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1 Introduction

There are many practical applications which require economists to compare two obser-

vations. If each of these observations is a vector, then the problem of comparison is more

complex than otherwise. Allen and Diewert (1981) introduced a criterion to measure the

dissimilarity between vectors, which we develop to identify firms which are “outliers”

in the context of efficiency analysis. Specifically, our method identifies firms which are

extreme observations in at least one of two well-defined senses. While the method is

applicable to the general problem of outlier detection, the application of the method is

particularly attractive in contexts such as efficiency analysis.

Nonparametric efficiency analysis methods, based on constructing a best-practice

frontier using linear programming techniques, yield neither the OLS residuals nor pa-

rameters which are typically used by outlier diagnostics; see e.g., Färe et al. (1994),

Coelli et al. (1998), Hjalmarsson et al. (1996), Färe et al. (1992). Moreover, the de-

tection of outliers can be complicated by the existence of multiple outputs. The results

generated by frontier-based efficiency models are particularly sensitive to outliers, since

frequently it is the outliers that define the frontier. Hence it is perhaps surprising that

the detection of outliers has not received more attention in the efficiency measurement

literature. One notable exception is a paper by Wilson (1993), which generalizes the out-

lier measure proposed by Andrews and Pregibon (1978) to the case of multiple outputs.

Wilson also provides a useful survey of the outlier literature, while a detailed review of

the theory of multi-output production models can be found in Färe and Primont (1995).

“Outliers” are observations which are different, in some sense, from the other ob-

servations in the sample. For example, Davies and Gather (1993) defined outliers as

those observations which have a different distribution from some assumed distribution

for the “non-outliers.” However, there is no standard definition of what constitutes an

outlier. Fieller (1993) notes that there are two common themes to proposed definitions:

(a) outliers are extreme observations in the sample; and (b) they are observations that

are sufficiently extreme as to have an apparently low probability of occurrence or are
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surprising in some other way, even when adjudged as the extremes of the sample.

Observations can be defined in multiple dimensions, so they may be different from

one another due to e.g., measurement error in some subset or all dimensions, a difference

in scale in all dimensions, or a difference in scale in only some dimensions. While it is

not (usually) possible to determine whether or not measurement error is the reason for

data anomalies from only observing the data, for conducting meaningful analysis it is

important to be able to at least identify the observations which are different in some

well-defined sense from the other observations.

The distinction between observations in terms of a (multidimensional) measure of

their average relative scale and a measure of dissimilarity in a subset of dimensions

appears to be an important one. The first concept can be described simply as one of

scale. An observation may be described as a “scale outlier” if it is relatively larger (or

smaller) in all, or many, dimensions than other observations. The second concept can be

described as one of mix. An observation may be described as a “mix outlier” if it has an

unusual combination in terms of the size of vector elements relative to other firms. Thus

its scale across all dimensions may not be at all dissimilar from the average, yet across

individual dimensions it may have a high variance in its scale relative to the average.

Of course, an observation could be both a scale and a mix outlier. The mix measure is

particularly relevant in the context of frontier analysis, as it may identify the firms that

exert the most influence on the efficiency scores.

Our scale and mix measures of dissimilarity sum to a measure of absolute dissim-

ilarity (Diewert, 2002). Hence, another way of thinking about our method is that we

decompose an index of absolute dissimilarity into mix (or “relative dissimilarity”) and

scale components.

Our method does not draw a distinction between observations on the best-practice

frontier and beneath the frontier, allowing measurement and other errors in all obser-

vations to become apparent. Hence, as in the approach of Wilson (1993), we treat

observations symmetrically. This is not possible if a sensitivity-analysis approach to
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outlier detection is taken, e.g. if efficient observations are deleted and the effect of their

absence on average efficiency scores is used as a criterion. While an observation on the

interior of a frontier will not affect the efficiency scores of other observations, it will affect

average efficiency scores. In addition, if the observation is an outlier in some sense, then

its own efficiency evaluation may be misleading.

We emphasise that we do not propose a statistical test, or equivalent algorithm, for

the acceptance or rejection of an observation as an outlier. This would be equivalent to

having a test which could determine if e.g., an observation was measured with error. This

is clearly impossible. The mechanical application of such a test could quite possibly lead

to the deletion of legitimate observations which just happen to be “extreme” relative to

other observations. The purpose of identifying extreme observations is so that they can

then be checked for accuracy, or the results of some empirical analysis can be qualified

by noting the existence of disparate observations. That is, the identification of outliers

and deciding what to do with them are two separate tasks. The latter requires the

researcher to take account of prior knowledge and the empirical context.

This paper is organised as follows. Section 2 introduces the concepts of mix, scale

and absolute dissimilarity, and derives our measures of mix and scale dissimilarity as the

only measures that satisfy reasonable sets of axioms for such measures. That is, they

are uniquely defined relative to these axioms. The resulting measures are “economics”

oriented, in the sense that the distances between two vectors must be invariant to changes

in the units of measurement. We show that these measures can be added to yield a

measure of absolute dissimilarity. Section 3 generalizes our method to the case when

there are more than two vectors being compared. In section 4 we compare our method

with that of Wilson (1993) using both mock data sets and the Charnes et al. (1981)

data set. Section 5 concludes.
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2 Mix, Scale and Absolute Dissimilarity

Suppose K firms use the same M inputs to produce N outputs. Let xki denote the

input or output i used by firm k. If i = 1, . . . ,M , then xki is an input, while if i =

M + 1, . . . ,M + N then xki is an output, and xki > 0 for i = 1, . . . , M + N .

