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Abstract

A recent literature, dominated by David Hendry and Michael Clements, has

emerged which emphasises the importance of the estimated constant term in Vector

Autoregressive (VAR) forecasting models using nonstationary time series. A part of this

research agenda has resulted in the resurrection of intercept-corrections, once popular with

the large econometric models of the 1970s, in the VAR context owing to the common

occurrence of intermittent structural breaks and the importance of the constant term in

determining medium and longer-term forecasting trajectories. This procedure is further

developed in this paper and a new Bayesian estimator is proposed. It is shown that, in

many commonly occurring situations, the proposed estimator produces a substantial gain

in mean squared forecast error over the alternatives of not intercept-correcting, or always

correcting in the classical fashion.



1. Introduction

In its simplest form, a Vector Autoregression (VAR) is an unrestricted reduced

form model that expresses each variable as a linear function of a constant and the lags of

that and each other variable in the system. Since each equation in a VAR has the same

regressors, they can be estimated separately by OLS. However, even in moderately sized

systems with, say, six variables and four lags of each, and a constant term, there are 25

parameters to be estimated in each equation so that over-parameterisation has often been

cited as the main cause of poor forecasting performance.

Since their introduction in the late 1970s, one strand of research has focussed on

reducing the parameter space by imposing stochastic restrictions which imply that each

variable follows a random walk with drift [Doan, Litterman and Sims (1984), Litterman

(1980, 1986)]. These restrictions are justified by appealing to the common observation that

most economic time series are integrated to order one, I(1). The combination of these

priors with data-determined parameter estimates produces the variant commonly known as

the BVAR, or Bayesian VAR, with the so-called Litterman priors after its originator.

However, the estimation procedure is more properly known as mixed estimation [Theil and

Goldberger (1961)] and it can trivially be implemented using OLS with a data

augmentation dummy variable procedure [Robertson and Tallman (1999)].

The original BVAR models have become commonplace in the literature with their

relative success usually being attributed to the general reduction in the parameter space

[e.g. Artis and Zhang (1990), Holden and Broomhead (1990), Funke (1990), and

Shoesmith (1995)]. In a dissenting note, Bewley (2000a) argues that this improvement is

more likely due to the correction of the downward bias in the estimated unit roots (or near

unit roots) that has been shown to increase with the number of variables in the system

[Abadir, Hadri and Tzavalis (1999)]. More recently, Sims and Zha (1998), have further



developed the BVAR methodology with priors that have more general applicability and an

estimation procedure that is more in the true Bayesian spirit.

A separate line of enquiry has focussed on pretesting the time series for unit roots

and, where appropriate, testing for cointegration in the spirit of Engle and Granger (1987)

and Johansen (1988). While these methods typically result in only a minimal reduction in

the parameter space, the imposition of unit roots have been shown to produce marked

improvements in forecast accuracy over both an unrestricted VAR and a BVAR with

Litterman priors [Bewley (2000a, 2000b)]. The main justification for this result is that

forecasts of I(1) variables from Vector Error Correction (VEC) models rapidly approach

linear time trends. Therefore, it is the precision of the estimate of the constant term, rather

than short-run dynamics, that is the key issue in forecasting with I(1) time series

[Clements and Hendry (1995, 1998b) and Bewley (2000b)].

Clements and Hendry’s (1995, 1998b) taxonomy of the sources of forecast error

shows that, if it is assumed that the data generating process (dgp) is stable over time, and

a consistent estimator is used, there are only three important sources of forecast error in a

VAR in levels with I(1) data: the failure to impose unit roots; overparameterisation arising

from an unrestricted reduced form specification; and, importantly, the precision in

estimation of the drift parameters. In the standard VAR framework, the constant terms are

nonlinear functions of all of the drift parameters and all of the (many) coefficients on the

lagged variables, so that it is a nontrivial matter to address the question of controlling the

estimates of drift in that framework. However, Bewley (2000b) proposed a new

representation which allows a simple, possibly Bayesian, direct estimation of the drift

parameters in a VEC. Thus, in cases where some variables contain drift while others do

not, the so-called mixed drift case, substantial improvements in forecast accuracy can be
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made by imposing exact, or stochastic, restrictions on the drift parameters.

Since the estimation of drift is of such importance in VEC models, Bewley and

Yang (2000) developed a number of statistics to test for structural breaks specifically in

that parameter vector. While system tests previously existed [Andrews (1993) and

Andrews and Ploberger (1994)], these new tests allow for a simple variable-by-variable

test for parameter constancy that are more appropriate when only some of the variables are

subject to structural breaks in drift.

