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We represent credit spreads across ratings as a function of common unobservable factors of the mean-

reverting normal (Vasicek) form. Using a state-space approach we estimate the factors, their process pa-

rameters, and the exposure of each observed credit spread series to each factor. We find that most of the 

systematic variation across credit spreads is captured by three factors. The factors are closely related to the 

implied volatility index (VIX), the long bond rate, and S&P500 returns, supporting the predictions of struc-

tural models of default at an aggregate level. By making no prior assumption about the determinants of 

yield spread dynamics, our study provides an original and independent test of theory. The results also con-

tribute to the current debate about the role of liquidity in corporate yield spreads. While recent empirical 

literature shows that the level and time-variation in corporate yield spreads is driven primarily by a system-

atic liquidity risk factor, we find that the three most important drivers of yield spread levels relate to mac-

roeconomic variables. This suggests that liquidity risk is largely driven by the same factors as default risk. 
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1. INTRODUCTION 

The theoretical link between credit spreads and market variables is established by structural models of 

default. Models such as Merton (1974) and Longstaff and Schwartz (1995) are based on the economic 

definition of default as the event where a firm's value falls below the face value of its outstanding debt. 

The unobservable value of the firm is assumed to follow Brownian motion under the assumption of risk-

neutrality, allowing the calculation of default probabilities and an endogenous recovery rate. Credit 
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spreads are attributed entirely to the risk-neutral expected default loss, which is positively related to firm 

leverage and volatility in the firm value. An increase in the firm value through positive equity perform-

ance has the effect of reducing leverage and credit spreads. Under the assumption of risk-neutrality the 

firm value process has a drift rate equal to the risk-free rate. The models predict that an increase in treas-

ury yields increases the drift of the firm value process, leading to lower credit spreads. 

 

In practice, structural models tend to underestimate short-term credit spreads. The use of smooth proc-

esses to represent the firm value may exclude the possibility of default by high grade issuers in the short 

term, which is inconsistent with the observed role of surprise in credit markets. In contrast, reduced-form 

models are flexible enough to empirically fit the term structure of credit spreads, but they do not provide 

an economic interpretation of default. Reduced form models such as Jarrow and Turnbull (1995) and Duf-

fie and Singleton (1999), define exogenous stochastic processes for the arrival time of default and exoge-

nous recovery rates. An additional class of models combines the advantages of both structural and re-

duced-form approaches by incorporating exogenous effects such as jump-diffusions (Zhou, 1997) in the 

firm value process to allow for surprise default. An empirical overview of structural models by Eom, 

Helwege and Huang (2004) reveals that existing models cannot simultaneously fit both high-grade and 

low-grade bond spreads. They conclude that more accurate models would need to correct the common 

tendency to overstate the credit spreads of firms with high leverage or volatility while at the same time 

understating the spreads of high-grade bonds. 

 

To the extent that credit spreads reflect expectations on future default and recovery, we would expect ag-

gregate credit spread indices to vary with macroeconomic variables such as interest rates, stock market 

returns and market volatility. In general, low-grade bond spreads are observed to be closely related to eq-

uity market factors (Huang and Kong, 2003) while high-grade bonds are more responsive to treasury 

yields. Kwan (1996) finds that individual firm yield spread changes are negatively related to both con-

temporaneous and lagged equity returns of the same firm. On the other hand, lagged yield spread changes 
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do not help explain current equity returns. Campbell and Taksler (2003) show credit spreads to be posi-

tively related to the market average of firm-level equity return volatility, and the increase in market and 

firm volatility documented by Campbell et al. (2001) is consistent with the steady rise in credit spreads 

throughout the 1990s. 

A negative relationship between investment-grade spreads and treasury yields is estimated by Longstaff 

and Schwartz (1995), while Duffee (1998) finds that the negative relationship is strongest for callable 

bonds. Collin-Dufresne et al (2001) show that credit spreads have increasingly negative sensitivities to 

interest rates as ratings decline across both investment and non investment grade bonds. In a study of only 

high-yield bonds, Fridson and Jonsson (1995) find no significant relationship between credit spreads and 

treasury rates, which is more consistent with the idea that low-grade bonds are far more responsive to eq-

uity variables than interest rate variables. While there is strong empirical evidence of a negative relation-

ship between investment-grade spreads and treasury yields, there is no consensus on its economic causes. 

