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Abstract 

In this paper a model is developed for share price behaviour in a system where there 

is just one new item of information released to market participants.  This determines 

the initial price of the share and thereafter, the only information that is used in the 

model is the new share price and the rate of change with which the price alters.  This 

results in a model for trend chasing behaviour in share prices in which investors are 

influenced solely by these two pieces of information. 

 

Using a closed feedback system with only the share price and the rate of price change 

as inputs, a model is derived for the share price.  Under these circumstances, it is 

possible for the price to settle to a stable value but, in many cases, the price behaviour 

is unstable and either rises or falls excessively. 
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1.  Introduction 

Conventional finance theory holds that all investors are rational individuals who are 

intent on maximising their utility.  With rational expectations, investors would only 

trade when new information is released that alters their perception of the value of the 

share under consideration.  There are, however, some instances in which share prices 

alter when there is little or no new information released that could be used to justify 

the changes.  One explanation for these price changes is that they are the product of 

investment decisions made by irrational or uninformed investors who base their 

investment decisions on observations about the actions of others and on the behaviour 

of the share price itself. 

 

One such type of investor is a trend-chaser who trades by following alterations in 

share price.  When prices are rising, the trend-chasers will buy and, when they 

perceive that prices are falling, they will sell.  This behaviour, assuming that the 

volume of their trades is sufficiently large to alter the price, can lead to excessive 

volatility in the share price and push prices away from their fundamental values.  For 

uninformed traders, there are particularly strong signals in the price of the share and 

the rate with which it alters.  This is reflected in the findings of papers such as Easley, 

Kiefer and O’Hara (1997) who suggested that uninformed traders are strongly 

influenced by the recent trades and are more likely to buy (sell) when previous trades 

have been buys (sells). 

 

In this paper, a feedback model is developed that uses the share price and the rate of 

change in the price as inputs and the output makes it possible to estimate how the 

share will behave if investors are basing their decisions solely on previous movements 

in the share price and have no new information that can be used to accurately value 

the stock.  This represents an extension on the existing research on positive feedback 

trading by constructing a formal framework for the model, which does not appear in 

the existing literature.  A further extension is introduced by allowing the two inputs in 

the model to exhibit either positive or negative feedback independently.  Using this 

more formal framework for modelling feedback trading it is possible to infer the 

overall impact of the inputs on the share price and to determine whether the behaviour 
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of the prices series will be stable or unstable.  This paper is constructed as follows:  

Section 1 introduces the theory of control systems and feedback loops.  Section 2 

reviews the relevant literature and Section 3 details the derivation of the model.  

Finally, there is the conclusion. 

 

2.  Control Theory and Feedback Loops. 

Control systems first appeared in simple mechanical devices1 and are now widely 

used in a variety of electro-mechanical systems from domestic to aerospace 

applications.  A control system is developed from four basic components: a reference, 

a sensor, a comparator and an actuator.  The reference data reflects the desired state of 

the system whilst the sensor determines the actual state of the system at the current 

time.  Once this is known, the comparator evaluates the current state with respect to 

the reference data and a decision is made about how the behaviour of the system 

should be altered.  This change is then carried out by the actuator.  This is fed into the 

sensor as a new input which determines the revised state of the system.  Under this 

scenario, a closed loop is formed and a feedback system is produced, as illustrated in 

Figure 1. 

 

  [Insert Figure 1 Here] 

 

In many such systems the objective is to control the behaviour of the system, to get as 

close as possible to the reference and to minimise the changes made at each stage by 

the actuator.  This scenario usually results in a negative feedback loop and is used 

when a stable system is required.  In other cases, there is no intention to control the 

behaviour of the system as the primary purpose is just to monitor how it behaves.  If 

no attempt is made to minimise the changes made by the actuator then the system can 

deviate substantially away from the initial input and the reference serves only to help 

                                                 
1 The earliest recognised example of a control system was a water clock devised by Ktesibios of 
Alexandria around 300 B.C.  Ktesibios controlled the flow of water in and out of the clock resulting in 
the first known instance of accurate time keeping.  More recently, control systems were used in the 
regulation of furnace temperatures for incubating chicken eggs (attributed to Cornelius Drebbel, circa 
1620) and the centrifugal flyball governor used to regulate the speed of a steam engine (James Watt, 
1788).  The use of control systems in electrical engineering was spearheaded with the development of 
feedback amplifiers in the 1920’s. 
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measure the magnitude of the change.  This generates instability the system and is 

usually the result of a positive feedback loop. 

 

It is important to note that it is possible for feedback models to have multiple inputs 

within a closed loop, as is the case here.  In this situation, each of the inputs may have 

either a positive or negative influence on the system as a whole and the sign of these 

inputs is independently determined.  The overall impact on the system will be 

determined by the aggregate effect of the inputs. 

 

3.  Existing Research 

Control theory and feedback loops have been used in papers by Mar and Bakken 

(1981), Klein (1989) and Edwards (1992) amongst others, which are concerned with 

such topics as organisational behaviour, individual’s reactions to workplace stimuli or 

stressful scenarios such as redundancy.  In the majority of papers of this sort, the 

feedback is negative as the system is ultimately expected to reach a stable condition.  