The methods introduced in this paper are designed to take a properly-specified

model, that has been successfully subjected to appropriate diagnostic tests, and use that

model in a real-time setting. In practice, structural breaks are commonplace and potentially

an extremely important contributor to poor forecasting performance. As a result, Hendry

(1996, 1997), Hendry and Clements (1994), and Clements and Hendry (1995, 1996, 1998a,

1998b) have suggested correcting the intercept at each forecast origin to realign the

forecasts after a break has occurred within the sample. This correction is achieved by

adding the most recent residual, or the average over the last few periods, to the one-step

forecasts, or to the forecasts at all lead times.

While Clements and Hendry advocate intercept-corrections with VEC models, they

argue that they have less merit in a VAR model in the differences (DVAR). Indeed, they

consider a (non-intercept-corrected) DVAR, which results from a mis-specifying a VEC

model, as a viable alternative to intercept-correcting a VEC model. In that sense, Clements

and Hendry consider breaks in the long-run means of the equilibrium- (error-) correction

terms as more important, and more likely, sources of forecast error than breaks in drift

parameters. This view is supported by Eitrheim, Husbeø and Nymoen’s (1999)

experimentation with a macroeconometric model of the Norwegian Central Bank.
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While there is clear merit in the Clements and Hendry prescription, the results in

Bewley (2000b) suggest that a fruitful approach might be to allow the drift parameters,

rather than the constant terms in a VEC, to change in the recent past in both a classical

and a mixed-estimation sense. While these methods can be applied to either VEC or

DVAR models, the emphasis in this paper is on the latter. It is found that substantial

improvements in forecast accuracy can be made by intercept-correcting DVARs.

The proposed intercept-correction methods are introduced in Section 2 for the

general VEC model. The design of the simulation experiment is presented in Section 3 and

the results are reported in Section 4. Conclusions are drawn in Section 4.

2. Intercept-Correction

Consider an n x 1 vector of I(1) times series, yt, that can be represented by a VAR

with p lags, VAR(p):

If ΣAi - I has rank r > 0, equation (1) can be written as VEC(p):

(1)yt a
p

i 1

Ai yt i ut

where Bj = -Σp
i=j+1Ai and Σp

i=1Ai - I = αβ′ , with α and β being n x r. If the time series are

(2)∆yt a α [β yt 1]
p 1

i 1

Bi ∆yt i ut

not cointegrated (r=0), then a VAR in ∆yt with p-1 lags is appropriate, DVAR(p-1).

Clements and Hendry (1998b) write equation (2) as

where γ is the mean of the equilibrium-correction terms, β′yt-1, and δ is the mean of ∆yt,

(3)[∆yt δ] α[β yt 1 γ]
p 1

i 1

Bi [∆yt i δ] ut
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the drift parameters. The forecasts of (3) approach linear time trends with slope δ. It

follows from a comparison of equations (2) and (3) that the constant term, a, in equation

(2) is a nonlinear function of the drift, δ, and the all of the Bj:

Bewley (2000b) proposed an alternative representation of equation (2) or (3) that

(4)a [( I
p 1

i 1

Bi) δ α γ]

enables the direct estimation of the drift parameter vector, δ. This is achieved by applying

the Bewley (1979) transformation to equation (3):

where the Ci are nonlinear functions of all of the Bj and ζ is a nonlinear function of all of

(5)∆yt δ ζ [β yt 1 γ]
p 2

i 0

Ci ∆2yt i vt

the Bj and α. Since each equation in (5) is exactly identified, two stage least squares

(2SLS), conditional upon a super-consistent estimate of β, and using a constant term, the

equilibrium-correction terms and the p-1 lags of ∆yt as instruments, is equivalent to

indirect least squares implying an exact relationship between the estimates of the three

basic forms of a VEC: equations (2), (3) and (5). Bewley (2000b) introduced equation (5)

to enable some of the drift parameters to be set to zero with exact or stochastic restrictions

in the mixed-drift situation. Equation (5) is referred to as the mixed-drift VAR (MDVAR).

When restrictions are placed on the MDVAR, the equations are no longer exactly

identified and a system estimation approach, such as three stage least squares (3SLS), or

iterated 3SLS, is appropriate.

If it is assumed that the means of the equilibrium-correction terms are constant

over time, but that all of the drift parameters have changed in a recent time period, an

appropriately-defined dummy variable can be added to each equation of (5) or,
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equivalently, equations (2) or (3). This is one notion of intercept-correction. If only a

subset of the drift parameters has changed, it is not possible to impose linear restrictions

on the dummy variable augmentation to (2) or (3). However, this is not the case in the

MDVAR, and so possible gains might be had by exactly or stochastically restricting the

dummy variable parameters in that framework.