Consider the ordinary least squares (OLS) residual sum of squares obtained by run-

ning the following regression:

ln

(
xki

xji

)
= α + εi, xji, xki > 0, i = 1, . . . ,M + N. (1)

The regression in (1) can be visualised in a two-dimensional plot, with ln(xki/xji) on the

y-axis and i = 1, . . . , M + N on the x-axis. The coefficient α represents the mean of the

dependent variable, and the regression equation consists of a horizontal line through the

data at this point. Hence, α is a summary measure of the relative scale of the vectors

being compared. The scale dissimilarity measure proposed in this paper is a function

of α̂, the OLS estimate of α. Deviations from the horizontal line ln(xki/xji) = α̂ are

measured by the regression residuals, denoted by ε̂i, for i = 1, . . . ,M +N . Squaring and

summing these residuals results in a measure of the variance of the differences in logs

between corresponding elements of the two vectors. This is intuitively what we mean

by a mix dissimilarity measure.

If price data also existed in such a production context, the vectors of prices could

be added as additional (positive) “input” or “output” vectors, or alternatively, separate

dissimilarity measures could be computed for the price indexes. The latter approach

is probably preferable since typically the scale of price differences will be very different

from the scale of quantity differences.

In what follows, these measures of dissimilarity are derived from axioms under which

they are uniquely defined. Although our mix dissimilarity measure is likely to be more

useful in many applications (including efficiency analysis), it is convenient to focus first

on our scale dissimilarity measure.
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2.1 Scale Dissimilarity

Six desirable axioms for a scale measure of dissimilarity, s(xj, xk), between the input-

output vectors of firms j and k, xj and xk, are listed below.

(s1) s(xk, xk) = 0.

(s2) s(xj, xk) ≥ 0.

(s3) s(xj, xk) = s(xk, xj).

(s4) s(xk, δxk) = s(xk, (1/δ)xk) = f [max(δ, 1/δ)], where f is a strictly increasing func-

tion and δ is a positive scalar.1

(s5) s(P [xj, xk]) = s(xj, xk), where P [xj, xk] is a common permutation of the input-

output vectors xj, xk, i.e., the vectors are rearranged in the same way.

(s6) s(xj, xk) = s(x̃j, x̃k), where x̃ji = λixji, x̃ki = λixki and λi is a positive scalar, for

all i (invariance to changes in the units of measurement).

Axiom (s1) is a very basic requirement that the scale dissimilarity measure should

equal zero if the two vectors being compared are identical in all elements. (s2) says

that a scale dissimilarity measure should always be greater than or equal to zero. (s3)

says that the scale score should not be dependent on the order in which the vectors

are considered in calculating the scale dissimilarity. (s4) requires that small and large

scale outliers are treated symmetrically. (s5) says that the scale dissimilarity measure

should not depend on the ordering of the data. (s6) is required so that the results are

independent of the units of measurement.

Consider the following definition of scale dissimilarity:

Definition : sM(xj, xk) ≡
{

ln

[M(xk)

M(xj)

]}2

, (2)

1It follows from (s1) that f(1) = 0.
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where M(x) denotes a symmetric mean of the components of x. It is assumed that a

symmetric mean satisfies at least the following axioms:2

(M1) M(λ, λ, . . . , λ) = λ, where λ > 0.

(M2) M(λx) = λM(x), where λ denotes a scalar.

(M3) M(Px) = M(x) where Px is a permutation of the components of the input-

output vector x.

(M4) M(xj) < M(xk) if 0N+M ¿ xj < xk.
3

(M5) M(x) is continuous over 0N+M ¿ x.

The rationale for the scale dissimilarity measure in (2) is that M(xj) and M(xk)

are the average scale of firms j and k. Scale dissimilarity, therefore, is an increasing

function of the ratio of their average scales. As long as M(x) satisfies (M1)-(M5), our

scale dissimilarity measure in (2) will satisfy (s1)-(s5). Further restrictions, however,

must be placed on M(x) if (s6) is to be satisfied. We return to this point later.

2.2 Mix Dissimilarity

Seven desirable axioms for a mix measure of dissimilarity, m(xj, xk), between the input-

output vectors of firms j and k are listed below.

(m1) m(xk, xk) = 0.

(m2) m(xj, xk) ≥ 0.

(m3) m(xj, xk) = m(xk, xj).

(m4) m(δxk, xk) = m(xk, δxk) = 0 where δ is a positive scalar.

(m5) m(λxj, µxk) = m(xj, xk) where λ and µ are positive scalars.

2A detailed discussion of the properties of symmetric means can be found in Diewert (1993).
3The notation 0N+M denotes a column vector of zeros, with N + M elements.
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(m6) m(P [xj, xk]) = m(xj, xk), where P [xj, xk] is a common permutation of the input-

output vectors xj, xk, i.e., the vectors are rearranged in the same way.