For example, in the work by Klein (1989) negative feedback loops are used to analyse 

the reaction of individual employees to motivation in the workplace.  The desired 

outcome is to have each individual on track to meet their pre-determined goals, which 

enter the feedback loop as the reference term.  The input will denote the current 

direction and intensity of the individual’s performance and the output will determine 

how far away they are from their goals.  As a result, an individual who is responding 

well to the stimuli will generate a stable (negative) feedback loop in which the output 

of the system will be close to the reference, resulting in small changes at the actuator.  

In papers such as these, the feedback structure is precisely defined as it will be here.  

This formal structure is necessary for the accurate measurement of the behaviour of 

the participants. 

 

Positive feedback has been used, in an informal setting, in papers examining the 

behaviour of trend-chasing investors who are making investment decisions based on 

the actions of other investors rather than on publicly available information.  This 

literature has concentrated predominantly on aspects such as the potential profitability 

of such a strategy (Jegadeesh and Titman, 2001), determining whether this activity 
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takes place across different types of investors (Mei and Saunders, 1997; Bange, 

2000), different markets (Grinblatt and Keloharju, 2000; Koutmos and Siadi, 2001; 

Watanabe, 2002) and the impact trading of this sort can have on the volatility of the 

market.  Research in the latter field is typified in the paper by De Long, Shleifer, 

Summers and Waldmann (1990) which analyses the impact of trend-chasing investors 

on the stability of share prices.  In the article by De Long et al, serial correlation in 

the price series is used as an indicator of the presence of trend chasing investors, 

which is the approach most commonly used in the existing papers concerning 

feedback trading.  The feedback occurs because potential investors observe the fact 

that the share price is rising and decide to purchase in the hope that the price will 

continue to rise.  The authors defined positive feedback in this paper as the situation 

in which the price is trending upwards and away from the original value of the series.  

This definition, whilst convenient and simple to utilise has some serious 

shortcomings.  It does not allow for negative feedback systems, which can exist even 

when investors are trend-chasing, nor is there any facility for the precise evaluation of 

the impact that feedback has on the investor.  The De Long et al paper is typical of the 

existing research into the behaviour of feedback traders.  In the literature to date, 

there does not seem to be any formal attempt to model the feedback system or to 

place it within a defined framework.  The presence of positive feedback is 

determined, in most cases, by the presence of serial correlation in the series of share 

prices and it is not necessary to determine how the series will behave or whether it 

will be stable or unstable in the long run.  Negative feedback is not considered 

relevant in these papers although is it the dominant feature in the behaviour of many 

share prices which do not move excessively away from the fundamental value. 

 

4.  A Model of Share Price Behaviour 

In principle, the decision to invest should be related to the expectations that an 

individual has for the future performance of a particular stock.  If the investors 

believe that the stock will appreciate in value in the future, then this provides them 

with an incentive to buy, and vice versa.  This simple decision process is illustrated in 

Figure 2. 
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[Insert Figure 2 Here] 

 

In this figure, 0N  is the share price when the trading process begins.  The investor 

makes a decision about the value of the stock at the point marked Σ  (the comparator) 

and that decision is acted upon at the point M .  The ensuing trade, assuming it is 

sufficiently large, will result in a new value for the share.  This is denoted tN . 

 

If it is assumed that there is absolutely no feedback then the investor cannot observe 

the outcome tN .  Under these circumstances, the system will almost certainly be 

stable.  This is due to the fact that, in the absence of any new information, and unable 

to observe the outcome of the last trade, any rational investor would stop after trading 

once.  Naturally, this situation rarely occurs in reality as the outcome is usually 

visible.  Not only will the first investor be able to see the responses generated by their 

own trading but other investors will also be able to observe both the new share price 

and the speed with which it has altered.  These investors will use this information to 

make decisions about the value of the share and, thus, determine their own trading 

strategy.  Assuming that no other information is released about the company, then the 

new price and the speed at which it has changed are the only inputs to the system.   

This results in the creation of a closed feedback loop, as illustrated in Figure 3, which 

echoes the simple loop shown in Figure 1. 

 

[Insert Figure 3 Here] 

 

From this system2, the share price after trading, tN , is derived as in equation 1. 

                                                 
2 This figure is derived from standard control theory principles.  The output is influenced solely by the 
initial step input and the feedback values.  An example of a step input is switching on a light bulb.  The 
system goes from one state, off, to another, illuminated, in a single step.  An example of feedback is 
adjusting the volume of water coming from a tap.  To reduce the flow, a little is subtracted from the 
original setting using negative feedback to reach an equilibrium situation.  Conversely, the volume of 
water can be raised by increasing the original setting; an application of positive feedback. 
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where 0N , Σ , M and tN  are defined as before and time is denoted as t  where 

∞= ,...,2,1,0t . 