On the other hand, if the long-run means of the equilibrium correction terms, ζ,

vary, it is not possible to distinguish between changes in the two long run means, δ and ζ

with a single dummy variable for each equation. Importantly, changes in any one element

of ζ implies that all of the dummy variable coefficients are non-zero in either the VEC or

MDVAR. In that sense, it is not clear that there is an advantage to pursuing the latter

when equilibrium-correction terms are included and are possibly subject to structural

breaks. The notion that the equilibrium-correction terms do not break, but the individual

series do, has been termed co-breaking by Hendry and discussed in Clements and Hendry

(1998b) and elsewhere.

Since it may be the case that only a subset of the time series have been subjected

to a structural break, the mixed-break case, but that this is not known to the model

builder, consideration of a Bayesian intercept-correction method, which introduces a

dummy to equation in (5) but shrinks the coefficients to zero, may prove fruitful. Such a

procedure has two potential advantages. First, shrinking the intercept-correction towards

zero implies that the stochastically-restricted MDVAR is less likely to over-react to noise.

Second, those series without breaks would have dummy variable coefficients with large

standard errors resulting in restricted estimates that would be attracted towards zero more

so than for series that did break. When a similarly defined Bayesian intercept-correction is

applied to a standard DVAR or VEC, the mixed-break case implies all of the dummy
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variables coefficients are typically non-zero so that this differential shrinking to zero

cannot easily be exploited.

In order to implement this stochastic restriction on a DVAR or VEC, it is useful to

consider a the ith equation of a DVAR as a standard regression equation

w = Xπ + ε (6)

using obvious notation (conditional upon the equilibrium-correction terms having been

defined) and assuming the first column of X is the dummy variable introduced for

intercept-correction. The stochastic restriction can be written as

r = Rπ + ν (7)

where r = 0 and R is a row vector of zeroes except for the first element which is unity.

It is necessary to prespecify the variance of ν which controls the so-called tightness

of the prior; Var(ν) = λ2. Assuming Var(ε) = σ2I, stacking (6) and (7) produces the

augmented model

which might be estimated by GLS since σ is not necessarily equally to λ. Alternatively,

(8)










w
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


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ν

equation (7) can be multiplied through by σ̂/λ and this equation stacked with equation (6)

where the first element of R* is σ̂/λ and the remaining elements are zero. The variance of

(8)

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ν

ε and ν* are now approximately the same. Thus, equation (8) can be estimated by OLS;

the so-called dummy variable augmentation procedure. In keeping with the BVAR

literature, this estimate of σ is taken from a p-1th order autoregression of ∆yi,t.
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When exact or stochastic restrictions are applied to the MDVAR, certain

modifications are necessary. The correlation of X with ε requires X to be replaced by its

least squares predictions X̂ in typical 2SLS fashion. However, as λ → 0, the resultant

estimates do not approach those that would have been computed if the dummy variables

had been excluded from the system, as would be the case if this were applied in the

DVAR/VEC situation. This difference arises because the instruments used in creating X̂

include the dummy variable which is then being ‘excluded’ by the restrictions. The

difference might be expected to be very small when the restriction is true but, when a

significant break has occurred, sizeable differences can emerge in parameter estimates and

forecast accuracy. To rectify this problem, the first-stage regressions can similarly be

augmented with the dummy variable procedure to shrink the first-stage dummy variable

coefficients to zero. That is, the T+1th observations are all zero except for that

corresponding to the dummy variable which is set to σ̂/λ. In this way, the restricted

estimates approach those from not including an intercept-correction as λ → 0 and the

unrestricted estimates, including an intercept-correction term, as λ → ∞. While σ̂ is taken

from autoregressions of ∆yi,t in the case of a DVAR/VEC, σ̂ is taken from the Bewley

transformation of that autoregression in the MDVAR.

3. Monte Carlo Design

In a series of papers, Hendry, and Clements and Hendry, have argued that

intercept-corrections to VEC models perform on a par with DVARs without corrections

and that corrections to the latter tend to reduce forecast performance due to an over-

reaction to noise. Since the analysis of Section 2 suggests that there might be greater

potential to make improvements in MDVARs than DVARs or VEC models, the ensuing
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experiment has been designed to investigate the merits, if any, of intercept-correcting an

MDVAR when there is no cointegration. Thus, consider a two-equation mixed-break dgp

with T observations and no cointegration:

∆yt = δ1 + φ1(∆yt-1 - δ1) + φ2(∆xt-1 - δ2 - δ*Dt-1) + ε1,t (9)

∆xt = δ2 + δ*Dt + φ3(∆xt-1 - δ2 - δ*Dt-1) + ε2,t (10)

where εi is n.i.d.(0,1) and E(ε1ε2) = 0. Dt is the dummy variable that introduces the

structural break in the drift of xt but not yt. Note that this dummy is lagged when it

operates on ∆xt-1 to align it with the timing of the break.