(m7) m(xj, xk) = m(x̃j, x̃k), where x̃ji = λixji, x̃ki = λixki and λi is a positive scalar,

for all i (invariance to changes in the units of measurement).

Axiom (m1) is a very basic requirement that the mix dissimilarity measure should

be equivalent to zero if the two vectors being compared are identical in all elements.

(m2) says that a mix dissimilarity measure should always be non-negative, which avoids

the problem of having to give an interpretation to a negative mix score. (m3) says that

the mix score should be independent of the order in which the vectors are considered.

(m4) is a generalisation of (m1). It says that the mix dissimilarity measure must have

zero value if the two vectors are proportional to each other. That is, if each element of

one vector varies by the same proportion relative to the corresponding element in the

other vector, then the vectors have the same “mix” and so should have a score of zero.

(m5) states that the mix score must be unaffected by rescaling of either of the vectors.

This is required since the “mix” of a vector should not depend on its scale. (m6) says

that a reorganisation of the elements of both vectors in the same fashion should not

affect the mix dissimilarity. That is, it should not matter in which order the data are

organised in the vectors. (m7) is required so that the results are independent of the

units of measurement of the data.

Consider the following definition of mix dissimilarity:

Definition : mM(xj, xk) ≡ 1

M + N

M+N∑
i=1

[
ln

(
xki

xji

)
− ln

(M(xk)

M(xj)

)]2

, (3)

where M(x) again denotes a symmetric mean.

The rationale for this mix dissimilarity measure is that it measures the extent to

which the ratios of individual inputs or outputs used by the two firms differ from the

average ratio. As long as M(x) satisfies (M1)-(M5), our mix dissimilarity measure in

(3) will satisfy axioms (m1)-(m6). Further restrictions must be placed on M(x) if (m7)
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is to be satisfied.

2.3 Ideal Specifications of Mix and Scale Dissimilarity

We now demonstrate that there exist unique expressions for the theoretical scale and

mix dissimilarity measures introduced in the previous sections. These expressions are

“ideal” in the sense that they are the only ones for which the mix and scale measures

satisfy all their respective axioms. This is shown through the following two theorems.

Theorem 1: Suppose the symmetric mean function M(x) satisfies axioms (M1) to (M5)

and the scale dissimilarity measure sM(xj, xk) is defined by (2). Suppose further that

sM(xj, xk) satisfies the invariance to changes in the units of measurement axiom (s6).

Then the mean function M(x) must be the geometric mean function, MG(x) defined

as follows:

MG(x) ≡
M+N∏
i=1

x
1/(M+N)
i . (4)

Proof: Since sM(xj, xk) defined by (2) satisfies the axiom (s6), then by setting λi =

1/xji for i = 1, . . . ,M + N , we obtain the following equation for all xj À 0M+N and

xk À 0M+N :

{
ln

[M(xk)

M(xj)

]}2

=

{
ln

[M(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)

M(1, . . . , 1)

]}2

= {ln[M(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)]}2, (5)

using (M1).

Case 1: M(xj) = M(xk).

In this case, the left-hand side of (5) is 0 and hence the right-hand side must also be 0

and so we must have ln[M(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N) equal to 0. Thus in this case, we
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have
M(xk)

M(xj)
= M(x−1

j1 xk1, . . . , x
−1
j,M+Nxk,M+N). (6)

Case 2: M(xk) = uk > uj = M(xj) > 0. In this case, we have M(xk)/M(xj) > 1, or

ln[M(xk)/M(xj)] > 0. Taking positive square roots on both sides of (5) leads to the

following equation:

ln[M(xk)/M(xj)] = [{lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)}2]1/2. (7)

Now let x∗
k move in a continuous path along the level surface with height uk from the

point xk to the point uk1M+N . Let x∗
j move in a continuous path along the level surface

with height uj from the point xj to the point uj1M+N . Using axioms (M1), (M4) and

(M5) on M(x), it can be seen that the left-hand side of (7) will remain constant at

a value equal to ln[uk/uj] > 0. Hence the right-hand side of (7) must also remain

constant and be equal to the same positive value, ln[uk/uj], which is also equal to

[{lnM(uk/uj, . . . , uk/uj)}2]1/2 = [{ln[uk/uj]}2]1/2 using axiom (M1). Thus

| lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)| = | lnM(uk/uj, . . . , uk/uj)|

= | ln[uk/uj]| = ln[uk/uj] > 0. (8)

Equation (8) and the continuity of M(x) show that lnM(x−1
j1 xj1, . . . , x

−1
j,M+Nxk,M+N)

cannot be negative and hence the right hand side of (7) must be equal to the positive

number lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N). Exponentiating both sides of the resulting

equation shows that (6) must hold in this case.

Case 3: M(xj) = uj > uk = M(xk) > 0. Case 3 is analogous to case 2. Again we find

that (6) must hold for this case.