 

In this equation 1k  and 2k  are coefficients that represent the impact of the new price 

and the speed with which it alters, respectively.  This information is fed back to the 

investor at Σ , who evaluates the data at this point and makes a decision about their 

next trade.  As a result the trading process repeats itself starting from this point.  In 

this closed system there is no new information available to the investor after the initial 

input and, as a result, the only influence on the way that traders behave is the 

interpretation that they place on the behaviour of the share price. 

 

In this model, the system may be stable or it may exhibit instability. In the derivation 

of the model, it was decided to opt for a positive feedback arrangement at the 

comparator and then to allow the signs associated with the coefficients 1k  and 2k  to 

determine whether the feedbacks were positive or negative.  The impact that these 

feedbacks have in aggregate will determine the overall state of the system. 

 

Rearranging this expression gives equation 2, which represents the new price as 

determined by the feedback system: 

 

⎥⎦
⎤

⎢⎣
⎡ +−
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1
        (2) 

 

The point at which trading in these shares begins can be considered as a step input to 

the system and, thus, the solution to this equation can be easily calculated using the 
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appropriate Laplace transform3.  From this simple system the new share price, tN , is 

derived as in equation 3. 
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For simplicity, it will be initially assumed that 1=M 4, which is the maximum 

possible value for this term.  This means that the investor’s decision is processed 

immediately and without any friction that may be caused by the presence of 

transaction costs, delays in processing the order to trade or any other impediments.  

This gives equation 4. 
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This solution, however, assumes that the share price begins trading at zero at 0=t  

which is obviously unrealistic and contrary to the observed behaviour of stock 

exchanges.  Exchanges insist on minimum values for share floatations and will 

usually suspend any share that falls below a pre-determined value making it highly 

unlikely that a share will ever have a value of zero.  To reflect this, the equation will 

be adjusted to reset the origin and elevate the initial value, 0N , above zero.  The share 

price, tN , is now represented by equation 55. 
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Depending on the size and sign of the coefficients 1k  and 2k , this series will 

demonstrate different types of behaviour.  These values will determine whether the 

                                                 
3 The complete solution to this equation can be found in Appendix 1. 
4 The situation that arises when this assumption does not hold is discussed later in this paper. 
5 The complete derivation of this equation can be found in Appendix 2. 
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system as a whole demonstrates positive or negative feedback and the prices will 

behave differently in each case.  When positive feedback is the dominant feature in 

the system then there will be a tendency towards unstable behaviour and the share 

price will either rise or fall dramatically.  Negative feedback is usually characterised 

by stability and the prices will tend towards the value ( ) 1
10 1 −− kN , which can be 

either higher or lower than the initial value 0N  depending on the influence of 1k  and 

2k .  The six possible combinations of 1k  and 2k  are illustrated in Figure 46. 

 

  [Insert Figure 4 Here] 

 

As Figure 4 demonstrates, this system exhibits both stable and unstable behaviour 

and, as both positive and negative feedback can exist in the system, there must be a 

boundary along which the change from one form of feedback to the other takes place.  

The boundary can be most easily seen when 2k  is negative, as there is an obvious 

change in behaviour between Zones 1 and 2.  In Zone 1, the system displays positive 

feedback and, as a result, prices are unstable and continuously rising.  Conversely, in 

Zone 2, the system is stable and prices soon reach an equilibrium value, as the overall 

feedback here is negative. The boundary between the stable and unstable behaviour 

clearly occurs along the line where 11 =k  and an expression for this boundary can be 

derived from equation 5.  By expanding the exponential part of this equation and 

substituting in the value 11 =k , the stability boundary can be found.  This is given as 

equation 67. 
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0 1

k
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where bN  refers to the value of the series tN  at the boundary. 

 

                                                 
6 A complete explanation of the behaviour of this series in the six areas detailed in Figure 4 can be 
found in Appendix 3. 
7 The complete derivation of this equation and equation 7 can be found in Appendix 4 
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At the boundary, when 11 =k , it is very difficult to calculate 2k  so the boundary can 

also be expressed as in equation 7. 

 

( )
1

10
0 t

NNtNNb
−

−=          (7) 

 

The stability boundary at 11 =k  also holds in the regions when 2k  is positive.  Here 

the boundary lies between Zones 4 and 5, although the change in behaviour is less 

marked in this region.  Combining the stability boundary with the six zones illustrated 

in Figure 4 makes it possible to determine the behaviour of the series, tN , over time.  

This is illustrated in Figure 5. 

 

  [Insert Figure 5 Here] 

 

The values of 1k  and 2k  will, of course, be unique to each company but it is possible 

to calculate these coefficients in every case.  The calculation relies on the selection of 

two time points, which will be denoted 1t and 2t .  These points should be selected so 

that 12 tt >  and the associated values of the price series, denoted 1N  and 2N , must 

also be known.  The values of 1k  and 2k  can then be calculated using equations 8 and 

98. 
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where ξ  is a positive root of the polynomial given here as equation 10 and 
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8 The complete derivation for equations 8, 9, 10 and 11 can be found in Appendix 5. 
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There is a second positive root to this equation which is always equal to one, but the 

solution of interest here is the root ξ 9. 
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An alternative specification for 2k  can also be derived and that is given as equation 

11. 
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It is apparent from these equations that 1k  is a dimensionless number whilst 2k  has 

the same dimensions at those chosen for time and is a function of 1k .  The fact that 2k  

contains a time element does not make the unit of time chosen important, as 2k  

simply adjusts its magnitude accordingly; the value of 
2k

t  is unaffected by the units 

chosen.  This does not mean that the frequency of the observations is unimportant, but 

the term in which time is expressed is irrelevant. 

