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Abstract
In this paper we show the effects that outliers have on estimation and inference
for ARCH models. We propose for a wide class of ARCH models, an empirically
tractable solution to this problem by replacing outliers with their conditional expec-
tations (optimal forecasts) in the likelihood function. This solution works well in
both simulations and applications. We demonstrate the accuracy of the procedure
for parameter estimation, forecasting, and asset pricing. The empirical examples
include U.S. interest rate, foreign exchange rate, and stock index data. In addition,

we offer a robust bootstrap test for outliers.
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1 Introduction

The Autoregressive Conditional Heteroskedasticity (ARCH) class of models, introduced
by Engle (1982), has become a core part of empirical finance. Indeed, complete citations
of ARCH are too numerous to list (see Bollerslev et. al. (1992) for an excellent review).
These parsimonious models have been successful in capturing the volatility clustering so
prevalent in financial data. Periods of high (low) volatility are autocorrelated and a variety
of ARCH models have been developed and refined to account for some novel peculiarities
in this persistence.

Despite the fact that periods of high volatility are serially correlated, there are occa-
sions in which a singularly high or low observation for a series occurs, e.g. a financial
crash, a merger announcement and so on, which does not appear to be part of the ‘normal’
data generating process (DGP). In most cases, there are too few of these outliers to model
the process, and so outliers of this sort can not be predicted. To motivate what we have in
mind, we consider three prominent examples in the ARCH literature: Andersen and Lund
(1997) who model the U.S. risk-free short-term interest rate; Glosten, Jagannathan and
Runkle (1993) who model the U.S. risk premium; and West and Cho (1995) who model a
number of foreign exchange rates. All three of these papers estimate ARCH models over
the entire sample, without any consideration for possible outliers. We focus on these for
illustrative purposes only, since most papers also neglect outliers.

Andersen and Lund (1997) estimate a Gaussian Level-EGARCH model for the U.S.
risk-free short-term interest rate. However, from Figure 1, a large outlier can easily be
identified corresponding to Black Monday (October 19, 1987). The second example is from

monthly data, January 1952 to December 1998, and is similar to Glosten, Jagannathan



and Runkle (1993). Stock prices are measured by the Standard & Poors 500 Index at
close of the last trading day of each month and the risk premium is defined as the monthly
return on the S & P 500 Index less the monthly return on the T-bill. From Figure 2, we
see two major outliers: the October 1987 Crash and the stock market plunge of August
1998. Our final example uses foreign exchange data from West and Cho (1995) and is one
we study in some detail. Figure 3 shows the weekly percentage change in the level of the
exchange rate ($U.S./$Canadian) from March 7, 1973 to September 20, 1989. While not
perhaps as clear-cut as the first two examples, one can identify at least 4 episodes that
seem to be outliers (December 1976, March 1985, and the fall and rebound at the end of
1988).

In each case, there appears to be large departures from the ‘normal’ process generating
the data and then an apparent return to this process. We would argue that at least at this
frequency of data, the few outlier observations are not connected to the underlying process
governing most of the observations. Even in the case of multiple outliers, there does not
appear to be any obvious way to identify and estimate an outlier process. The concern
is what kind of effects such large outliers have on estimation and inference for ARCH
models obtained from full sample information. In this paper we show quite dramatically
that these outliers are high leverage observations, which result in substantially biased
estimates and biased coverage probabilities for prediction intervals. We quantify the effect
of these biases and propose a relatively simple solution that corrects both estimation and
inference. The idea is to replace outlier observations by their conditional expectations
(optimal forecasts) when building the likelihood function.

We would suggest that ARCH models are not designed to capture the extreme move-

ments such as stock market crashes or foreign-exchange crises. Outliers of this magnitude



in financial data are easily identifiable ex post. The procedure we propose is also ret-
rospective in first identifying outliers then replacing these observations in the likelihood
function with their expected values, conditional on information up to this time period.
While our approach is conditional on first observing the data, the consequences of falsely
identifying an outlier when it is not is in terms of efficiency loss which is negligible given
the rather large sample sizes. However, estimation over the full sample, in the presence of
an outlier, without a corrective method results in biased parameter estimates. For cases in
which the researcher is uncertain, or wishes to test whether a particular observation or set
of observations are outliers, we offer a robust bootstrap test based on the Hausman-Wu
testing principle. Simulation evidence suggests this test has good size properties.

The Monte Carlo experiment we conduct shows there are large biases in the parameter
estimates and prediction intervals when outliers are ignored. Accounting for outliers using
conditional expectations results in estimates and inferences that are almost as precise as
the case in which no outliers are present. We also consider an option pricing example,
which illustrates a rather large potential mis-pricing of an option in circumstances where
outliers are ignored.

Currently there are two procedures for handling outliers in ARCH models proposed
in the literature. Sakata and White (1998) study the effect of outliers for a class of
conditional dispersion models and propose the two-stage Hampel estimators and two-stage
S-estimators which are resistant to the effect of outliers. Franses and Ghijsels (1999) design
an iterative scheme to estimate the outlier effect for the GARCH(1,1) model. Applied
researchers may find the procedure we outline much easier to implement and applicable
to a wider class of ARCH models.

The paper is organized as follows. Section 2 sets up a general ARCH model and



its quasi-maximum likelihood estimation. Section 3 describes our proposed method for
ARCH estimation when outliers are present. Section 4 studies the foreign exchange ex-
ample of West and Cho (1995). Section 5 provides Monte Carlo evidence demonstrating
the effect outliers have on the estimation and inference of ARCH models and the accuracy
of our proposed estimation procedure. Section 6 discusses ARCH option pricing in the

presence of outliers and Section 7 concludes.