Equivalently, (9) and (10) can be expressed as

∆yt = γ1 + µ1Dt-1 + φ1∆yt-1 + φ2∆xt-1 + ε1,t (9′)

∆xt = γ2 + δ*Dt + µ2Dt-1 + φ3∆xt-1+ ε2,t (10′)

where γ1 = (1-φ1)δ1 - φ2δ2; γ2 = (1-φ3)δ2; µ1 = -φ2δ*; µ2 = -φ3δ*. Thus, both constants shift in

a DVAR as shown in (9′) and (10′), providing φ2 ≠ 0, but there is no observable shift in yt

because the shift in xt is offset by the change in the drift term in equation (9). However, in

a real-time forecasting situation, there is a delay of one period before the constant term in

(9′) changes as, in the first period of the change, there is a single unit element in Dt

corresponding to the last observation and, hence, in that special case Dt-1 = 0.

It is assumed that Dt = 0 if t < T-q and Dt = 1 if t ≥ q. That is, the break in drift is

permanent (and continues throughout the forecasting period). Moreover, q is also assumed

to be sufficiently small as to make the shift difficult to detect. Any previous changes in

drift are assumed to have been modelled. Following the construction of the Andrews and

Ploberger (1994) and Bewley and Yang (2000) Wald tests, breaks are assumed not to have

occurred at the ends of the sample, say within 15% of the end of the sample. This serves

as a guide to the value of q. Two values of q are considered, q = 0 and q = 4. Clearly,
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even if a significant shock were to be detected in the last observation, corresponding to

q = 0, it would be impossible to test whether the shock was temporary or permanent. In

two cases corresponding to q = 0 and 4, it is assumed in estimation that the location of the

hypothesised break is known. In a third case, the assumed location, q*, is set to 4 while

the true value is q = 0. This serves two purposes. In reality, the location of a break would

not be known and secondly, it is consistent with Clements and Hendry’s approach of

averaging recent errors so that over-reaction to shocks is less prevalent.

Two basic dgp’s are considered. The first, referred to as the ‘diagonal dgp’, has φ1

= φ3 = 0.5 and φ2 = 0. This implies that the constant term in the first equation of the

DVAR does not depend on the size of the break in the second, δ*; that is, there is no

‘transmitted’ structural break. In the second dgp, φ1 = φ3 = 0.5 so that the speed of

adjustment to equilibrium is unchanged but φ2 = -0.8, implying that both constant terms in

the DVAR depend upon δ*; that is, there is a ‘transmitted’ structural break in the first

equation but not the first variable. Three values of δ* are considered: 1, 2 and 4 and these

compare to Var(∆yt) = Var(∆xt) = 1/(1-0.52) = 4/3. Thus, δ* = 4 is unlikely to be

encountered in many applications but is included to assess the impact of the proposed

methods in extrema.

Since none of the forecasting comparisons depend on the drift parameters, both

were arbitrarily set equal to one. These values, together with the other parameters chosen

for the dgp, produce time series that visually have the characteristics of many

macroeconomic time series. That is, they exhibit strong drift, but deviations from a linear

trend are pronounced. A stylised example for a single replication of the triangular dgp is

given in Figure 1 for T = 85 and δ* = 0,1,2,4 with a break occurring at observation 71. In

the case of the diagonal dgp, the y series has the same dgp as x but without a break.
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Each experiment is based on 5,000 replications and T = 75, 150 with the forecast

comparisons being based on the 1- and 10-step ahead mean squared forecast error (msfe).

In each case, the true lag length of one in first-differences was chosen so as to abstract

from any forecast inaccuracy due to selecting the wrong lag length. The DVAR was

estimated with no correction and with an unrestricted intercept-correction. The forecasts

from these are necessarily the same as those from the comparable MDVARs. In addition,

each form was estimated in its Bayesian form for 41 different values of λ [= 0.05, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5,

3.0, 3.5, 4.0 4.5, 5.0, 6.0, 7.0. 8.0, 9.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 50.0, 75.0,

100.0]

4. Results

The 1-step and 10-step-ahead msfe’s for the DVAR with no intercept-correction (λ

= 0) and with an unrestricted intercept-correction (λ → ∞) together with the Bayesian

variant of the DVAR and MDVAR that produced the smallest msfe for that estimator and

that equation, are presented in Tables 1 and 2 for the case T = 75.