Intuitively, lower yields should lead to narrower yield spreads through lower borrowing costs that in-

crease the probability of survival. However, falling treasury yields, particularly in the shorter maturities, 

also tend to be a feature of recessionary periods when default risk rises and central banks typically lower 

short-term rates. One recent example of this is the sub-prime crisis, beginning in August 2007, during 

which short-term treasury yields declined to historical lows while credit spreads widened to historical 

highs. Duffee (1998) concludes that despite the links of both treasury yields and corporate bond spreads 

to future variations in aggregate output, it is not obvious that these links explain their observed negative 

relationship, or that yield spreads are determined by credit quality. To link credit spreads to interest rates 

and expected aggregate output, the empirical literature has also focused on the slope of the treasury curve, 

defined as the spread between long-term and short-term yields and often used as a barometer of future 

economic conditions. Estrella and Hardouvelis (1991) associate a positive slope of the yield curve with 

future increases in real economic activity, so that an increase (decrease) in the slope of the yield curve 

should indicate a lower (higher) probability of a recession, in turn reflected in lower (higher) credit 

spreads. This idea is supported by the findings of Papageorgiou and Skinner (2006) that investment-grade 
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credit spreads are negatively related to changes in both the level and the slope of the treasury curve. In 

addition they estimate that the negative relationship between credit spreads and the treasury slope is rela-

tively stable over time. 

 

The empirical literature to date supports both the significance and the direction in which structural model 

variables influence credit spreads, however, recent studies demonstrate that these variables alone are not 

sufficient to fully explain either the levels or changes in credit spreads. Collin-Dufresne et al. (2001) re-

gress credit spread changes of individual bonds on the changes in treasury yields, the slope of the yield 

curve, equity index returns, and index volatility, estimating that these variables explain only about 25% of 

the variation in credit spreads. In addition, the slope of the yield curve is not a significant determinant of 

credit spread changes when the other variables are taken into account. Using principal components analy-

sis on the residuals they find that the changes in residuals across individual bonds are dominated by a sin-

gle common systematic component that has no obvious relationship to variables from the interest rate and 

equity markets. Their conclusion is that yield spread changes are only partly accounted for by the eco-

nomic determinants of default risk. 

To estimate how much of the yield spread levels can be accounted for by default risk, Huang and Huang 

(2003) calibrate a diverse set of structural models to actual historical default losses then use them to gen-

erate theoretical values of credit spreads. In each case the model-based spreads are well below the average 

observed spreads, suggesting that default risk accounts for only a small fraction of yield spreads. The pro-

portion explained by default risk is highest for low-rated bonds, and decreases for higher-rated bonds that 

have low historical default losses. The inability of theoretical risk variables to account for most of the lev-

els or changes in yield spreads is sometimes referred to as the ‘credit spread puzzle’. Similar to the prob-

lem of the equity premium puzzle, the expected returns on corporate bonds, like equities, seem well above 

those justified by the risks. The explanation of the credit spread premium puzzle has focused on both the 

presence of additional risks as well as associated risk premiums. Elton, Gruber, et al. (2001) estimate that 

expected loss accounts for less than 25% of the observed corporate bond spreads, with the remainder due 
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to state taxes and factors commonly associated with the equity premium. Similarly, Delianedis and Geske 

(2002) attribute credit spreads to taxes, jumps, liquidity and market risk. Factors associated with the eq-

uity premium include the Fama and French (1996) ‘High-minus-Low’ (HML) factor, found by Huang and 

Kong (2003) to account for a significant component of low-grade credit spread changes. The significance 

of Fama-French factors is also supported by Joutz et al (2001), who conclude that credit spreads are de-

termined by both default risk and systematic market risk. 