2 The ARCH Model in a Simple Outlier Model

We first set up a very general ARCH model which encompasses most empirical specifi-
cations in the financial literature. Let Y; , t = 1,...,00 be a sequence of scalar random
variables, {y; : t =T —n+1,...,T} be a realisation, and @; = (Y_1,Yt—2, - - YT—nt1)
denote the predetermined variables. We assume that y; is governed by some ARCH model
for the entire sample. When an outlier occurs instead of observing v, y; is observed.
The conditional mean (y;) and variance function (€2;) are jointly parameterized by a

finite dimensional vector @ :

{pi(xs,0) : 0 € ©} (1)

{Q4(z,0) : 0 € O} (2)

where © is a compact subset of 1” that has nonempty interior, and u; and €2; are known

continuous functions of x; and @ that are twice continuously differentiable on the interior

of © for all x; .



Further, the first two conditional moments are correctly specified. For some 8, €

int ©
E(yt|wt) = ,U't(mtaoﬂ)
V(yle,) = Q(x,60) , t=1,2,...
with
1
Y = (e, Oo) + Q7 (4, 60) (3)
E(e}|@) =0

E(ef|a) = 1

Finally, the conditional variance satisfies:
0 < Q(xy,0) < oo for all 6 € O.

Under the above conditions for the ARCH model and the technical assumptions in Ap-
pendix A of Bollerslev and Wooldridge (1992) - namely conditions A.1 (iii) - (vi), the
quasi-maximum likelihood estimator is generally consistent for 8,. (See Bollerslev and
Wooldridge (1992).) ? Quasi-maximum likelihood estimation has become the standard

estimation method for ARCH models. 3
ZWeaker conditions are sufficient for the GARCH(1,1) and IGARCH(1,1) models, see Lee and Hansen

(1994) and Lumsdaine (1996).
3 Andersen and Lund (1997) remarks are indicative of current practice; “in light of the quasi-maximum



For observation t, the quasi-conditional log-likelihood (apart from a constant) is

L e — e, 0)Y 5 (1, 0) (s — (1, 0))

1
lt(o;ytawt) = _§l09|Qt(wt: 0)| - 5

The quasi-maximum likelihood estimator 0 is obtained by maximizing the quasi log-

likelihood function

Ly (0) = Zl 1(6) (4)

We postulate a very simple outlier process. Let 7 be the probability of an outlier which
is assumed to be independent of the process generating Y;. This is a key assumption but
seems defensible given the lack of a connection between outliers and the other observations.

Denote y* as the value observed with probability structure:

ohs y; with probability 1 — 7
Yy =

y; with probability

This simple structure says that while the variable y; is always determined by the ARCH
model (3) there are occasions for which we observe a contaminated or outlier value y;

whose magnitude and frequency is determined in some unknown but independent way.

likelihood results of Bollerslev and Wooldridge (1992), we are more comfortable with the inference from the
Gaussian version, although there is clear evidence of heavy tails in the conditional distributions. Indeed,
if the Student —t, assumption is invalid, the maximum likelihood estimator is no longer consistent, while
it retains consistency under the normality assumption, even in case of misspecification of the conditional

density for g;.”



While we could in principle build some time dependence in the outlier process, the em-

pirical evidence suggests that this is unnecessary.

3 Estimation and Testing in the Presence of Outliers

The approach we propose is based on pre-identification of outliers prior to estimation.
The identification of outliers in financial time series is often not difficult and can be done
by simple graphical inspection. Outliers are often the result of an extreme market event
such as a stock market crash and the date of the outlier is common knowledge as in Black
Monday. As our three examples in the introduction show, it is easy to identify the extreme
market events.

Once the outliers are identified, the quasi-maximum likelihood function can be max-
imized, but error terms that are affected by outliers are replaced with their expectation
conditional on information up to the period before the outlier occurred. Thus, if there
is an outlier at time ¢* then up = yp — py (24, 0) is replaced with zero and w? with

Qt* (:I)t*, 9) , since

Eluy

x| =0 (5)

and

] = Qpe (44, 0) (6)

While our approach is conditional on first observing the data and making some deci-

sions about the existence of outliers; it should be kept in mind, the only consequence of



mis-identifying an outlier when it is actually part of the normal DGP, is an efficiency loss.
On the other hand, failure to remove an outlier results in biased parameter estimates.
Finally, one may be tempted to account for outliers by using dummy variables in the
conditional mean, however, this approach leads to inaccurate modeling of the conditional
variance which can result in substantial inaccuracies in forecasting, especially when an
outlier occurrs towards the end of the time series.

We now discuss a robust test for outliers based on a non-parametric bootstrap test
for situations in which one is uncertain as to whether a particular observation or set of
observations is having an influential impact on parameter estimation. The test is similar
to a Hausman and Wu test in which one compares a vector of contrasts (see Davidson
and MacKinnon, (1996)).

Let § and 0 be the parameter estimates obtained from the entire sample and esti-
mates obtained from the sample with suspected influential observations replaced with
optimal forecasts respectively. Let V' (8) be the Bollerslev and Wooldridge (1992) robust
asymptotic variance matrix for 0.