Equation (6) is equivalent to the following functional equation: for all xj and xk À
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0M+N :

M(xk) = M(xj)M(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N). (9)

Now define the positive variables zi ≡ x−1
ji xki for i = 1, . . . ,M + N and note that

xki = xjizi for i = 1, . . . ,M + N . Substituting these two sets of equations into (9) leads

to the following functional equation:

M(xj1z1, . . . , xj,M+NzM+N) = M(xj)M(z) for all xj À 0M+N and z À 0M+N . (10)

Using (10), axiom (M1) on M(x) and Theorem 3.6.7 in Eichhorn (1978; 67), we can

deduce that M(x) must have the following Cobb-Douglas functional form:

M(x1, . . . , xM+N) =
M+N∏
i=1

xαi
i , (11)

where the αi are positive constants. However, axioms (M2) and (M3) on M(x) imply

that these positive weights αi are all equal to 1/(M + N). Thus (11) becomes (4), the

equally weighted geometric mean function. Q.E.D.

Theorem 2: Suppose the symmetric mean function M(x) satisfies the axioms (M1)-

(M5). Let the mix dissimilarity function, mM(xj, xk), which depends on M(x), be

defined by (3) above. If mM(xj, xk) satisfies the invariance to changes in the units of

measurement axiom (m7), then M(x) must be the unweighted geometric mean function

MG(x) defined earlier by (4).

Proof: Using definition (3) and the axiom (m7) with λi = 1/xji for i = 1, . . . ,M + N ,

we find that M(x) must satisfy the following functional equation for all xj À 0M+N and

xk À 0M+N :

1

M + N

M+N∑
i=1

{
ln

[
xki

xji

]
− ln

[M(xk)

M(xj)

]}2
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=
1

M + N

M+N∑
i=1

{
ln

[
xki

xji

]
− ln

[M(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)

M(1, . . . , 1)

]}2

. (12)

Using (M1) which implies M(1, . . . , 1) = 1, equation (12) simplifies to:

−2
M+N∑
i=1

ln(xki/xji){ln[M(xk)/M(xj)] − lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)}

+(M + N){(ln[M(xk)/M(xj)])
2 − [lnM(x−1

j1 xk1, . . . , x
−1
j,M+Nxk,M+N)]2} = 0,

or

2[lnMG(xk) − lnMG(xj)]{ln[M(xk)/M(xj)] − lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)}

= {(ln[M(xk)/M(xj)])
2 − [lnM(x−1

j1 xk1, . . . , x
−1
j,M+Nxk,M+N)]2}

= {ln[M(xk)/M(xj)] − lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)}{ln[M(xk)/M(xj)]

+ lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N)}. (13)

There are two cases to consider where equation (13) can be satisfied.

Case 1: Obviously, (13) will be satisfied if M(x) satisfies the following functional equa-

tion:

ln[M(xk)/M(xj)] − lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N) = 0 for all xj, xk À 0M+N .

(14)

But (14) is equivalent to (6), which was considered in Theorem 1, and we thus have the

result that M(x) must be the geometric mean function in (4).

Case 2: For some x∗
j À 0M+N and x∗

k À 0M+N , we have

ln[M(x∗
k)/M(x∗

j)] − lnM(x∗−1
j1 x∗

k1, . . . , x
∗−1
j,M+Nx∗

k,M+N) 6= 0. (15)

Using the continuity axiom (M5), there will exist a neighbourhood around x∗
j and x∗

k

11



where the inequality (15) will continue to hold. Hence for xj and xk in this neighbour-

hood, we can divide both sides of (13) by the nonzero common factor ln[M(xk)/M(xj)]−
lnM(x−1

j1 xk1, . . . , x
−1
j,M+Nxk,M+N) and we find that M(x) must satisfy the following func-

tional equation in this neighbourhood:

2[lnMG(xk) − lnMG(xj)] = ln[M(xk)/M(xj)] + lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N),

or

lnMG(xk) = lnMG(xj) + (1/2) ln[M(xk)/M(xj)]

+(1/2) lnM(x−1
j1 xk1, . . . , x

−1
j,M+Nxk,M+N). (16)

However, equation (16) can hold as an identity in the neighbourhood of x∗
j and x∗

k only

if M(x) = MG(x).

Thus in both cases we find that M(x) must equal the equally weighted geometric

mean MG(x) defined by (4). Q.E.D.

Now define the scale measure s∗(xj, xk) as sM(xj, xk) defined in (2) with M(x) equal

to the geometric mean MG(x) defined in (4).

s∗(xj, xk) ≡
[

1

M + N

M+N∑
i=1

ln

(
xki

xji

)]2

. (17)

From Theorem 1, it has been shown that the scale measure (17) satisfies axioms (s1)-

(s6). In addition, a measure of scale dissimilarity of the form (2) satisfies these axioms

if only if it is equal to s∗(xj, xk) in (17).

Similarly, define the mix measure m∗(xj, xk) as mM(xj, xk) defined in (3) with M(x)

equal to the geometric mean MG(x) defined in (4).

m∗(xj, xk) ≡ 1

M + N

M+N∑
l=1

[
ln

(
xkl

xjl

)
− 1

M + N

M+N∑
i=1

ln

(
xki

xji

)]2

(18)
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From Theorem 2, it has been shown that the mix measure (18) satisfies axioms (m1)-

(m7). In addition, a mix measure of dissimilarity of the form (3) satisfies these axioms

if and only if it is equal to m∗(xj, xk) in (18).