 

Once the values of 1k  and 2k  are known it is possible to estimate the behaviour of a 

share price series, once the initial input has been made to the system.  The values of 

the coefficients 1k  and 2k  will determine which of the six possible zones the series 

will occupy and whether the behaviour of the series will be stable or unstable. 

 

In the work presented here thus far, it has been assumed that 1=M  which simplifies 

the derivation of the model and the analysis of its associated features.  If this 

assumption is relaxed, there is very little change.  The series of share prices, tN  can 

                                                 
9 An explanation of the proposed method of estimation for these coefficients and a proof of the fact 
that there can only be two positive roots to the polynomial can be found in Appendix 5. 



 12

be expressed as in equation 1210, where 1κ  is the coefficient on the new share price 

and 2κ  is the coefficient associated with the rate of change of the share price11. 
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As before, the values of the coefficients can be calculated and the equations for these 

terms are given as equations 13 and 14. 
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As before, it is necessary to find the positive root, ψ , of the polynomial below to 

determine the values of these equations. 
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As in the previous case, it is possible to find a second expression for the coefficient 

associated with the rate of change in the share price and here this is given as equation 

16. 

 

                                                 
10 The complete derivation for equations 12, 13, 15, 16 and 17 can be found in Appendix 6. 
11 1κ  and 2κ  are equivalent to the coefficients 1k  and 2k  in the earlier work.  The change in notation 
is used only to differentiate between the two cases 
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The case in which 1≠M  does not introduce many differences.  The behaviour of the 

price series can still be determined in terms of the same six zones as before and the 

stability boundary is unchanged by this alteration.  

 

5.  Conclusion 

The model derived here uses feedback principles to determine a model for trend-

chasing behaviour.  Allowing two distinct elements of feedback within the model and 

allowing these feedbacks to take different signs when appropriate makes it possible to 

conduct a much more detailed analysis of the various different ways that the series 

can behave.  This model represents a marked extension of previous research in which 

the possibility of a stable price series was ignored, and the inputs were not clearly 

defined. 

 

The model is established using three points in the time series, the initial value 0N  at 

0=t  and then 1N  and 2N  at times 1t  and 2t . This immediately allows the 

characteristic polynomial equation to be derived and the coefficients, 1k  and 2k , to be 

calculated.  This, then, completes the descriptive equation for the price series, which 

is 
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and this allows the series to be fully and accurately represented. 

 

The applications of this model extend not just to trend-chasing investors but also to 

any situation in which the market participants are investing without reference to the 

available information about the firm.  For example, many company share prices jump 
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sharply on the first day of trading after an IPO and this model could be used to 

analyse the behaviour of the price series in this situation, either over very short time 

scales (hours or days) or over longer periods such as weeks or months.  The inclusion 

of a stability boundary in the equation also makes it possible to assess the risk being 

taken by investors and developing this feature is another potential area for future 

research which will be examined in subsequent papers. 
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Appendix 1 

 

The Laplace transform is a convenient method for solving a differential equation.  

The process involves transforming the equation from the time domain, denoted with 

the subscript t , into the Laplace domain, denoted s .  Once in the Laplace domain the 

equation can be manipulated and easily solved.  Finally, the resulting output is 

returned to the time domain to solve the equation. 

 

This process involves multiplying each term in the equation by ste−  and then 

integrating each term with respect to time from zero to infinity.  The result of this 

integration is the Laplace transform. 

 

Thus, the Laplace transform of some term tf , which is a function of time, can be 

expressed in equation A1 and is denoted sF  where  

 

dtefF st
ts ∫

∞
−=

0

.                (A1.1) 

 

There are many possible Laplace transforms but only four will be discussed here, as 

they are the only ones used in this paper. 

 

1.  The Step Input  tu  

 

Here the step function is equivalent to setting 1=tf  for 0>t .  The corresponding 

Laplace for 0>t  is: 
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2.  An exponential function of the form at
t ef −=  

 

The Laplace transform in this case is: 
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3.  A function of the form at
t ef −−= 1   

 

The Laplace transform in this case is  
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Before solving equation 2, some simple notation needs to be introduced.  Here the 

relationship tfdt
d  is equivalent to 0fsFs − , where 0f  is the value of the function at 

0=t  which, in this case, is zero.  Thus st sFf
dt
d

→  

 

It is now possible to find the solution to equation 2.  Recalling equation 2, denoted 

A1.5, here, as derived from the feedback system, 
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This is transformed into the Laplace domain as in equation A1.6.  The step input of 