The null hypothesis Hy is that the suspected influential observations are not influential
and the alternative hypothesis H4 is that these observations are influential. The test

statistic is:

7= (0-6)[V(0)](6-96) (7)

To estimate the bootstrap p-value one takes the 0 parameter estimates along with the
estimated standardized empirical residuals. Theses residuals should be rescaled to have

a mean of 0 and and a variance of 1 and should exclude the time periods for which there



are suspected outliers. One then draws B bootstrap samples of which each is used to
compute a bootstrap test statistic 7} in exactly the same way as the real sample was used

to compute 7. The bootstrap p-value is estimated by

where I(.) is the indicator function.

Since we examine the foreign exchange rate example from West and Cho (1995) in
some detail, it is worthwhile at this point to test whether the four outliers are influential.
The test statistic obtained from a standard GARCH(1,1) model is 10.801 with a p-value
of 0.00, from B=4999. Thus it would appear that the four outliers, when not accounted
for, have a significant impact on parameter estimation (as will be evident in Section 4).

Given the apparent overwhelming rejection of the null hypothesis of no influential
observations, a natural question about the bootstrap test is its size properties. Are we
observing a test that over-rejects? To examine this possibility, we conduct a simple Monte
Carlo experiment on test size. Unfortunately, due to the high computational demands of
this experiment, we are limited to the case where the sample size is 350 and we use the
above test for an outlier at observation 200. We do 1000 replications and 399 bootstrap
draws for each replication.

The DGP for this Monte Carlo experiment is also a GARCH(1,1) model:

Y = Uy t:1,2,,350
(GARCH) w?=01+02u},;+0.7w?, ,us=1,wi=1

Up = Wik g; 1.1.d. standardized t5

10



which is fairly representative of many financial time series. In Table 1 the rejection
frequencies for various significance levels are reported. The results are very favourable
for this bootstrap test as the actual rejection frequencies are very close to the nominal

significance levels of the test over conventional significance levels.

Table 1. Rejection Frequencies for the Bootstrap Test with T = 350

Significance Level 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09
Rejection Frequency | 0.013 | 0.022 | 0.033 | 0.041 | 0.054 | 0.064 | 0.069 | 0.079 | 0.090

0.1
0.095

4 QOutliers in Exchange Rate Data

In this section we develop more fully the exchange rate example. Our exchange rate data
($U.S./$Canadian) are Wednesday, New York noon bid rates, as published in the The
Federal Reserve Bulletin. When Wednesday was a holiday we used Thursday data. We
take the logarithmic difference of the exchange rate and then multiply by 100, as in West
and Cho (1995) so that,

e, = 100 % In < $U.S./$Canadian in week t )

$U.S./$Canadian in week t-1

has the interpretation of percentage change in the level of the $U.S./$Canadian. As
defined, we can interpret Figure 3 as the percentage change of the $U.S./$Canadian over
the period from 7 March 1973 to 20 September 1989. The four largest movements in this
time series occurred in December 1976, March 1985, and the fall and rebound at the end of
1988. Following West and Cho (1995), standard quasi-maximum likelihood estimation of

the GARCH(1,1) model, without accounting for outliers, provides the following estimates:

11




€ = U , U = Wiy

w? = 0.0283 + 0.2254u?, + 0.7063w?,
(0.0124) (0.1021) (0.1051)

Robust standard errors, as described in Bollerslev and Wooldridge (1992), are given below
the parameter estimates.
Quasi-maximum likelihood estimation with outliers replaced with conditional expec-

tations yields the following estimates:

w? = 00149 + 0.1324u2, + 0.8183w? ,
(0.0057) (0.0329) (0.0445)

After accounting for outliers, there is a substantial change in all of the parameter esti-
mates and a substantial gain in precision. The constant term and the coefficient on the
lagged squared error term are substantially lower and the coefficient on the variance is
substantially higher. Overall, the estimated persistence in u? increases. When outliers
are accounted for the estimated autocorrelation function rises, with for the first two terms
rising to .960 from .952 and .913 from .887, respectively. The estimated unconditional
variance falls from 0.4136 when outliers are not accounted for to 0.3029 when outliers
are accounted for. The magnitude of the outliers, relative to the estimated unconditional
standard deviation (@ = 0.5504) can be seen in Table 2. These relative magnitudes will

guide the calibration of our Monte Carlo experiment in the following section.
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Table 2. Scale of Outliers for $U.S/$C West and Cho (1995) Data Set

week end  value %
01-12-76  -4.155 7.55
27-02-85 -2.195 3.99
02-11-88 -2.300 4.18
23-11-88  2.551  4.63

5 Some Monte Carlo Evidence

Monte Carlo experiments were conducted to analyse the effect of outliers on standard

ARCH estimation and the accuracy of our proposed estimation procedure.*

Two main DGPs were used:

Model 1. yt:ut-i-?,bft t= 1,2,. T

(GARCH) w?=0.1+02u?;4+0.7w?, ,ud=1,wi=1

ey

Up = W€y ¢; i.i.d. standardized t5

Model 2. yt:O.5wt+ut+1bIt t:1,2,...,T
(GARCH-M) w? =0.140.2u_; +0.7w}, ,ui=1,wi=1

U = W€y g; 1.1.d. standardized t5

“The experiments were performed using Ox version 2.20 and the simulation code is available upon

request.
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For both models:

1 with probability

e

Iy =4 —1 with probability

SIE]

0 otherwise

We do experiments with sample sizes of 500 and 1000 which are quite typical of
empirical finance applications. In each case we do not allow any outliers in the first 100
observations. We look at three cases: Case “No Outlier” is where we generate an ARCH
process with ¢y = 0 and do standard full-sample quasi-maximum likelihood estimation.
Case “Outliers” is where we take the same ARCH process but v is a positive number
and we do standard quasi-maximum likelihood estimation. Case “Optimal Forecasts” is
the same DGP as Case “Outliers” but we do quasi-maximum likelihood estimation with
outliers replaced with a conditional expectation. The values of ¢ (calibrated from Table
2) are 5, 7.5 and 10 and are also realistic values associated with other financial time series.
For these values of v, visual inspection would easily identify the outlier and so we treat
the timing of the outlier observation as known for estimation. The values of ™ we use are
555> 105 and 555 Which again are realistic values associated with real financial time series.