It also can be shown that s∗(xj, xk) = α̂2, where α̂ is the OLS estimate of α in (1),4

and that

m∗(xj, xk) =
1

M + N

M+N∑
i=1

ε̂2
i ,

where ε̂i denotes the OLS residual on element i in equation (1). This metric was first

proposed by Allen and Diewert (1981) to measure the dissimilarity between price vectors

in an index number context. Alternatively, it can also be defined as follows:

m∗(xj, xk) =
1

M + N
|x̂k − x̂j|2,

where x̂li = ln xli − (
∑M+N

i=1 ln xli)/(M + N), for l = j, k. In other words, m∗(xj, xk) is

proportional to the square of the Euclidean distance between the points (x̂j1, . . . , x̂j,M+N)

and (x̂k1, . . . , x̂k,M+N), both of which lie on the hyperplane
∑M+N

i=1 x̂li = 0.

2.4 Absolute Dissimilarity

Using the scale measure from equation (17) and the mix measure from equation (18),

we can decompose an absolute measure of dissimilarity, AD(xj, xk), as follows:

AD(xj, xk) ≡ 1

M + N

M+N∑
i=1

[
ln

(
xki

xji

)]2

=
1

M + N

M+N∑
l=1

[
ln

(
xkl

xjl

)
− 1

M + N

M+N∑
i=1

ln

(
xki

xji

)]2

+

[
1

M + N

M+N∑
i=1

ln

(
xki

xji

)]2

= m∗(xj, xk) + s∗(xj, xk). (19)

4Note that if xk = λxj (where λ is a scalar) in the regression equation (1), then s∗(xj , xk) =
{ln[max(λ, λ−1)]}2. Thus the transformation of s∗ that would recover max(λ, λ−1) is exp[s∗(xj , xk)1/2].

13



This is what Diewert (2002) calls the “log squared index of absolute dissimilarity.” As

with our mix and scale measures of dissimilarity, AD(xj, xk) in (19) can be shown to

satisfy a list of reasonable axioms for an aggregate measure of dissimilarity between two

vectors (Diewert, 2002).5

It is interesting to note that our absolute, mix and scale dissimilarity measures could

have been derived starting from a Jevons (1865, 1884) index framework. The Jevons

quantity index, QJ(xj, xk) can be written as follows:

ln QJ(xj, xk) =
1

M + N

M+N∑
i=1

ln

(
xki

xji

)
. (20)

As a quantity index, it measures the scale of the vector xk relative to xj. Using (17) and

(20), the Jevons quantity index can be related to our measure of scale dissimilarity:

[ln QJ(xj, xk)]
2 = s∗(xj, xk). (21)

Similarly, using (18) and (20), the Jevon’s quantity index can also be related to our

measure of mix dissimilarity.

To summarise, we have specified measures for determining the mix and scale dissim-

ilarity of vectors. These are uniquely determined relative to axioms which characterise

desirable properties for such measures. An alternative derivation of these measures from

index-number theory has been noted. Further, these measures which reflect different

characteristics of dissimilarity can be additively aggregated into a known index of abso-

lute dissimilarity.

5Note that (19) can be reorganised to yield the familiar variance decomposition, which is that
variance equals the expected value of the square minus the square of the expected value.
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3 Ranking Outliers

The mix and scale dissimilarity measures discussed thus far are bilateral in nature. This

section shows how they can be developed to provide multilateral comparisons of input-

output vectors for K > 2 firms. An alternative outlier detection method, due to Wilson

(1993), is also discussed in this section. In the next section, these outlier detection

methods are then compared.

3.1 Construction of Mix and Scale Rankings

Let K denote the full set of firms, K = {1, . . . , K}. Also let Kc
n denote a subset of n firms.

The possible combinations of n firms are indexed by c = 1, . . . , C where C =


 K

n


.

To construct a ranking of outliers based on the mix and scale dissimilarity measures,

it is necessary to compare the input-output vectors of all firms with the same reference

input-output vector. The ith element of the reference input-output vector denoted by

xRi is obtained by taking the geometric mean of the ith element of the input-output

vectors of the K − n firms not in the subset Kc
n, i.e.:

xRi =


 ∏

k/∈Kc
n

xki




1/(K−n)

. (22)

The mix and scale measures from (18) and (17) are then measured relative to the

reference input-output vector, as follows:

m∗(xR, xk) =
1

M + N

M+N∑
l=1

{
ln

(
xkl

xRl

)
− 1

M + N

M+N∑
i=1

ln
(

xki

xRi

)}2

, (23)

s∗(xR, xk) =

[
1

M + N

M+N∑
i=1

ln
(

xki

xRi

)]2

. (24)

To detect mix outliers, proceed as follows.

1. Choose the value of n.
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2. For all possible subsets Kc
n, calculate m∗(xR, xk) in (23) for all firms.

3. Calculate Kc
n = (1/n)

∑
k∈Kc

n
m∗(xR, xk) for each subset Kc

n. This yields C =
 K

n


 average mix scores, one for each combination of n observations.

4. Define the set of n outliers as the elements of Kc
n that solve the following optimiza-

tion problem: maxc=1,...,C{Kc
n}.

Using this algorithm we can determine the mix outlier if n = 1, the two mix outliers if

n = 2, and so forth up to the (arbitrarily determined) maximum of nmax possible outliers.