0N  is represented in the Laplace domain by the term 
s

N0  and the differential term 

dt
dN  is replaced with the operator s . 
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Rearranging this equation into the standard forms given in equations A1.2 and A1.4, 

requires a few lines of algebra: 
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This is now in the form ( )ass
ac
+

. , in which c  is a constant and ( )ass
a
+

 is the 

standard Laplace transformation for the time function of the constant, c , multiplied 

by ate−−1 .  This is given as equation A1.7 
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Completing the Laplace transform and returning to the time domain gives the solution 

as equation A1.8, which is also equation 3 in the main text. 
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Appendix 2 

 

Equation 4, reprised here as equation A2.1, represents the solution to the first order 

differential equation derived in the main body of the paper.  This is an exponential 

growth curve. 
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This solution can be represented as a curve of the form given in equation A2.2 

 

( )pt
m eAy −−= 1                (A2.2) 

 

where mA  is the maximum value towards which the curve tends asymptotically.  This 

curve takes the standard shape of an exponential growth curve, as given in figure 

A2.1. 

 

[Insert Figure A2.1 Here] 

 

It is easy to alter the point at which this curve passes the vertical axis without altering 

the constants or changing the curve in any way.  This is illustrated in Figure A2.2 in 

which the origin is moved to the right to lie under the point F on the curve.  The 

amplitude of the curve is reduced from mA  to FAm −  whilst the constant value F  is 

added to maintain the original values.  Thus the equation of the curve takes the form 

of equation A2.3. 

 

 [Insert Figure A2.2 Here] 

 

( ) ( )pt
m eFAFy −−−+= 1.               (A2.3) 

 

With some simple re-arrangement this gives equation A2.4. 



 21

 

( ) ptpt
m eFeAy −− +−= .1               (A2.4) 

 

Expressing equation 4 in this manner gives equation A2.5 
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This equation is then simplified as follows: 
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This gives equation A2.6, which is used in the main text as equation 5.  This 

represents the equation for tN  allowing the shares to start trading at the initial price, 

0N , instead of zero. 
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Appendix 3 

 

The series, tN , is represented in the main text by equation 5, repeated here as 

equation A3.1. 
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The behaviour of tN  in each of the six zones can be explained by considering the 

way that equation A3.1 behaves.  If that expression is differentiated with respect to 

time, t, the result is equation A3.2. 
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It is now possible to examine the behaviour of the series, tN  in each of the six zones 

marked in Figure 4. 

 

Zone 1: 11 >k  and 02 <k  

In this region, the differential of the curve with respect to t , 
dt

dNt , is positive and 

tends towards ∞+  as t  grows.  The price series, tN , remains positive throughout, 

rising above the initial value, 0N , and the behaviour of this series in this zone can be 

typified as in Figure A3.1. 

 

  [Insert Figure A3.1 Here] 

 



 23

Zone 2: 10 1 << k  and 02 <k . 

In this region, the differential of the curve, 
dt

dNt , is positive and tends towards 0+  as 

t  grows.  The values of the series, tN , remain positive but the series settles to a 

stable value which is larger than 0N .  The behaviour of the series is typified in Figure 

A.3.2. 

 

[Insert Figure A3.2 Here] 

 

Zone 3: 01 <k  and 02 <k  

In this part of the system, negative feedback is clearly prevalent and the series, 

obviously, will be stable.  The differential with respect to time, 
dt

dNt , is negative and 

tends towards 0−  as t  increases.  The values of tN remain positive and the series 

settles at a stable value given by 
1

0

1 k
N
−

which is below the initial price 0N .  The 

behaviour of the series in this zone is illustrated in Figure A3.3. 

 

  [Insert Figure A3.3 Here] 

 

 

Zone 4: 11 >k  and 02 >k  

In this region, 
dt

dNt  is negative and tends towards 0−  as t  grows.  The series will 

eventually settle at a value equal to 
1

0

1 k
N
−

, which will be negative in this zone.  For 

small values of t , the series will be positive, and, using equation A3.1, it is possible 

to determine the range of values for which this is true. 

  

From equation A3.1, it is clear that the series tN  can only be positive when the 

inequality denoted A3.3 holds. 
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Using this expression it is possible to find the range of values of t  for which the 

series will be positive.  Rearranging A3.3 gives: 
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In this zone, however, ( )11 k−  is negative and dividing the expression throughout by 

this term therefore reverses the inequality which becomes: 
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Thus, for tN  to be positive, t  must lie in the range given by equation A3.4. 
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The series changes from positive to negative when 0=tN  which occurs when t  takes 

the value given by equation A3.5 
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The behaviour of the series, tN , in this zone is typified in Figure A3.4. 

 

  [Insert Figure A3.4 Here] 
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In reality, of course, it is not possible to have a negative share price but the series will 

tend towards zero until it is suspended by the Stock Exchange.  However, the 

description of the behaviour of the share price as given here will be accurate until the 

point at which suspension occurs. 

 

Zone 5: 10 1 << k  and 02 >k  

In this zone, the differential of tN  with respect to t  is negative and will tend towards 

∞−  as t  grows.  As in Zone 4, the series is positive for small values of t  and these 

values can be calculated. 

