443 0.3394 1.0000 0.5566 0.5652 0.7100 0.2054 0.1950

C4 2.7791 2.0211 1.5883 0.6187 0.6098 1.7968 1.0000 1.0156 1.2757 0.3690 0.3517

C5 2.7364 1.9901 1.5639 0.6092 0.6004 1.7692 0.9847 1.0000 1.2561 0.3633 0.3463

D3 2.1784 1.5843 1.2450 0.4850 0.4780 1.4085 0.7839 0.7961 1.0000 0.2892 0.2757

D4 7.5319 5.4776 4.3047 1.6768 1.6527 4.8697 2.7102 2.7525 3.4575 1.0000 0.9531

D5 7.9025 5.7471 4.5164 1.7594 1.7340 5.1093 2.8436 2.8879 3.6276 1.0492 1.0000
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Table 21: Bayes Factors: “O.E.C.D.” countries

F1 F2 F3 F4 F5 C3 C4 C5 D3 D4 D5

F1 1.0000 0.8604 0.5588 0.2358 0.2420 0.6098 0.3785 0.3963 0.4344 0.1259 0.1235

F2 1.1623 1.0000 0.6494 0.2741 0.2813 0.7088 0.4399 0.4606 0.5049 0.1463 0.1435

F3 1.7897 1.5399 1.0000 0.4221 0.4331 1.0915 0.6773 0.7092 0.7775 0.2253 0.2210

F4 4.2405 3.6485 2.3694 1.0000 1.0262 2.5860 1.6048 1.6804 1.8421 0.5338 0.5236

F5 4.1322 3.5553 2.3089 0.9745 1.0000 2.5200 1.5638 1.6375 1.7951 0.5202 0.5103

C3 1.6398 1.4108 0.9162 0.3867 0.3968 1.0000 0.6206 0.6498 0.7123 0.2064 0.2025

C4 2.6423 2.2735 1.4764 0.6231 0.6395 1.6114 1.0000 1.0471 1.1479 0.3326 0.3263

C5 2.5235 2.1712 1.4100 0.5951 0.6107 1.5389 0.9550 1.0000 1.0962 0.3177 0.3116

D3 2.3020 1.9806 1.2862 0.5429 0.5571 1.4038 0.8712 0.9122 1.0000 0.2898 0.2843

D4 7.9440 6.8350 4.4387 1.8734 1.9225 4.8446 3.0064 3.1480 3.4510 1.0000 0.9810

D5 8.0980 6.9675 4.5248 1.9097 1.9598 4.9385 3.0647 3.2091 3.5179 1.0194 1.0000
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Table 22: Invariant distributions for Model D5: “Poor” countries

Transition 1

Invariant Post. Prob. Post. Prob

State 1960 1974 Distribution ID > 1960 ID > 1974

1 0.2593 0.2963 0.3236 0.6915 0.5634

(0.1142)

2 0.4074 0.3704 0.3399 0.2240 0.3586

(0.0904)

3 0.3333 0.3333 0.3365 0.4714 0.4714

(0.1355)

Transition 2

Invariant Post. Prob. Post. Prob Post. Prob.

State 1975 1990 Distribution ID > 1975 ID > 1990 ID2 >ID1

1 0.2593 0.3333 0.3863 0.8401 0.6351 0.6407

(0.1275)

2 0.4444 0.4074 0.3560 0.1704 0.2857 0.5497

(0.0937)

3 0.2963 0.2593 0.2577 0.3306 0.4520 0.3307

(0.1112)

Table 23: Invariant distributions for Model D3: “Poor” countries

Invariant Post. Prob. Post. Prob

State 1960 1990 Distribution ID > 1960 ID > 1990

1 0.2593 0.3333 0.3631 0.8601 0.6028

(0.0974)

2 0.4074 0.4074 0.3867 0.3877 0.3877

(0.0799)

3 0.3333 0.2593 0.2502 0.1975 0.4248

(0.1021)
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Table 24: Invariant distributions for Model D5: “Rich” countries

Transition 1

Invariant Post. Prob. Post. Prob

State 1960 1974 Distribution ID > 1960 ID > 1974

1 0.2963 0.1852 0.2222 0.2260 0.5957

(0.1048)

2 0.3333 0.5556 0.5781 0.9729 0.5605

(0.1306)

3 0.3704 0.2593 0.1996 0.0903 0.2738

(0.1175)

Transition 2

Invariant Post. Prob. Post. Prob Post. Prob.