Similarly, scale outliers can be identified by replacing m∗(xR, xk) with s∗(xR, xk) in the

above algorithm, and using (24) instead of (23). It is useful to consider groups of outliers,

i.e. n > 1, due to the possibility of masking effects. Masking arises if there are groups

of outliers. Hence, groups of outliers are hard to detect unless n is allowed to vary.

However, as noted by Fieller (1993), “[o]ne of the fundamental difficulties in handling

multiple outliers is that conventional definitions all essentially require prespecification of

the number of outliers—extremeness of [n] outliers can only be assessed if [n] is known.”

As information on the exact number of outliers typically does not exist, it is therefore

useful to consider different values of n.6

Rousseeuw and van Zomeren (1990) argued for adjusting the Mahalanobis distance

to allow for the possibility of masking when trying to rank single observations as outliers.

Our approach more directly addresses the masking problem by considering all possible

combinations of groups of observations as potential outlier groups.7

6This strategy also takes into account the possibility of “swamping” (Fieller, 1976). “Swamping is
said to occur when the nonregular observations cause nonoutliers to be identified as outliers” (Davies
and Gather, 1993; 783).

7Software for calculating the mix, scale and absolute measures of dissimilarity (for different n) is
available from the authors or the web site for the Economic Measurement Group at the University of
New South Wales: www.economics.unsw.edu.au/research/EMG/EMGindex.htm.
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3.2 The Wilson-Andrews-Pregibon (WAP) Measure

The measure of Andrews and Pregibon (1978) identifies as outliers those observations

which contribute the largest proportion of the volume of the full data set. The Andrews-

Pregibon (AP) measure is generalized to the case of multiple outputs by Wilson (1993).

Let X denote the input matrix, with the first column being a column of ones, and Y the

output matrix. The AP measure can be written as follows in the single output context:

Rc
n(X∗) = [Dc

n|X ′
∗X∗|]|X ′

∗X∗|−1,

= Rc
n(X)[Dc

n(e′e)](e′e)−1, (25)

where the subscript n denotes the number of observations (rows) deleted from X∗ =

[XY ], by the operator Dc
n, while the superscript c indexes a particular combination of

n observations deleted from the set. Y is K × 1, and e is the vector of OLS residuals of

a regression of Y on X. The AP measure selects as outliers the n elements that solve

the following optimization problem: minc=1,...,C{Rc
n(X∗)}.

Wilson’s generalization of this measure to the multi-output context (N > 1, M > 1)

gives what we call the Wilson-Andrews-Pregibon (WAP) measure:

Rc
n(X∗) = Rc

n(X)[Dc
n|Ω|]|Ω|−1, (26)

where Ω = [e′peq] for p, q = 1, ..., K, with ep and eq the OLS residuals from regressing Yp

and Yq on X, respectively.

In the next section we compare the results from using the WAP outlier detection

method with our method in order to highlight the extra information that our method

can provide.
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4 Dissimilarity Measures and DEA Models

This section compares the above outlier detection methods using two mock data sets,

and an actual data set. It is demonstrated how the methods can be used to help identify

errors in the data, such as data-entry error.

4.1 Illustrative Examples

We begin by comparing the mix, scale, absolute dissimilarity (AD) and Wilson-Andrews-

Pregibon (WAP) outlier measures using two mock data sets. Each data set has only a

single input and output. The first data set is depicted in Figure 1. The constant and

nonincreasing returns to scale best-practice frontiers as determined by Data Envelop-

ment Analysis (DEA), a linear-programming technique, are also depicted in Figure 1.

Efficiency is measured either in the input direction (the distance an input vector has

to be contracted until the frontier is reached), or the output direction (the distance an

output vector has to be expanded until the frontier is reached).

The mix, scale and WAP outlier scores which correspond to the data of Figure 1,

for the case where only a single observation is deleted, are given in Table 1. All three

methods are able to identify observations as outliers even if they are beneath the best-

practice frontier. While these observations do not affect the efficiency scores of other

observations, their detection can alert researchers to their dissimilarity with other ob-

servations. If this dissimilarity is due to measurement or other errors, then it is possible

to avoid incorrect conclusions regarding their efficiency.

According to both the scale and WAP measures, the biggest outlier in Figure 1 is

observation 3. In contrast, the biggest mix outlier is observation 1. In the context of

DEA, the most influential observation is 1, in the sense that removing this observation

from the set will have the biggest impact on the relative efficiency scores (measured

in the input direction) of the other observations in the sample. This is an important

advantage of the mix measure since influential observations (in terms of forming part
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of the efficient frontier) in DEA will typically be mix outliers, although not necessarily

scale and WAP outliers.

The rank correlation coefficients between the mix, scale and WAP measures are

given in Table 2. The correlation coefficients range between 0.119 and 0.189. Hence at

least for the data in Figure 1, there is little correlation between the mix, scale and WAP

outlier rankings.

In Figure 2 we consider a special case where all the firms are located on the same

ray. The results in Table 3 provide interesting insights into each of the measures. In

this case the WAP measure is not defined because the X ′
∗X∗ matrix in (25) is singular.

The mix scores are all zero, since the firms all lie on the same ray. Hence, absolute

dissimilarity between the firms is given solely by the scale measure. Finally, the scale

scores increase symmetrically as one moves away from the firm in the middle.