 

Structural models contain the assumption that default risk is diversifiable, since yield spreads are assumed 

to reflect only default loss, with no risk premium for either default risk or the risk of market-wide changes 

in spreads. Jarrow et al (2001) show that jumps-to-default in credit spreads cannot be priced if defaults 

across firms are conditionally independent and if there is an infinite number of firms available for diversi-

fication. One explanation for the credit spread puzzle is the potential for firms to default on a wide scale 

not seen historically, a risk that is difficult to eliminate by diversification and is therefore priced by inves-

tors. It is also observed that defaults across firms tend to be correlated and concentrated around recessions 

when investors are most risk averse. Chen (2007) and Chen et al (2008) conclude that in order for struc-

tural models to capture observed spreads it is necessary to incorporate a strongly cyclical market price of 

risk that increases along with default losses during recessions. Another explanation for wide credit 

spreads is that idiosyncratic risk is priced as well as systematic risk. Amato and Remolona (2003) argue 

that due to the highly skewed returns in corporate bonds, full diversification requires larger portfolios than 

typically needed for equities. Given the limited supply of bonds, high transaction costs, and possible con-

straints on portfolio expected losses, full diversification is difficult to achieve, and it is possible that in 

practice portfolio managers require a risk premium associated with individual bond value-at-risk. Recent 

studies confirm the presence of both a firm-specific default risk premium as well as a market risk pre-

mium. Drisesen (2005) distinguishes between the market-wide changes in credit spreads and individual 

credit spread jumps-to-default, finding that both components are priced. Similar results are obtained by 

Gemmill and Keswani (2008), who show that most of the credit spread puzzle can be accounted for by the 
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sum of a systematic risk premium and a larger idiosyncratic risk premium. While supporting these con-

clusions, Collin-Dufresne et al (2003) also suggest that it is not surprise default itself that attracts a sig-

nificant premium, but rather it is the potential for credit events of large individual firms to trigger a flight 

to quality in the treasury market and cause market-wide increases in credit spreads. So even without di-

rectly violating the assumption of conditional independence of defaults across firms, idiosyncratic default 

risk could matter due to its potential to impact market-wide liquidity, which highlights the difficulty of 

separating the role of default and liquidity in driving credit spread levels.  

 

A recent stream of literature focuses on the role of liquidity in explaining both the levels and time-

variation of credit spreads. The idea that liquidity is an important and priced determinant of yield spreads 

is not new, with Fisher’s (1959) hypothesis being that the risk premium of individual bonds consists of 

two main components: a default component and a ‘marketability’ component. The default component is 

in part a function of a firm’s earnings variability and debt ratio, measures that directly correspond to the 

leverage and asset volatility variables in structural models, while the marketability component is a func-

tion of the outstanding issue size. There is no universal proxy for liquidity risk, but measures used in pre-

vious studies include the bid-ask spread, trade frequency, the proportion of zeros in the time-series of a 

bond’s returns, a bond’s age, amount outstanding and term to maturity. Perraudin and Taylor (2003) esti-

mate that liquidity premiums are at least as large as market risk premiums and far larger than expected 

default losses. De Jong and Driessen (2006) estimate the liquidity risk premium on US corporate bonds at 

0.6% for long-maturity investment-grade bonds and 1.5% for speculative-grade bonds. Recent studies 

estimate the non-default component of credit spreads directly by subtracting credit default swap (CDS) 

premiums from corresponding corporate bond yield spreads. Being simply contracts, CDS are regarded as 

more pure reflections of credit risk1. This idea is supported by the findings of Ericsson et al (2005) that 