 

Again, equation A3.1 is the starting point and this time tN  can only be positive when 

the inequality denoted A3.6 holds. 
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Using the permissible range of values for 1k  in this zone, it is possible to determine 

the range of values of t  for which this inequality holds. 
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Thus, the series will be positive in this zone for the range of values given by the 

inequality, denoted equation A3.7 
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The behaviour of the series in this zone is illustrated in Figure A3.5 and the same 

caveat concerning negative share prices applies here as it does in Zone 4. 

  [Insert Figure A3.5 Here] 

 

Zone 6: 01 <k  and 02 >k  

In this zone, the differential with the respect to time, 
dt

dNt , is positive and will tend 

towards ∞+  as t  increases.  Throughout this zone, the series, tN , remains positive.  

The gradient here is much steeper than in Zone 1 as can be demonstrated by 

calculating 11 k−  in both zones.  In Zone 6, where 01 <k , the value of the modulus 

will be greater than in Zone 1, where 11 >k , provided that the same value of 1k  is 

used in both cases. 

 

The behaviour of the series tN  in this area of Figure 4 is illustrated in Figure A3.6 

 

  [Insert Figure A3.6 Here] 
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Appendix 4 

 

The behaviour of the series, tN , is represented by equation 5, which is represented 

here as equation A4.1. 

 

[ ]

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 1

2
1

1
1

0 .1
1

k
k
t

t ek
k

NN               (A4.1) 

 

The value of this equation when 11 =k  is difficult to calculate with the equation in 

this form, so the exponential part of the equation can be expanded using the standard 

series for xe  given in equation A4.2. 
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Using this expansion, the exponential part of equation A4.1 takes the form of equation 

A4.3. 
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Further expanding equation A4.1 using the exponential expansion and some simple 

algebra gives an expression for the entire equation. 
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At the boundary, 11 =k , this expression becomes equation A4.4 
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This boundary is a straight line and equation A4.4 conforms to the standard form, 

cmxy +=  where the intercept is 0N  and the gradient is 
2

0

k
N− . 

 

In addition to the relationship represented in equation A4.4, the boundary must pass 

through 0N  when 0=t  and through 1N  when 1tt = .  This means that the gradient 

must also be equal to 
1

01

t
NN −  

 

Equating the two expressions for the gradient makes it possible to derive an equation 

for 2k , denoted equation A4.5 
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Substituting this term into equation A4.4 gives the second equation for the stability 

boundary when 11 =k , equation A4.6. 
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Appendix 5 

 

The calculation of the values of 1k  and 2k  requires two values of t  and the equivalent 

values from the price series, tN .  The relationship between the times and the prices 

are illustrated in Figure A5.1. 

 

[Insert Figure A5.1 Here] 

 

Using these terms and the initial value of the price series, 0N  it is possible to derive 

expressions for the coefficients.  The values of 1k  and 2k  can be calculated using the 

equation for tN , which is given as equation 5 in the main text.  Using this equation 

and the values in Figure A5.1 it is possible to create expressions for tN  when 1tt =  

and 2tt = , with the condition that 12 tt > .  These expressions are denoted equations 

A5.1 and A5.2 respectively. 
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When 2tt = , 2NNt =  
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Using equation A5.1, an expression can be found for the difference between 1N  and 

0N .  This is as follows: 
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This expression can be simplified by substituting in the term 
[ ]1

2

1 1 k
k
t

ex
−

= .  This gives 

equation A5.3.  This substitution means that the value of the term x , which will be 

evaluated later, must always be a positive number. 
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Repeating this process for equation A5.2 gives a similar expression, which will be 

denoted A5.4. 
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The exponential expression in this equation can be represented as 
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allowing the equation A5.4 to be re-expressed as equation A5.5  
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The ratio of equations A5.3 and A5.5 can then be found to be equation A5.6 
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Rearranging this expression gives equation A5.7 as below 
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Equating equations A5.5 and A5.7 gives the following expression (A5.8): 
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which can be re-arranged as follows to give an equation for the coefficient 1k , 

denoted equation A5.9. 
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Recalling that 
[ ]1

2

1 1 k
k
t

ex
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= , an expression for 2k  can be found, denoted here as 

equation A5.11. 
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It is also possible to find a second expression for 2k , in which this coefficient is 

expressed entirely in terms of the price series, time and the coefficient 1k .  Deriving 

this equation first requires a rearrangement of equation A5.9 to derive an expression 

for x , equation A5.10, as follows: 
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Substituting equation A5.11 into equation A5.10 gives a second expression for 2k , 

given here as equation A5.12. 
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As equation A5.12 demonstrates, it is possible to construct an expression for 2k  that 

does not involve the term x .  It is not possible, however to evaluate 1k  without 

evaluating x .  This necessitates an alternative approach to equation A5.6, which is 

rearranged as follows, resulting in equation A5.13. 
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This polynomial needs to be solved to find the roots of the equation.  It is clear that 

one root will always be 1=x  but there will be other roots as well.  The relationship 

between the terms 1t  and 2t  will determine the number of roots that equation A5.13 

can have.  For example, if the time points are chosen such that 12 2tt =  then equation 
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A5.13 is a quadratic equation12 and will have just two roots.  For higher order 

expressions, however, there could be many roots to this equation but the only 

solutions that are of interest here are those where x  is positive, as a negative solution 

would violate both the initial definition of this term and equation A5.10.13 

 