We do 4000 replications, but discard replications in which we do not get convergence
for parameter estimates for all cases. We report the percentage of successful replications
out of 4000 (denoted by ¢%). For each set of successful replications, we record the mean,
standard deviation and root mean squared error of each parameter estimator for each
case.

We also report summary statistics on the coverage of the Gaussian 80% and 95%

one step ahead prediction intervals (labelled PI). This is done by generating R = 4000
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true future values for each replication. These future values do not contain any outliers.

The Gaussian prediction interval is calculated (L,U) for each case and the coverage is

#{L<y}, <U}

measured by =

, where y7.., (r = 1,..., R) are the true future values. The
mean, standard deviation and root mean squared error of the estimated coverage for each
case, over the number of successful replications, is reported. The complete set of results
for these experiments are displayed in Tables 4 to 11 in Appendix B.

The results for the GARCH(1,1) and GARCH(1,1)-M models are similar, as is going
from a sample size of 500 to 1000. Four outliers occurring in a sample size of 1000 can
lead the 80% and 95% prediction interval to give a coverage of close to 90% and 97%
respectively. The mean, standard deviation and root mean squared errors for parameter
estimates and prediction intervals are almost the same for the case where there are no
outliers present and the case where one uses optimal forecasts in the log likelihood to
correct for outliers. However, when outliers are not accounted for, the accuracy of the
estimates can drop dramatically. The mean estimate on the constant in the skedastic
function can triple. The coefficient on the lagged variance falls, whereas the coefficient on
the squared residual can increase when there are outliers of large magnitude. Asin the case
of the exchange rate example, the two effects do not offset, leading to an underestimate of
the persistence of volatility. In addition, there is a large increase in the standard deviation
and root mean squared error of the estimates for the case where outliers are not accounted
for. For the GARCH-M model, the estimated coefficient on w; in the conditional mean
decreases when outliers are present and ignored. The decrease is larger when there are
larger outliers occurring at higher frequency. One of the consequences of this downward
bias in the estimated ARCH-M coefficient from outliers that are ignored is that applied

researchers may mistakenly exclude this term when specifying the conditional mean. As
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an illustration of this, we did a simple Monte Carlo experiment with Model 2 with the
coefficient on the ARCH-M term (¢) equal to 0.2, v = 10, 7 = ﬁ and T = 1000. We
obtained the estimated ¢’s for the case with outliers ignored and accounted for by the
optimal predictor. The estimated densities are in Figure 4 which shows that there is a
substantial tail of this distribution for the outliers ignored case near zero. This is not true
for the optimal predictor.

Finally, in terms of actual convergence for the computational algorithm, we note the
convergence percentage (c%) drops as the magnitude of the outlier and the frequency
of the outlier increase. For a relatively small outlier occurring at low frequency, we get
convergence on almost every replication. The fact that outliers can affect the convergence
of the estimation algorithm is yet another reason why they should not be ignored.

Our Monte Carlo work demonstrates the significant effect outliers can have on ARCH
estimation and inference. Ignoring outliers when they are present results in substantial
parameter bias and distorted prediction intervals. The proposed solution of replacing
outliers in the log likelihood function with their optimal forecast is very accurate, almost
as accurate as the case where there are no outliers present. We would recommend that

when in doubt over the influence of a few observations, it is safer to treat them as outliers

and use the optimal forecast procedure.
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6 ARCH Option Pricing in the Presence of Outliers

ARCH option pricing has become an important area of research in recent years. The
majority of applications are based on simulation methods where an estimated ARCH
process is simulated over the life of the option. Bollerslev and Mikkelsen (1996) find
results that suggest that correctly modeling the volatility process of the underlying asset
may be as important as the choice of approximate option valuation method when pricing
long maturity contracts. It is also well known that deep-out-of-the-money long maturity
options can be quite sensitive to the underlying volatility. Thus ignoring outliers in ARCH
option pricing may have serious consequences for pricing. We demonstrate this with an
empirical foreign exchange rate option pricing example.

A popular ARCH option pricing method follows Hull and White (1987), and is im-
plemented in Noh, Engle and Kane (1994), Bollerslev and Mikkelsen (1996) and Engle,
Kane and Noh (1997). This is the approach we follow in this example. The European

call Ci4yr and put P, , currency options 7 periods ahead are valued as follows:

1 N

Crpyr = N Z BS]C(St, K, 0]2,7) (8)
j=1
1 N

-Pt,t—I—T = NZBSJP(St’K’ O';-,T) (9)
j=1

where BS;(.) represents the usual Black-Scholes option price formula which is:

BS{, . =S 0(dy) — Ke " ®(dy) (10)

17



BS[, . = Ke " ®(—dy) — S;e”"®(—d,) (11)

and

dy = ln(St/K) + (’f' —Tf +O’2/2)T

aT

dgzdl—O"T

Citr, Prtir are the Hull-White BS call and put option price forecasts at time ¢ until the
maturity date, S; is the spot exchange rate (the value of one unit of the foreign currency in
domestic currency), K is the exercise price, r is the home risk-free rate at time t, r is the
foreign risk-free rate at time t, 7 is the time to the maturity date, o7 = (1/7) i, 07, is
the volatility prediction at time ¢ until the maturity date, which is generated by sampling
randomly from the in-sample standardized residuals, for the particular ARCH model. ®
is the cumulative probability distribution function for a standard normal variable. N is
the number of replications.