                                                           
1 CDS are not subject to the same accessibility issues as physical bonds and difficulties in taking a short position. 

The absence of coupons also avoids bond-specific taxation considerations. 
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CDS premiums are driven by the theoretical determinants of credit risk (the risk free rate, leverage and 

volatility), but that in contrast to the results of Collin-Dufresne et al (2001) on corporate bond yield 

spreads, there is only weak evidence of a common residual factor affecting CDS premiums. The CDS-

based non-default component estimated by Longstaff et al (2005) is strongly time-varying and related to 

both bond-specific and market-wide measures of illiquidity. There is a strong cross-sectional relationship 

between the non-default component and individual measures of liquidity such as the bid-ask spread and 

issue size. The time-series variation of the non-default component is related to macroeconomic or system-

atic measures of liquidity risk such as i) the spread between on-the-run and off-the-run treasury yields, ii) 

flows into money market funds, and iii) level of new issuance into the corporate bond market. The cross-

sectional results of Longstaff et al (2005) are consistent with equity market evidence of Amihud and 

Mendelson (1986) that market-average returns are an increasing function of bid-ask spreads, while the 

time-series results are consistent with the presence of a single common systematic factor found by Collin-

Dufresne et al (2001), as well as evidence of systematic liquidity risks in interest rate markets in Duffie 

and Singleton (1997), Liu et al (2004) and Longstaff (2004). Liquidity risk itself has also been found to 

be a positive function of the volatility of a firm’s assets and its leverage, the same variables that are seen 

as determinants of credit risk (Ericsson and Renault, 2006). 

 
Our aim is to estimate the factors driving the dynamics of yield spread levels directly from the data, with-

out prior assumption about the specific economic variables that yield spreads could be related to. Based 

on existing evidence, we take the view that the time-variation in credit spreads is driven by two classes of 

factors that are non-stationary and mean-reverting, respectively. Our initial guess is that the first group of 

factors is likely to relate to default risk and have low rates of mean-reversion that reflect relatively persis-

tent macroeconomic conditions. The second group could relate to liquidity premiums that are presumed to 

change with noisy short-term supply and demand shocks. Given that credit risk explains a lower propor-

tion of high-grade spreads than low-grade spreads, we would then expect high-grade spreads to have 

stronger mean-reversion that reflects changes in liquidity due to supply/demand. However, from Figure 1 
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it appears that non investment-grade spreads have far more noise than investment-grade spreads, suggest-

ing that the default risk component may be more highly mean-reverting than the remaining component. 

One indication this may be true for corporate yield spreads is the study of swap spreads by Liu et al 

(2006), finding time-varying components relating to both liquidity and default risk, but where the default 

component is highly mean-reverting and with a flat term structure, while the liquidity component is more 

persistent and with a steep upward-sloping term structure. It is worth noting that spikes in the lowest-

grade spread indices resemble the behavior of the VIX index over the same period. These could be inter-

preted as short-term increases in default risk under the frictionless market framework of structural mod-

els, but in practice sharp increases in the VIX are also closely correlated to declines in liquidity. Without 

assumption about the source of variations, we observe that while the two bond classes behave in funda-

mentally different ways during particular sub-periods, they also appear to have different exposures to 

shared common short-term shocks throughout the sample period. 

 

This study assumes that the time-variation in credit spreads across ratings classes is driven by a common 

set of unobservable factors to which each observed spread is exposed with some unknown sensitivity. We 

aim to answer the following questions: 1) how many factors are required to explain the evolution of rat-

ings-based spread indices, 2) what is the exposure of each individual index to each factor, and 3) what 

economic variables, if any, could be proxies for the factors. 

Our choice of the state-space methodology is motivated by its advantage of allowing for both time-series 

and cross-sectional data simultaneously. It also provides a new and opposite approach to the existing lit-

erature on credit spread determinants. Most empirical studies on credit spreads adopt a general-to-specific 

approach where a range of known potential determinants is tested for statistical significance using OLS 

regressions. In contrast, state-space models require only an assumption about the structure of the factors 

that can then be estimated directly from the observed data. Another advantage of state-space models is 

that they can be applied to both stationary and non-stationary variables. OLS estimation on the other hand 

requires that both dependent and independent variables are stationary, forcing most studies to focus on 
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explaining the changes in credit spreads as a function of changes in independent variables. In this study 

we analyze the dynamics of credit spread levels directly. 