State 1975 1990 Distribution ID > 1975 ID > 1990 ID2 >ID1

1 0.1852 0.2222 0.2716 0.7024 0.5860 0.5997

(0.1377)

2 0.5556 0.3704 0.2808 0.0057 0.1890 0.0366

(0.1005)

3 0.2593 0.4074 0.4476 0.9039 0.5798 0.9051

(0.1490)

Table 25: Invariant distributions for Model D3: “Rich” countries

Invariant Post. Prob. Post. Prob

State 1960 1990 Distribution ID > 1960 ID > 1990

1 0.2963 0.2222 0.2330 0.2344 0.5049

(0.0950)

2 0.3333 0.3704 0.3504 0.5584 0.3917

(0.0887)

3 0.3704 0.4074 0.4166 0.6558 0.5176

(0.1068)
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Table 26: Invariant distributions for Model D5: O.E.C.D. countries

Transition 1

Invariant Post. Prob. Post. Prob

State 1960 1974 Distribution ID > 1960 ID > 1974

1 0.2593 0.2222 0.2537 0.4208 0.5135

(0.1495)

2 0.2222 0.3333 0.3915 0.9040 0.6323

(0.1376)

3 0.4815 0.4074 0.3548 0.1976 0.3482

(0.1449)

Invariant Post. Prob. Post. Prob Post. Prob.

State 1975 1990 Distribution ID > 1975 ID > 1990 ID2 >ID1

1 0.1852 0.1852 0.2716 0.7023 0.7023 0.5446

(0.1378)

2 0.3704 0.4444 0.4397 0.6836 0.4688 0.6075

(0.1319)

3 0.4074 0.3333 0.2887 0.1769 0.3395 0.3671

(0.1282)

Table 27: Invariant distributions for Model D3: O.E.C.D. countries

Invariant Post. Prob. Post. Prob

State 1960 1990 Distribution ID > 1960 ID > 1990

1 0.2593 0.1852 0.2464 0.4122 0.6633

(0.1160)

2 0.2222 0.4444 0.4220 0.9912 0.3750

(0.0952)

3 0.4815 0.3333 0.3316 0.0998 0.4829

(0.1139)
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Table 28: Mobility measures: “Poor” countries

Mp Me Md M2 M∗
c M∗

2

Transition 1 0.6791 0.6449 0.9507 0.4397 0.7312 0.5996

(0.1128) (0.0887) (0.0978) (0.1318) (0.2443) (0.2331)

Transition 2 0.6699 0.6516 0.9197 0.4831 0.7035 0.6665

(0.1142) (0.0966) (0.0905) (0.1348) (0.2283) (0.2513)

PP 0.4783 0.5255 0.4068 0.5929 0.4667 0.5725

PP = Posterior probability that the transition two measure is

greater than the transition one measure

Table 29: Mobility measures: O.E.C.D. countries

Mp Me Md M2 M∗
c M∗

2

Transition 1 0.4734 0.4717 0.7351 0.3391 0.4232 0.3983

(0.1114) (0.1091) (0.1273) (0.1188) (0.1528) (0.1690)

Transition 2 0.5096 0.5071 0.7641 0.3970 0.4740 0.4796

(0.1126) (0.1101) (0.1159) (0.1240) (0.1637) (0.1909)

PP 0.5897 0.5888 0.5666 0.6332 0.5939 0.6275

PP = Posterior probability that the transition two measure is

greater than the transition one measure
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