To produce an ARCH option price that is not affected by outliers, one replaces sus-
pected outliers with their optimal forecasts and estimates the ARCH model, which is
then used to generate the volatility prediction using the standardized empirical residuals,
rescaled to have a mean of 0 and a variance of 1 and excluding time periods for which
there are suspected outliers.

We applied these two procedures to price options on $U.S/$C using the West and Cho

(1995) data set with the four outliers. We use the GARCH parameter estimates that

18



were obtained in section 4. At the 20th of September 1989 our proxy for the US risk-free
rate was .0773 and our proxy for the Canadian risk-free rate was .122. At this date the
spot exchange rate was 0.845. Our time to maturity for our options are nine months, i.e.
7 = 39. All our option prices are based on N = 1000 replications. The superscript OC

denotes outlier corrected.

Table 3. GARCH Simulated Nine Month Call and Put Option Prices

Sﬁt 0.75 0.83 0.91 1 1.09 1.17 1.25

K 0.634 | 0.702 | 0.769 | 0.845 | 0.922 | 0.989 | 1.057
Ciiy39 | 0.1837 | 0.1324 | 0.0910 | 0.0565 | 0.0336 | 0.0212 | 0.0134
Citise | 0.1794 | 0.1259 | 0.0828 | 0.0476 | 0.0254 | 0.0142 | 0.0078

gt%fz 1.0243 | 1.0518 | 1.0988 | 1.1850 | 1.3203 | 1.4907 | 1.7298
tt+

Py ii39 | 0.0105 | 0.0233 | 0.0452 | 0.0823 | 0.1321 | 0.1829 | 0.2394
Pyt 39 | 0.0061 | 0.0168 | 0.0370 | 0.0735 | 0.1240 | 0.1760 | 0.2337

% 1.7090 | 1.3876 | 1.2211 | 1.1199 | 1.0657 | 1.0396 | 1.0243
t,t4+39

Table 3 demonstrates that we can get substantially different option prices when outliers
are present and not accounted for, compared to when they are accounted for. For an at-
the-money® nine month call option, the price increased by 18.5% (%ﬁ = 1.1850) when
the outliers were not accounted for. For an out-of-the-money® nine month call option there

is a 73% increase in the price due to outliers. We also see that outliers having a large

impact on the pricing of at-the-money and out-of-the-money nine month put options.

5An option is at-the-money when the exercise price is equal to the spot rate.
6 A call option is out-of-the-money when the exercise price is greater than the spot rate, whereas a put

option is out-of-the-money when the exercise price is less than the spot rate.
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7 Concluding Remarks

Ignoring outliers in ARCH estimation leads to biased parameter estimates and unreliable
forecasts. Our solution of replacing outliers in the ARCH likelihood function with condi-
tional expectations (optimal forecasts) leads to accurate estimation and inference. This
solution is straightforward to implement, computationally fast, and applicable to a wide

class of ARCH models.
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Appendix A

Differenced Weekly U.S. T-Bill Rates, three—-month maturity, Jan. 1983 to Oct. 1999
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Differenced Logged Exchange Rate (*100)

Differenced Weekly Logged Spot Rate, U.S. $/ Canadian $ , Mar. 1973 to Sep. 1989
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Appendix B

Table 4.