When there is no transmitted drift, as there is in the diagonal dgp, the first variable

has no structural break and, therefore, it would be expected that the no intercept-correction

model would produce the smallest msfe. On the other hand, the second variable does

exhibit a break, but it does not follow that an unrestricted intercept-correction is to be

preferred. This is the essence of the Clements and Hendry view that DVARs should not be

intercept-corrected. However, as the size of the break increases, unrestricted correction

would become increasingly preferable.

From Table 1 it can be noted that both the 1-step and 10-step forecasts with the

11



diagonal dgp do indeed have lower msfe’s when λ = 0 than when λ → ∞, and that the

estimated λ is either zero or very small in the case of the DVAR. However, very small

gains in msfe are apparent in the MDVAR with most of the estimated values of λ being in

the approximate range of 0.2 - 0.5 for 1-step ahead forecasts. Small values of λ are also

estimated at the longer lead time.

Turning to Table 2, it can be noted that the ranking of the forecast performance for

the second variable, and the diagonal dgp for the cases of λ = 0 and λ → ∞, depends

upon the size of the break, δ*, the number of periods for which the break has been in

operation, q, and the number of periods for which the dummy variable assumes a change,

q*. Not surprisingly, it is better to intercept-correct (in the unrestricted sense) when δ* is

large, except when the break occurred in the last observation and residual-averaging (q* >

0) does not occur. Whether or not λ is estimated in the DVAR or the MDVAR form, the

msfe is never lower in either extreme and, sometimes, the gains from the Bayesian

procedure are very substantial and greater than that achieved by residual-averaging.

In the case of the diagonal dgp and variable 2, it can be also noted from Table 2

that the estimated values of λ are typically larger than those in Table 1 reflecting the

existence of the structural change and its accommodation with an intercept-correction.

Most values for the DVAR are in the range 0.5 - 1.1 while that range is approximately 1.5

- 5.0 for the MDVAR.

The results for the triangular dgp are quite different from those with a diagonal

dgp. In the triangular case, both equations in the DVAR experience a structural break

while only the second breaks in the MDVAR form. For variable 1, unrestricted intercept-

correction is preferable to no correction in the case q* = q = 4 but the reverse is true for

the longer lead time. In most cases the Bayesian DVAR performed similarly to the no-
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correction DVAR and substantial gains can be found in the MDVAR variant. The

estimated values of λ are mostly in the range of 0.7 - 3.0 for the Bayesian MDVAR.

Not surprisingly, some of the biggest gains in msfe can be found in the triangular

dgp and variable 2 and the Bayesian MDVAR is far superior to the Bayesian DVAR in

many of the cases. Indeed, the Bayesian MDVAR produces the smallest (or equivalent)

msfe in all but one of the 72 cases reported in Tables 1 and 2.

Two problems arise from the comparisons apparent in Tables 1 and 2. First, the

value of λ is not restricted to be the same in the two equations. Unless the model builder

has different information about the likelihood of a break in each variable, a common value

of λ should be used. Second, it is not possible to ascertain the sensitivity of the msfe for λ

in the neighbourhood of the minimum.

The former problem can be addressed by combining the msfe for the two equations

for a common value of λ. Naturally, the results depend upon the weights attached to each

series. In Table 3, the two msfe’s are simply added reflecting the similar trends, scale and

variability of the two time series. In no case is the Bayesian DVAR, the unrestricted

intercept-correction, or the no-correction DVAR, preferred to the Bayesian MDVAR and,

in some cases, the gains are very large indeed. The biggest gains are made when the break

is very large, δ* = 4, and the dgp is triangular. However, even when δ* = 1, q = q* = 4,

and the dgp is triangular, the gain in msfe for 10-step ahead forecasts of the Bayesian

MDVAR is 20% over not correcting and 50% over intercept correction.

The sensitivity of the results to changes in λ is considered in Figures 2 - 9 for a

break of δ* = 2 and q = q* = 4. In each case there are three pairs of lines corresponding to

variable 1, with the suffix (1), variable 2, with the suffix (2), and the sum of two msfe’s,

with the suffix (1+2). Within each pair, one line refers to the Bayesian DVAR and the
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other to the Bayesian MDVAR. A log scale is used for λ to allow for additional detail at

smaller values of λ.

It can be seen by comparing all eight figures that there is a pronounced minimum

sum of msfe’s for the Bayesian MDVAR. In some cases, such as in Figure 7, the scale of

the graph masks the full extent of the gain for that model. These minima also occur for

variable two but it is the combination of the flatness of the curve for variable 1 over a

wide range of λ, and the minimum of the curve for variable 2, that make the overall gain

so pronounced.