It can be demonstrated that there are only ever two positive roots to this equation by 

examining the polynomial itself.  As Geary, Lowry and Hayden (1955) noted, “if an 

equation ( ) 0=xf  can be written in the form ( ) ( )xfxf 21 =  its real roots are the 

abscissae of the points of intersection of the graphs of ( )xf1 ) and ( )xf2 , because the 

graphs have the same ordinate at a point of intersection.” (Geary, Lowry and Hayden, 

1955, page 303)  Recalling equation A5.13 it is possible to rearrange that equation as: 
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The graphs of these two functions can be seen in Figures A5.2 and A5.3. 

 

[Insert Figure A5.2 Here] 

 

[Insert Figure A5.3 Here] 
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13 It is, of course, impossible to have a negative value for an exponential or to take the logarithm of a 
negative number. 
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The two functions both pass through the point ( )1,1  so if Figure A5.3 is overlaid on 

Figure A5.2 as in Figure A5.4 it is clear that there are only two possible points of 

intersection between the two functions ( )xf1  and ( )xf2 , limiting the number of 

positive roots to two.  As has already been noted, it is clear that one solution will 

always be 1=x  but there will be another solution which will be denoted ξ . 

 

  [Insert Figure A5.4 Here] 

 

There are three cases to examine here.  The differentials with respect to x  of the two 

functions are used in each of the following cases, and are given as equations A5.14 

and A5.15, below. 
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The minimum possible value of the root ξ  occurs at the point where the function 
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If the gradient of ( )xf1  is greater than the gradient of ( )xf2  at the point 1=x , then 

the relationships between the differentials of these two functions can be expressed as: 
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and, since 1=x , this expression is equivalent to ⎥
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From this, it is possible to infer that the second intersection between the two functions 

must lie somewhere between the point 1=x  and the minimum possible value of the 

root.  Thus the root ξ  must lie in the range defined as: 
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This case is illustrated in Figure A5.5 

 

  [Insert Figure A5.5 Here] 

 

For some simple polynomials, specifically the quadratic and the cubic, it may be 

possible to find ξ  manually but, for the majority of cases, it will be necessary to use 

some form of iterative process to determine the value of the root.  Any simple 

iterative process would be sufficient to find these values, provided a suitable starting 

point is used.  It has already been noted that the minimum possible value for ξ  is 

02

12

NN
NN

−
−

 and this could be a suitable starting point for the iterative process in this 
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If the gradient of ( )xf1  is less than the gradient of ( )xf2  at the point 1=x , then the 

relationships between the differentials of these two functions will can be expressed as: 
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and, as before, this expression is equivalent to ⎥
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Thus the root ξ  must lie in the range 1>ξ  

 

This case can be illustrated as Figure A5.6 

 

  [Insert Figure A5.6 Here] 
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If the gradients of the two functions are equal at the point 1=x , then this means that 
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Recalling that 
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 14. 

 

There are two possible conditions under which this can be true: 

1. 11 =k .  If this is the case, then the solution to the polynomial equation lies on 

the stability boundary between Zones 1 and 2 and Zones 4 and 5 as pictured in 

Figure 4. 
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2. 01 =t .  In this case, the first time point is the start conditions when the system 

first begins to operate.  This corresponds to the point 0N  in the price series. 

 

As has been demonstrated, in all three cases there are just two positive roots, 1=x  

and ξ=x , where ξ  can take any value including 1.  This second root is the one that 

is required to find the values of the coefficients 1k  and 2k .  To find the value of ξ  

will necessitate solving the polynomial equation given previously as equation A5.13, 

reprised below. 
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To find the roots of this polynomial equation some simple iteration is required. 

 

Once ξ  is known the coefficients can be calculated using this value, and equations 

A5.9 and A5.11 can now be written as A5.16 and A5.17, below: 
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Appendix 6 

 

Assuming that 1≠M , the equation for the price series is given in the form of 

equation A6.1, which appears as equation 3 in the main text.  For ease of comparison 

and to avoid confusion, the coefficients here are denoted 1κ  and 2κ  but their 

definitions are the same as before and interpretation of these values remains 

unchanged. 
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As previously, the first step is to modify this equation so that the initial value is 

greater than zero.  Following the steps laid out in Appendix 2, this gives a second 

equation for tN  which takes the form of equation A6.2, below 
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This equation can be rearranged as follows to give equation A6.3 which is a more 

concise expression for the price series. 
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The equivalent expression, when 1=M , was given as equation 5 in the main text and 

is reprised here as equation A6.4. 
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These two equations represent the same curve and so it is valid to equate all parts of 

these equations as follows: 
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These are identical statements and either can be rearranged to give the following 

equation, A6.5. 
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Recalling that M  represents the processing of the investors decision and has a 

maximum possible value of 1, the right hand side of equation A6.5 can be expressed 

as the equality denoted A6.6, below. 
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which implies that 1κ  will be bigger than 1k  but the difference is easily calculable.  