Estimates for Model 1 (GARCH(1,1)) with T = 500

Case No Outlier (3 = 0) Outliers Optimal Forecasts |
() 7 True | Mean SD RMSE | Mean SD RMSE | Mean SD RMSE
) ﬁ oy 0.1 | 0123 0.072 0.075 | 0.156 0.113 0.126 | 0.123 0.072 0.076
o; 0.2 |0.211 0.154 0.155 | 0.210 0.167 0.167 | 0.210 0.154 0.154
as 0.7 | 0.664 0.127 0.132 | 0.644 0.163 0.172 | 0.663 0.128 0.133
PI 0.80 | 0.837 0.032 0.048 | 0.847 0.039 0.061 | 0.837 0.032 0.048
PI 095 |0.945 0.016 0.017 | 0.949 0.019 0.019 | 0.944 0.016 0.017
) ﬁ oy 0.1 |0.123 0.071 0.075 | 0.186 0.142 0.166 | 0.123 0.072 0.075
a; 0.2 | 0.211 0.155 0.155 | 0.207 0.175 0.175 | 0.210 0.154 0.154
o 0.7 | 0.665 0.126 0.131 | 0.629 0.187 0.200 | 0.664 0.127 0.132
PI 080 | 0.837 0.031 0.049 | 0.857 0.044 0.072 | 0.836 0.032 0.048
PI 095 |0.945 0.016 0.017 | 0.953 0.021 0.021 | 0.944 0.016 0.017
7.5 ﬁ o 0.1 |0.123 0.071 0.075 | 0.192 0.171 0.194 | 0.123 0.072 0.075
a; 0.2 |0.212 0.155 0.156 | 0.226 0.148 0.151 | 0.211 0.155 0.155
oy 0.7 | 0.664 0.126 0.131 | 0.619 0.201 0.217 | 0.663 0.127 0.133
PI 0.80 | 0.837 0.031 0.049 | 0.856 0.046 0.072 | 0.837 0.032 0.049
PI 095 |0.945 0.016 0.017 | 0.953 0.022 0.022 | 0.945 0.016 0.017
7.5 ﬁ o 0.1 | 0123 0.072 0.075 | 0.253 0.233 0.279 | 0.123 0.072 0.076
;0.2 |0.212 0.156 0.157 | 0.232 0.184 0.186 | 0.212 0.156 0.156
o 0.7 | 0.664 0.127 0.132 | 0.593 0.240 0.263 | 0.663 0.128 0.133
PI 0.80 | 0.837 0.031 0.049 | 0.873 0.051 0.090 | 0.837 0.032 0.049
PI 095 |0.945 0.016 0.017 | 0.960 0.023 0.025 | 0.945 0.016 0.017
10 ﬁ oy 0.1 |0.123 0.071 0.075 | 0.217 0.222 0.251 | 0.123 0.072 0.075
o 0.2 |0.213 0.157 0.158 | 0.261 0.220 0.228 | 0.213 0.157 0.157
as 0.7 | 0.664 0.126 0.131 | 0.606 0.228 0.247 | 0.663 0.127 0.132
PI 0.80 | 0.837 0.032 0.049 | 0.864 0.051 0.082 | 0.837 0.032 0.049
PI 0.95 | 0.945 0.016 0.017 | 0.956 0.023 0.024 | 0.945 0.016 0.017
10 ﬁ o 0.1 0122 0.071 0.075 | 0.299 0.320 0.377 | 0.122 0.072 0.075
o 0.2 |0.214 0.161 0.162 | 0.291 0.301 0.315 | 0.213 0.161 0.161
o 0.7 | 0.665 0.126 0.131 | 0.581 0.272 0.297 | 0.664 0.127 0.132
PI 0.80 | 0.838 0.032 0.049 | 0.887 0.057 0.104 | 0.837 0.032 0.049
PI 095 |0.945 0.016 0.017 | 0.965 0.025 0.029 | 0.945 0.016 0.017
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Table 5. Estimates for Model 1 (GARCH(1,1)) with T = 1000

Case No Outlier (3 = 0) Outliers Optimal Forecasts |
P T True | Mean SD RMSE | Mean SD RMSE | Mean SD RMSE
) ﬁ oy 0.1 | 0112 0.048 0.050 | 0.144 0.077 0.088 | 0.111 0.048 0.050
a; 0.2 10203 0.065 0.065 | 0.200 0.076 0.076 | 0.203 0.065 0.065
as 0.7 | 0.682 0.087 0.088 | 0.664 0.116 0.121 | 0.682 0.087 0.089
PI 0.80 | 0.838 0.024 0.045 | 0.851 0.032 0.060 | 0.838 0.024 0.045
PI 0.95 | 0946 0.012 0.013 | 0.951 0.015 0.015 | 0.945 0.012 0.013
) ﬁ oy 0.1 | 0112 0.048 0.050 | 0.176 0.104 0.129 | 0.111 0.048 0.050
o 0.2 |0.203 0.065 0.065 | 0.194 0.086 0.086 | 0.202 0.065 0.065
o 0.7 | 0.682 0.087 0.088 | 0.651 0.139 0.147 | 0.682 0.087 0.089
PI 0.80 | 0.838 0.024 0.045 | 0.862 0.038 0.073 | 0.837 0.024 0.044
PI 095 |0.946 0.012 0.013 | 0.956 0.017 0.018 | 0.945 0.012 0.013
7.5 ﬁ oy 0.1 | 0.112 0.048 0.050 | 0.193 0.143 0.171 | 0.111 0.048 0.049
a; 0.2 10204 0.065 0.065 | 0.215 0.107 0.108 | 0.203 0.065 0.065
as 0.7 | 0.682 0.086 0.088 | 0.627 0.168 0.183 | 0.682 0.086 0.088
PI 0.80 | 0.838 0.024 0.045 | 0.863 0.040 0.074 | 0.838 0.024 0.045
PI 0.95 | 0.946 0.012 0.013 | 0.956 0.019 0.020 | 0.945 0.012 0.013
7.5 ﬁ oy 0.1 | 0.111 0.048 0.049 | 0.267 0.206 0.265 | 0.111 0.048 0.049
o 0.2 |0.204 0.065 0.065 | 0.214 0.138 0.139 | 0.203 0.065 0.065
ar 0.7 | 0.683 0.086 0.088 | 0.600 0.213 0.236 | 0.682 0.087 0.088
PI 0.80 | 0.838 0.023 0.045 | 0.882 0.045 0.094 | 0.838 0.024 0.045
PI 095 |0.946 0.012 0.012 | 0.964 0.020 0.024 | 0.945 0.012 0.013
10 ﬁ oy 0.1 | 0.112 0.048 0.050 | 0.169 0.133 0.150 | 0.112 0.048 0.050
a; 0.2 |0.204 0.065 0.0656 | 0.226 0.120 0.123 | 0.203 0.065 0.065
oy 0.7 | 0.683 0.086 0.088 | 0.639 0.160 0.171 | 0.682 0.086 0.088
PI 0.80 | 0.838 0.024 0.045 | 0.856 0.038 0.068 | 0.838 0.024 0.045
PI 095 |0.946 0.012 0.013 | 0.953 0.018 0.018 | 0.946 0.012 0.013
10 ﬁ oy 0.1 | 0.111 0.047 0.049 | 0.245 0.209 0.254 | 0.111 0.047 0.049
o 0.2 |0.204 0.065 0.065 | 0.242 0.161 0.166 | 0.204 0.065 0.065
as 0.7 | 0.683 0.086 0.087 | 0.598 0.209 0.232 | 0.683 0.086 0.088
PI 0.80 | 0.838 0.024 0.045 | 0.874 0.047 0.088 | 0.838 0.024 0.045
PI 0.95 | 0.946 0.012 0.012 | 0.960 0.022 0.024 | 0.946 0.012 0.013
10 ﬁ oy 0.1 | 0.111 0.048 0.049 | 0.359 0.319 0.410 | 0.111 0.048 0.049
a; 0.2 |0.206 0.065 0.0656 | 0.251 0.223 0.229 | 0.205 0.065 0.065
as 0.7 | 0.682 0.085 0.087 | 0.571 0.263 0.293 | 0.682 0.086 0.088
PI 080 | 0.839 0.024 0.045 | 0.901 0.051 0.113 | 0.838 0.024 0.045
PI 095 |0.946 0.012 0.012 | 0.971 0.022 0.030 | 0.946 0.012 0.013
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Table 6. Estimates for Model 2 (GARCH(1,1)-M) with T = 500