Returning to Figure 1, it is also interesting to compare the rankings obtained when

n = 1 with the groupings of outliers obtained when n is allowed to vary. The results

obtained when n is varied between 1 and 6 are shown in tables 4 and 5. For all three

measures, the rankings in Table 1 differ quite substantially from the groupings in tables

4 and 5. This is because of masking. For example, according to the mix measure,

observations 1, 2, 4 and 5 are a potential group of outliers. Such groupings of outliers

can only be discerned by deleting multiple observations. However, there is a potential

weakness that arises as a result of varying n. Intuitively, one would expect the scale

measure to select both the largest and smallest scale observations as outliers in Figure

1. This is exactly what the scale measure does when n = 1. Unfortunately, when n

is varied to control for masking, the scale measure starts selecting observations only

at one or other extreme. Hence it is not clear that it is always desirable to control

for masking. This point is equally applicable to the mix, AD and WAP measures. Of

course, allowing n to vary has the additional disadvantage of dramatically increasing the

number of computations.
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4.2 Application to a Multi-Output Data Set

The outlier measures developed in this paper are illustrated here using the Charnes et

al. (1981) data set, which consists of 5 inputs and 3 outputs for 70 public schools in the

United States.8

The five inputs are:

(i) Education level of mother as measured in terms of percentage of high school graduates

among female parents (x1).

(ii) Highest occupation of a family member according to a pre-arranged rating scale (x2).

(iii) Parental visit index representing the number of visits to the school site (x3).

(iv) Parent counselling index calculated from the data on time spent with child on

school-related topics such as reading together, etc. (x4).

(v) Number of teachers at a given site (x5).

The three outputs are:

(i) Total reading score as measured by the Metropolitan Achievement Test (y1).

(ii) Total Mathematics Score as measured by the Metropolitan Achievement Test (y2).

(iii) Coopersmith Self-Esteem Inventory, intended as a measure of self-esteem (y3).

Pairwise plots of these data are given in Figure 3. From this figure we can see that

there does not appear to be much of a masking problem, i.e., there does not appear to

be a group of outliers of size n < K/2 which share similar attributes with each other,

but not with the rest of the sample.

An inspection of Figure 3 also reveals the difficulties involved with attempting a

visual identification of outliers when there are many variables (dimensions). In fact,

there is a deliberate data-entry error in the figure. We challenge the reader to find this

error using visual inspection of these plots. The answer will be given later in this section.

Table 6 reports the mix, scale, AD and WAP outlier rankings for the Charnes et al.

data set (without the data entry error), obtained by deleting only a single observation.

We see that scale dominates the AD ranking and that WAP gives quite a different

8For more details on the data set and its construction, see Charnes et al. (1981).
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ranking from the other measures. Some rank correlation coefficients are given in Table 7.

In absolute value, the correlation coefficients are all less than 0.15. In particular, the

correlation between the WAP ranking and both the mix and scale ranking is very close

to zero. These results confirm the previous results obtained using the mock data in

Figure 1. Clearly, therefore, the different outlier measures are each capturing different

aspects of the outlier problem.

The WAP ranking selects observations on the basis of their contribution to the

volume of the full data set. Hence, like the AD measure, it does not provide much

information regarding exactly how a particular observation differs from the others in the

sample. In contrast, the mix and scale measures are very specific as to the reason why

the observations are being selected as potential outliers.

The groupings of outliers obtained by varying n from 1 to 4 are shown in Table 8.

The AD ranking is the same as the scale ranking. A comparison between tables 6 and 8

reveals that the results obtained from the Charnes et al. data set are not affected much

by masking. In particular, the top four outliers in Table 6 for both the mix and scale

outlier measures correspond exactly with the group of outliers in Table 8. This result

is in stark contrast to the results obtained for the mock data in Figure 1, where the

selected outliers were highly sensitive to the choice of n.

Outliers reported in Table 8 which are not on the frontier, using a standard non-

increasing returns to scale DEA frontier (see e.g., Coelli et al., 1998), are observations

32, 33, 66 and 67. These observations would not have been identified as potential out-

liers if a sensitivity analysis approach was employed, as this approach is restricted to

considering only firms on the frontier as potential outliers.

As noted in the introduction, deciding what to do with outliers depends on the

underlying cause of their “extremeness.” This cannot be determined by merely observing

the data. If, for example, the cause is found to be data-entry error, then either the error

should be corrected or the firm in question removed from the data set. However, the

first step is to identify the outliers. Our mix and scale measures provide two new ways
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of doing this in multiple dimensions, and yield information about the way in which the

observations are extreme.

As an illustration of this, we return to the deliberate data-entry error in the data

plotted in Figure 3. The error is in x1 for observation 5. The actual value is 11.62, but

it was entered as 21.62 — variable x1 for observation 4 is the similar number 24.96, so

this type of error is not entirely unlikely. As will be obvious to the reader, this type of

error is very hard to identify visually. Also, a statistical test or algorithm that results

in the mechanical exclusion of observation 5 is obviously undesirable. Applying our

dissimilarity measures to the data set with the error, we now get observation 5 as the

highest ranked mix outlier (rather than observation 66 as in Table 6), with observation

59 still the most highly ranked outlier in terms of scale and absolute dissimilarity. A

subsequent check of the data in this case should lead to the detection of the entry error.9

5 Conclusion

We have introduced two new and complementary methods for detecting extreme obser-

vations. Our methods provide a natural interpretation of the division of such outliers

into mix and scale components. Other methods typically do not draw this distinction.