The Bayesian MDVAR produces a lower sum of msfe, particularly at the longer

lead time, and for a reasonably wide range of λ. In each case, an arbitrarily selected value

of 1 would have produced a forecasting model preferable to either an unrestricted

correction or no correction. While a more extensive set of experiments is warranted, the

results of this design are sufficiently encouraging to explore the use of the Bayesian

intercept-correction MDVAR in practice.

The results for T = 150 are not presented, but are available from http://

economics.web.unsw.edu.au/people/rbewley, owing to their similarity with those given

here. In essence, the additional observations improve the precision of the estimates of the

basic DVAR but there are still only 1 (q = 0) or 5 (q = 4) observations in the new regime

after the break. In that sense, the forecast relativities of the model do not depend upon

sample size.

5. Conclusions

A new strategy has been proposed for estimating and testing VAR forecasting

models, including the possibility of structural change, in a series of papers: Bewley
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(2000a, 2000b) and Bewley and Yang (2000), and the present paper. The essence of the

approach is to focus attention on the drift parameters. Spurious drift, arising from poorly

determined drift estimates of variables that would not be expected to trend, cause

problems of forecast credibility and, while relevant restrictions could be placed upon a

standard VEC or DVAR model, the nonlinearity of the restrictions make such estimation

cumbersome and prone to optimisation problems. The proposed framework for estimating

VARs - the mixed drift VAR (MDVAR) - facilitates this estimation and has been shown

to enable more accurate, and more credible forecasts to be produced (Bewley 2000b) using

either exact or stochastic restrictions.

The computational time to estimate the proposed parameterisation is trivial owing

to there being an analytical solution. However, there is much scope for experimenting with

different priors when stochastic restrictions are being contemplated but even this is quite

feasible. For example 5,000 replications, 41 sets of priors, 75 to 150 observations, and two

equations took only 13 minutes with a Pentium II processor and a program written in

FORTRAN.

In a natural extension to Bewley (2000b), Bewley and Yang proposed a set

of statistics to test for structural change specifically in the drift parameters. The MDVAR

framework simplifies the allocation of any structural change in the system to attribute it to

possibly a subset of the variables. The present paper considers possible structural change

in the most recent observations and an automatic Bayesian procedure for adapting to

structural change in drift without overacting to noise is proposed. It has been found that,

contrary to previous research (Clements and Hendry), significant gains in mean squared

forecast error can be made by intercept-correcting a VAR in differences. Indeed, when

there is a significant degree of causality in the system, and structural change is confined to
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a subset of the variables, substantial gains in forecast accuracy can occur with the new

estimator.

While the usual caveat of drawing conclusions from Monte Carlo experiments is at

least as applicable here as elsewhere, the results are sufficiently encouraging to warrant

further investigation. In particular, work is progressing on extending these results to

discriminating between structural breaks in drift and in the long-run means of equilibrium

correction terms.
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Table 1: Mean Squared Forecast Errors for Variable 1 (no break in drift)

DVAR DVAR MDVAR DVAR

δ* q* q dgp λ=0 λ mse λ mse λ=∞
1-step

1 0 0 diag 1.05 0.1 1.05 0.7 1.04 2.01
2 0 0 diag 1.09 0.1 1.09 0.8 1.07 2.05
4 0 0 diag 1.23 0.1 1.23 1.0 1.20 2.19
1 0 4 diag 1.05 0.1 1.05 0.4 1.05 1.24
2 0 4 diag 1.09 0.1 1.09 0.4 1.08 1.28
4 0 4 diag 1.23 0.1 1.23 0.5 1.23 1.43
1 4 4 diag 1.04 0.1 1.04 0.5 1.04 1.22
2 4 4 diag 1.07 0.1 1.07 0.5 1.06 1.22
4 4 4 diag 1.13 0.1 1.13 0.5 1.13 1.23
1 0 0 tri 1.73 0.1 1.73 1.8 1.38 2.73
2 0 0 tri 3.78 0.1 3.78 3.0 1.68 4.78
4 0 0 tri 11.88 0.0 11.88 3.5 3.10 12.90
1 0 4 tri 1.73 0.0 1.73 1.0 1.67 1.93
2 0 4 tri 3.78 0.0 3.78 1.7 3.25 4.00
4 0 4 tri 11.88 0.0 11.88 2.0 9.68 12.16
1 4 4 tri 1.58 1.5 1.24 2.5 1.16 1.25
2 4 4 tri 2.77 ∞ 1.33 3.5 1.22 1.33
4 4 4 tri 4.50 ∞ 1.57 ∞ 1.57 1.57