Case No Outlier (3 = 0) Outliers Optimal Forecasts |
P T True | Mean SD RMSE | Mean SD RMSE | Mean SD RMSE
) ﬁ ¢ 0.5 | 0507 0.053 0.054 | 0.489 0.056 0.058 | 0.507 0.053 0.054
o 0.1 | 0119 0.064 0.067 | 0.150 0.100 0.112 | 0.119 0.064 0.067
o; 0.2 | 0.208 0.087 0.088 | 0.208 0.100 0.100 | 0.208 0.087 0.087
oy 0.7 | 0.669 0.113 0.117 | 0.650 0.145 0.153 | 0.669 0.114 0.118
PI 0.80 | 0.828 0.044 0.052 | 0.839 0.050 0.064 | 0.828 0.044 0.052
PI 095 | 0941 0.026 0.028 | 0.946 0.028 0.028 | 0.941 0.027 0.028
) ﬁ ¢ 0.5 | 0506 0.053 0.053 | 0473 0.068 0.064 | 0.508 0.053 0.054
o 0.1 | 0119 0.064 0.066 | 0.179 0.126 0.149 | 0.119 0.064 0.067
o; 0.2 |0.209 0.087 0.088 | 0.206 0.111 0.111 | 0.208 0.087 0.087
oy 0.7 | 0.669 0.112 0.116 | 0.637 0.167 0.178 | 0.669 0.113 0.117
PI 0.80 | 0.828 0.044 0.052 | 0.850 0.053 0.073 | 0.828 0.044 0.052
PI 095 | 0.941 0.026 0.028 | 0.951 0.029 0.029 | 0.941 0.027 0.028
7.5 ﬁ ¢ 0.5 | 0506 0.0563 0.053 | 0.474 0.064 0.069 | 0.507 0.053 0.054
oy 0.1 | 0.119 0.064 0.066 | 0.184 0.155 0.176 | 0.119 0.064 0.067
o; 0.2 | 0.209 0.087 0.087 | 0.225 0.133 0.136 | 0.209 0.087 0.087
o 0.7 | 0.669 0.112 0.116 | 0.626 0.181 0.195 | 0.669 0.113 0.117
PI 0.80 | 0.829 0.044 0.053 | 0.847 0.060 0.076 | 0.828 0.045 0.053
PI 095 |0.942 0.027 0.028 | 0.950 0.033 0.033 | 0.941 0.027 0.028
7.5 ﬁ ¢ 0.5 | 0506 0.053 0.0563 | 0.447 0.068 0.086 | 0.507 0.053 0.054
ap 0.1 | 0.119 0.063 0.066 | 0.241 0.206 0.249 | 0.118 0.063 0.066
o; 0.2 |0.210 0.087 0.088 | 0.233 0.169 0.172 | 0.210 0.087 0.088
a 0.7 | 0.670 0.111 0.115 | 0.601 0.216 0.237 | 0.669 0.112 0.116
PI 0.80 | 0.829 0.045 0.053 | 0.862 0.073 0.096 | 0.828 0.045 0.053
PI 095 | 0.942 0.027 0.028 | 0.957 0.034 0.035 | 0.941 0.027 0.029
10 ﬁ ¢ 0.5 | 0506 0.053 0.064 | 0460 0.076 0.085 | 0.507 0.053 0.054
oy 0.1 | 0119 0.064 0.066 | 0.210 0.202 0.230 | 0.119 0.064 0.067
o; 0.2 | 0211 0.087 0.088 | 0.260 0.201 0.209 | 0.211 0.087 0.088
o 0.7 | 0.669 0.112 0.116 | 0.610 0.209 0.227 | 0.668 0.112 0.117
PI 0.80 | 0.829 0.044 0.053 | 0.851 0.077 0.092 | 0.829 0.044 0.053
PI 095 | 0.942 0.027 0.028 | 0.952 0.042 0.042 | 0.941 0.027 0.028
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Table 7. Estimates for Model 2 (GARCH(1,1)-M) with T = 1000