For example, if 95.0=M  then the corresponding difference between the coefficients 

is 053.0 . 

 

Maintaining the assumption that 1≠M  will require some slight modification of the 

equations used to calculate the coefficients.  Recalling the methodology detailed in 

Appendix 5, the equations for the coefficients 1κ  and 2κ  are derived in the following 

manner. 

 

Again, two values of t  are required along with the equivalent values from the price 

series, tN .  The relationship between the times and the prices are the same as 

previously illustrated. 

 

Deriving expressions for the price series at times 1t  and 2t  using equation A6.3 now 

gives equations A6.7 and A6.8 as below. 
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When 2tt = , 2NNt =  
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Using equation A6.7, an expression can be found for the difference between 1N  and 

0N .  This is denoted equation A6.9 and is derived as follows: 
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This expression can be simplified by substituting in the term 
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⎠
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gives equation A6.10.  As before, this substitution means that the value of the term 
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Repeating this process for the difference between 2N  and 0N  gives a similar equation 

which will be denoted A6.11, below 
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The exponential expression in this equation can be represented as 1

2

t
t

ψ  giving 

equation A6.12  
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The ratio of equations A6.12 and A6.10 is given as equation A6.13 
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Rearranging this equation to give an expression for 02 NN −  and equating it to 

equation A6.12 makes it possible to derive an equation for 1κ , denoted equation 

A6.14. 
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Recalling the substitution used previously, it is possible to derive an equation for 2κ  

denoted here as A6.15. 
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Using the expression developed previously 
M
Mk 1

1
11 κ−

=− , this can be re-expressed 

as: 
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which is the same equation as was developed in Appendix 5 (Equation A5.10) to 

represent 2k  which reaffirms that 22 κ=k .  

 

As before, it is again possible to find a second expression for 2κ  by rearranging 

equation A6.14 and substituting that term into equation A6.15.  This derivation is 

included here, as follows, for completeness. 
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Thus equation A6.15 can be re-written as: 
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As was discussed in Appendix 5, it is not possible to evaluate these equations for the 

coefficient values without finding the positive roots of the associated polynomial 

equation.  The method of solution and the locations of the roots are the same as in the 

case where 1=M  and a detailed discussion of the process here can be found in 

Appendix 5. 

 

The only other substantial impact on the system that results from the situation when 

1≠M  is that this influences the equation representing the boundaries between the 

zones.  As was discussed in Appendix 4, the boundary between Zones 1 and 2 and 

between Zones 4 and 5 occurs when 11 =k .  In the case where 1≠M , this boundary 

is now positioned such that 11 =κM .  Using the same procedure as was outlined in 

Appendix 4, an equation can be derived for the stability boundary under these 

circumstances.   

 

This procedure starts with an expansion of the exponential part of equation A6.3 

using the standard series for xe .  Using this expansion, the exponential part of 

equation A6.3 takes the form of equation A6.18 
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Further expanding equation A6.3 using the exponential expansion and some simple 

algebra gives an expression for the entire equation. 
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At the boundary, denoted βN  in this case, 11 =κM  and 
M
1

1 =κ , so this expression 

becomes equation A6.19. 
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It has already been demonstrated that 22 κ=k  so equation A6.19 represents the same 

stability boundary as was derived in Appendix 4. 
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Figure 1.  A Simple Feedback Loop 
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Figure 2.  A Simple Decision Process for Share Buying 
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Figure 3.  A Closed Feedback Loop for Share Buying 
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Figure 4.  Regions of Stable and Unstable Behaviour 
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Figure 5.  Behaviour of the series tN over time 
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Figure A2.1.  An exponential growth curve representing the solution to a first order 

differential equation 
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Figure A2.2.  Changing the origin of an exponential growth curve 
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Figure A3.1.  Behaviour of tN  in Zone 1 
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Figure A3.2.  Behaviour of tN  in Zone 2 
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Figure A3.3.  Behaviour of tN  in Zone 3 
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Figure A3.4.  Behaviour of tN  in Zone 4 
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Figure A3.5.  Behaviour of tN  in Zone 5 
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Figure A3.6.  Behaviour of tN  in Zone 6 

 

 

 
tN  

t

0N  

∞+



 62

Figure A5.1.  Points in the Series tN  used in the Calculation of 1k  and 2k . 
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Figure A5.2.  Function ( )xfy 1=  
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Figure A5.3.  Function ( )xfy 2=  
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Figure A5.4.  Functions ( )xfy 1=  and ( )xfy 2=  presented together 
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Figure A5.5.  Case 1.  Gradient of ( )xfy 1=  is greater than the gradient of ( )xfy 2=  
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Figure A5.6.  Case 2.  Gradient of ( )xfy 1=  is less than the gradient of ( )xfy 2=  
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