10-step
1 0 0 diag 39.19 0.0 39.19 0.2 39.17 375.87
2 0 0 diag 39.73 0.0 39.73 0.3 39.70 405.19
4 0 0 diag 42.08 0.0 42.08 0.3 41.99 524.02
1 0 4 diag 39.19 0.0 39.19 0.2 39.16 100.67
2 0 4 diag 39.73 0.0 39.73 0.2 39.69 103.31
4 0 4 diag 42.08 0.0 42.08 0.2 42.02 114.32
1 4 4 diag 39.18 0.0 39.18 0.2 39.15 100.15
2 4 4 diag 39.75 0.0 39.75 0.2 39.73 101.01
4 4 4 diag 43.01 0.0 43.01 0.2 43.00 103.83
1 0 0 tri 122.88 0.0 122.88 1.2 119.81 1516.56
2 0 0 tri 160.11 0.0 160.11 1.5 143.18 3338.25
4 0 0 tri 311.47 0.0 311.47 1.5 251.77 10616.73
1 0 4 tri 122.88 0.0 122.88 0.7 121.79 316.26
2 0 4 tri 160.11 0.0 160.11 0.8 155.70 480.62
4 0 4 tri 311.47 0.0 311.47 0.8 296.54 1148.62
1 4 4 tri 121.26 0.0 121.26 1.1 112.95 281.68
2 4 4 tri 153.00 0.0 153.00 1.3 121.95 336.38
4 4 4 tri 268.94 0.0 268.94 1.6 192.50 497.74
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Table 2: Mean Squared Forecast Errors for Variable 2 (break in drift)

DVAR DVAR MDVAR DVAR

δ* q* q dgp λ=0 λ mse λ mse λ=∞
1-step

1 0 0 diag 1.35 0.6 1.22 1.6 1.19 2.24
2 0 0 diag 2.16 0.9 1.32 2.5 1.24 2.92
4 0 0 diag 5.47 1.1 1.47 3.0 1.21 5.62
1 0 4 diag 1.35 0.4 1.32 0.9 1.32 1.42
2 0 4 diag 2.16 ∞ 1.82 6.0 1.82 1.82
4 0 4 diag 5.47 ∞ 3.45 ∞ 3.45 3.45
1 4 4 diag 1.29 0.5 1.17 1.3 1.16 1.29
2 4 4 diag 1.78 0.8 1.21 2.5 1.17 1.32
4 4 4 diag 2.66 1.2 1.24 4.5 1.15 1.39
1 0 0 tri 1.34 0.6 1.21 1.5 1.19 2.26
2 0 0 tri 2.13 0.9 1.32 2.5 1.25 2.96
4 0 0 tri 5.36 1.1 1.49 3.0 1.21 5.76
1 0 4 tri 1.34 0.4 1.31 1.0 1.30 1.40
2 0 4 tri 2.13 ∞ 1.78 5.0 1.78 1.78
4 0 4 tri 5.36 ∞ 3.34 ∞ 3.34 3.34
1 4 4 tri 1.28 0.5 1.16 1.4 1.15 1.27
2 4 4 tri 1.75 0.8 1.20 2.5 1.16 1.30
4 4 4 tri 2.51 1.2 1.22 4.5 1.14 1.38

10-step
1 0 0 diag 114.37 0.6 78.97 1.5 76.39 427.98
2 0 0 diag 344.50 0.9 110.47 2.5 95.47 659.90
4 0 0 diag 1265.87 1.1 152.36 3.0 86.38 1587.59
1 0 4 diag 114.37 0.3 106.20 0.9 106.27 135.42
2 0 4 diag 344.50 ∞ 235.24 7.0 234.90 235.24
4 0 4 diag 1265.87 ∞ 629.90 ∞ 629.90 629.90
1 4 4 diag 103.84 0.5 66.69 1.3 64.01 102.80
2 4 4 diag 288.39 0.8 78.56 2.5 67.71 108.21
4 4 4 diag 849.37 1.1 86.82 5.0 60.73 123.44
1 0 0 tri 115.13 0.6 78.56 1.6 76.52 412.05
2 0 0 tri 347.46 0.9 110.48 2.5 94.38 635.81
4 0 0 tri 1277.64 1.1 159.79 3.5 89.84 1529.30
1 0 4 tri 115.13 0.4 106.45 0.9 106.78 134.29
2 0 4 tri 347.46 ∞ 238.43 7.0 238.13 238.43
4 0 4 tri 1277.64 ∞ 651.79 ∞ 651.79 651.79
1 4 4 tri 105.50 0.5 66.03 1.4 63.56 100.58
2 4 4 tri 298.05 0.8 77.46 2.5 66.79 106.22
4 4 4 tri 922.26 1.2 85.30 5.0 60.00 123.31
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Table 3: Sum of Mean Squared Forecast Errors for Variables 1 and 2