Case No Outlier (3 = 0) Outliers Optimal Forecasts |
P T True | Mean SD RMSE | Mean SD RMSE | Mean SD RMSE
) ﬁ ¢ 0.5 | 0504 0.038 0.038 | 0.483 0.040 0.043 | 0.505 0.038 0.038
oy 0.1 | 0.110 0.043 0.044 | 0.141 0.069 0.080 | 0.109 0.043 0.044
o 0.2 |0.203 0.058 0.058 | 0.200 0.068 0.068 | 0.202 0.058 0.058
oy 0.7 | 0.685 0.076 0.078 | 0.668 0.102 0.107 | 0.685 0.077 0.078
PI 0.80 | 0.830 0.039 0.049 | 0.843 0.041 0.060 | 0.829 0.039 0.049
PI 095 |0.942 0.020 0.021 | 0.949 0.019 0.019 | 0.942 0.020 0.021
) ﬁ ¢ 0.5 | 0504 0.038 0.038 | 0.465 0.041 0.054 | 0.505 0.038 0.038
o 0.1 | 0.110 0.043 0.044 | 0.171 0.093 0.117 | 0.109 0.043 0.044
o 0.2 | 0.203 0.068 0.058 | 0.194 0.077 0.078 | 0.202 0.058 0.058
ay 0.7 [ 0.68 0.076 0.077 | 0.656 0.124 0.132 | 0.685 0.077 0.079
PI 0.80 | 0.830 0.039 0.049 | 0.855 0.045 0.071 | 0.829 0.039 0.048
PI 095 | 0.942 0.020 0.021 | 0.954 0.020 0.021 | 0.942 0.020 0.021
7.5 ﬁ ¢ 0.5 | 0504 0.038 0.038 | 0.463 0.046 0.059 | 0.505 0.038 0.038
oy 0.1 | 0.110 0.042 0.044 | 0.187 0.126 0.153 | 0.109 0.042 0.044
o; 0.2 | 0.203 0.068 0.058 | 0.214 0.096 0.097 | 0.203 0.058 0.058
oy 0.7 | 0.685 0.076 0.077 | 0.633 0.150 0.164 | 0.685 0.076 0.077
PI 0.80 | 0.830 0.039 0.049 | 0.854 0.0539 0.080 | 0.829 0.039 0.049
PI 0.95 | 0.942 0.020 0.021 | 0.954 0.023 0.024 | 0.942 0.020 0.021
7.5 ﬁ ¢ 0.5 | 0504 0.038 0.038 | 0.431 0.049 0.085 | 0.505 0.038 0.038
oy 0.1 | 0.109 0.042 0.043 | 0.263 0.192 0.252 | 0.109 0.043 0.044
a; 0.2 | 0.203 0.068 0.058 | 0.214 0.122 0.123 | 0.203 0.058 0.058
o 0.7 [ 0.68 0.075 0.077 | 0.602 0.195 0.218 | 0.685 0.077 0.078
PI 0.80 | 0.830 0.039 0.049 | 0.873 0.067 0.099 | 0.829 0.039 0.049
PI 0.95 | 0.943 0.020 0.021 | 0.962 0.030 0.033 | 0.942 0.020 0.022
10 ﬁ ¢ 0.5 | 0504 0.038 0.038 | 0.442 0.056 0.081 | 0.504 0.038 0.038
oy 0.1 | 0.109 0.042 0.043 | 0.244 0.195 0.242 | 0.109 0.042 0.043
o 0.2 |0.204 0.068 0.059 | 0.243 0.144 0.151 | 0.204 0.058 0.058
as 0.7 | 0.685 0.076 0.077 | 0.597 0.196 0.221 | 0.685 0.076 0.077
PI 0.80 | 0.830 0.038 0.048 | 0.863 0.078 0.100 | 0.830 0.038 0.048
PI 095 | 0.943 0.018 0.020 | 0.957 0.044 0.045 | 0.942 0.018 0.020
10 ﬁ ¢ 0.5 | 0503 0.038 0.038 | 0.399 0.059 0.117 | 0.504 0.038 0.038
ap 0.1 | 0.109 0.042 0.043 | 0.345 0.282 0.373 | 0.109 0.042 0.043
o 0.2 | 0.206 0.068 0.059 | 0.250 0.198 0.204 | 0.205 0.058 0.058
oy 0.7 | 0.685 0.075 0.077 | 0.577 0.243 0.272 | 0.685 0.076 0.077
PI 0.80 | 0.830 0.038 0.049 | 0.888 0.086 0.123 | 0.829 0.038 0.048
PI 095 |0.943 0.018 0.020 | 0.967 0.043 0.047 | 0.942 0.019 0.020
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Table 8. Convergence % for the GARCH(1,1) with T = 500

Y 5 ) 7.5 7.5 10 10
1 1 1 1 1 1

m 400 200 400 200 400 200

% | 99.1% | 98.4% | 96.6% | 93.7% | 92.9% | 86.7%

Table 9. Convergence % for the GARCH(1,1) with T = 1000

Y ) ) 7.5 7.5 10 10 10
1 1 1 1 1 1 1

7T 400 200 400 200 900 400 200

% | 99.9% | 99.8% | 99.0% | 97.4% | 98.8% | 96.3% | 90.8%

Table 10. Convergence % for the GARCH(1,1)-M with T = 500
(% 3 3 7.5 7.5 10

L L L L L
400 200 400 200 400

T
c% | 99.5% | 98.5% | 96.8% | 93.2% | 92.5%

Table 11. Convergence % for the GARCH(1,1)-M with T = 1000

(% ) 5 7.5 7.5 10 10

T 1 L L 1 1 L
400 200 400 200 400 200

% | 99.9% | 99.8% | 99.3% | 97.4% | 96.6% | 90.6%
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