The introduced methods are applicable to any outlier-detection context. An obvious

application is to the detection of tax fraud.10 However, they are particularly useful for

detecting outliers in multi-output data sets. Also, in the context of frontier analysis, our

mix and scale measures have the advantage of being able to detect outliers beneath the

frontier.

9This example is not as contrived as it may seem. It was inspired by the actual experience of helping
another researcher with the preliminary analysis of a large data set. Several data-entry errors were
detected by both the mix and scale measures.

10In this context, outliers are defined over the space of tax characteristics, such as income, deductions,
and exemptions. A useful reference on tax fraud is Andreoni et al. (1998).
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Table 1: Ranking of Outliers for n = 1 in the Mock Data of Figure 1

Mix Mix Score Scale Scale Score AD AD Score WAP WAP Score
1 0.181 3 0.681 3 0.721 3 0.296
11 0.060 4 0.360 1 0.377 1 0.669
3 0.039 1 0.197 4 0.370 2 0.689
5 0.034 12 0.144 12 0.148 6 0.718
2 0.034 6 0.125 6 0.147 11 0.722
9 0.025 10 0.068 11 0.081 4 0.770
6 0.021 7 0.022 10 0.069 5 0.816
4 0.010 11 0.021 5 0.050 9 0.821
12 0.004 5 0.016 2 0.039 12 0.844
7 0.001 2 0.005 9 0.026 10 0.863
8 0.001 9 0.001 7 0.024 7 0.879
10 0.000 8 0.000 8 0.002 8 0.913

Note: n is the size of the group of outliers, and observations have been ordered according to their mix,
scale and absolute dissimilarity (AD) scores respectively. WAP stands for the measure of Andrews and
Pregibon (1978), generalized by Wilson (1993), which is a negative objective function.

Table 2: Rank Correlation Coefficients for Mock Data in Figure 1

Mix,Scale Mix,WAP Scale,WAP
correlation 0.119 0.119 0.189
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Table 3: Scores for n = 1 in the Mock Data of Figure 2

Mix Score Scale Score WAP Score
1 0 0.259 —
2 0 0.193 —
3 0 0.133 —
4 0 0.081 —
5 0 0.039 —
6 0 0.017 —
7 0 0.000 —
8 0 0.017 —
9 0 0.039 —
10 0 0.081 —
11 0 0.133 —
12 0 0.193 —
13 0 0.259 —

Note: See the note to Table 1.

Table 4: Groups of Outliers in the Mock Data of Figure 1: Mix and Scale

n Mix Mix Score Scale Scale Score
1 1 0.181 3 0.681
2 1,5 0.124 3,12 0.481
3 1,5,2 0.115 3,12,10 0.401
4 1,5,2,4 0.107 3,12,10,11 0.363
5 1,5,2,4,10 0.095 3,12,10,11,2 0.339
6 1,5,2,4,10,7 0.087 1,4,5,6,7,9 0.332

Note: n is the size of the group of outliers. The mix and scale scores are the average for the n
observations, and the objective is to find the largest values of the scores for each n.
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Table 5: Groups of Outliers in the Mock Data of Figure 1: AD and WAP

n AD AD Score WAP WAP Score
1 3 0.721 3 0.296
2 3,12 0.506 3,1 0.174
3 3,10,12 0.424 3,1,11 0.096
4 3,10,11,12 0.402 3,1,11,12 0.048
5 2,3,10,11,12 0.369 3,1,11,2,5 0.017
6 3,8,9,10,11,12 0.362 3,2,4,6,10,12 0.005

Note: n is the size of the group of outliers. The absolute dissimilarity (AD) scores are the sum of the
mix and scale scores, and the objective is to find the largest values of the scores for each n. The WAP
scores are minimum values.

Table 6: Ranking of Outliers for n = 1 in Charnes et al. (1981) Data

Rank Mix Scale AD WAP
1 66 59 59 59
2 48 32 32 44
3 15 69 69 33
4 56 5 5 66
5 69 62 62 35
6 49 44 44 54
7 68 29 29 68
8 5 61 61 67
9 61 38 48 8

10 67 48 38 50
11 51 45 54 1
12 32 54 45 52

Note: n is the size of the group of outliers.

Table 7: Rank Correlation Coefficients for Charnes et al. (1981) Data

Mix,Scale Mix,WAP Scale,WAP
correlation 0.149 -0.002 0.014
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Table 8: Groups of Outliers in Charnes et al. (1981) Data

n Mix Mix Score Scale Scale Score WAP
1 66 0.218 59 2.64 59
2 15,48 0.221 59,32 2.04 59,44
3 15,48,56 0.224 59,32,69 1.84 59,44,33
4 15,48,56,66 0.225 59,32,69,5 1.69 59,44,66,67

Note: n is the size of the group of outliers, and the mix and scale scores are the average for the n
observations. The results for the WAP measure are taken from Wilson (1993).
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