DVAR DVAR MDVAR DVAR

δ* q* q dgp λ=0 λ mse λ mse λ=∞
1-step

1 0 0 diag 2.40 0.5 2.31 1.3 2.26 4.25
2 0 0 diag 3.25 0.8 2.55 2.0 2.44 4.97
4 0 0 diag 6.70 1.1 2.97 3.0 2.67 7.82
1 0 4 diag 2.40 0.2 2.38 0.6 2.37 2.66
2 0 4 diag 3.25 0.7 3.04 1.8 3.03 3.10
4 0 4 diag 6.70 ∞ 4.87 ∞ 4.87 4.87
1 4 4 diag 2.33 0.4 2.25 1.0 2.23 2.51
2 4 4 diag 2.85 0.7 2.35 2.0 2.31 2.54
4 4 4 diag 3.79 1.1 2.43 4.5 2.37 2.62
1 0 0 tri 3.07 0.5 2.97 1.7 2.57 4.99
2 0 0 tri 5.91 0.8 5.18 2.5 2.93 7.74
4 0 0 tri 17.23 1.1 13.53 3.5 4.36 18.66
1 0 4 tri 3.07 0.3 3.05 1.0 2.97 3.33
2 0 4 tri 5.91 0.7 5.68 1.9 5.07 5.78
4 0 4 tri 17.23 ∞ 15.50 2.5 13.46 15.50
1 4 4 tri 2.86 0.9 2.44 1.7 2.32 2.53
2 4 4 tri 4.51 3.5 2.63 3.0 2.39 2.63
4 4 4 tri 7.01 ∞ 2.95 7.0 2.86 2.95

10-step
1 0 0 diag 153.57 0.4 132.40 1.1 129.50 803.85
2 0 0 diag 384.23 0.7 201.87 1.9 186.21 1065.09
4 0 0 diag 1307.95 1.0 316.36 3.0 246.07 2111.60
1 0 4 diag 153.57 0.2 149.47 0.6 149.33 236.09
2 0 4 diag 384.23 0.7 318.83 1.8 317.46 338.55
4 0 4 diag 1307.95 ∞ 744.23 ∞ 744.23 744.23
1 4 4 diag 143.02 0.4 118.49 1.0 116.24 202.95
2 4 4 diag 328.14 0.6 149.87 2.0 142.32 209.22
4 4 4 diag 892.38 1.0 174.36 4.5 156.44 227.27
1 0 0 tri 238.01 0.2 234.99 1.5 196.96 1928.61
2 0 0 tri 507.57 0.3 486.34 2.0 252.89 3974.06
4 0 0 tri 1589.10 0.4 1493.40 2.5 493.36 12146.03
1 0 4 tri 238.01 0.1 237.50 0.9 228.74 450.55
2 0 4 tri 507.57 0.2 499.65 1.5 427.80 719.05
4 0 4 tri 1589.10 0.4 1523.64 2.0 1203.70 1800.42
1 4 4 tri 226.76 0.3 215.36 1.3 177.24 382.26
2 4 4 tri 451.04 0.5 336.04 1.9 202.49 442.59
4 4 4 tri 1191.20 0.9 544.45 3.5 358.20 621.05
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Figure 1: Stylised Time Series with Breaks
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Figure 2: 1-step-ahead MSFE for Diagonal DGP and δ* = 2, q* = q = 0

λ
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Figure 3: 10-step-ahead MSFE for Diagonal DGP and δ* = 2, q* = q = 0

λ
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Figure 4: 1-step-ahead MSFE for Diagonal DGP and δ* = 2, q* = q = 4

λ
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Figure 5: 10-step-ahead MSFE for Diagonal DGP and δ* = 2, q* = q = 4

λ
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Figure 6: 1-step-ahead MSFE for Triangular DGP and δ* = 2, q* = q = 0

λ

27



Figure 7: 10-step-ahead MSFE for Triangular DGP and δ* = 2, q* = q = 0

λ
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Figure 8: 1-step-ahead MSFE for Triangular DGP and δ* = 2, q* = q = 4

λ
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Figure 9: 10-step-ahead MSFE for Triangular DGP and δ* = 2, q* = q = 4

λ
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