 

Given an assumed parametric process form for the latent factors, the Kalman Filter maximum likelihood 

method can be applied to simultaneously estimate 1) the parameters of each factor process, 2) the sensi-

tivities or loadings of each observed series to the individual factors, 3) the realizations of the factor series, 

and 4) the covariance matrix of the model errors. The Vasicek (1977) normal mean-reverting process is 

chosen for the factors since, depending on the size of its mean-reversion coefficient, it is suitable for rep-

resenting both non-stationary (presumed macroeconomic) as well as stationary (presumed microeco-

nomic) determinants of credit spreads. A multi-factor Vasicek form is also supported by the findings of 

Pedrossa and Roll (1998) that Gaussian mixtures can capture the fat-tailed distributions of credit spreads. 

 

Early applications of the state-space model in finance literature have focused on the term structure of 

treasury rates. Babbs and Nowman (1999) find that a three-factor Vasicek model adequately captures 

variations in the shape of the treasury yield curve, with two factors providing most of the explanatory 

power. Chen and Scott (1993) and Geyer and Pichler (1999) reach similar conclusions based on a multi-

factor CIR (1985) model, and find the factors to be closely related to the short rate and the slope of the 

curve. Recent studies build upon the two or three-factor term structure of treasury rates and allow for ad-

ditional factors to explain swap or corporate bond yields. Liu, Longstaff, and Mandell (2006) separate the 

liquidity and credit risk components of swap spreads through a five-factor model of swap yields. Swap 

yields consist of three factors driving treasury yields, one influencing credit risk, and the remaining one 

influencing liquidity risk. Similarly, Feldhutter and Lando (2008) decompose the factors driving the term 

structure of the swap yield spreads into three factors driving the risk-free rate, two affecting credit risk 

and one relating to the liquidity premium or ‘convenience yield’ contained in treasury yields over the risk-

free rates. They find that while credit risk is important, the strongest determinant of swap spreads is the 

convenience yield contained in treasury prices. Jacobs and Li (2008) use the state-space approach to esti-
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mate a reduced-form model of default, where the probability of default is modeled directly as a stochastic 

volatility process. They find that the addition of a second, volatility factor to the level factor in the diffu-

sion of default probabilities leads to significant improvements in both in-sample and out-of-sample fits 

for credit spreads. 

Our work is a natural progression in the application of state-space methodology from treasury yield levels 

to corporate yield spreads. We apply the state space methodology directly to credit spreads to find both 

the number of factors and compare their behavior to well-known macroeconomic variables. This is the 

first work to relate the estimated factors driving corporate yield spreads to variables from both equity and 

interest rate markets. 

 

2. DATA 

All data is from Bloomberg with observations taken at the end of each month Apr-96 to Mar-08. We use 

the 10-year maturity industrial corporate bond yield indices of 14 available ratings: AAA, AA, A1, A2, 

A3, BBB1, BBB2, BBB3, BB1, BB2, BB3, B1, B2, and B3. Bloomberg ratings are composites of S&P 

and Moody’s ratings, with bonds rated BB1 or lower considered sub-investment grade. The yield indices 

are converted into credit spreads by subtracting the 10-year benchmark bond yield from each. Other vari-

ables sourced are the option-implied volatility index of the S&P500 (VIX) and the S&P500 level. 
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3. METHOD 

A. The Multifactor Vasicek Model in State Space Form 

For a given term to maturity, each of n observed credit spread indices by rating },...,,{ 21 ′= ntttt RRRR  is 

expressed as a function of m independent latent factors or states },...,,{ 21 ′= mtttt XXXX  of the Vasicek 

form. Changes in the j-th observed seriesjtR  are a linear combination of the changes in m latent factors 

itX  weighted by factor loadings jmjj aaa ,...,, 21 . Each factor evolves according to its three parameters: 

the long-term mean θ , the speed of mean-reversion κ 2, and the volatilityσ . In continuous time, 

 

∑
=

=
m

i
itjijt dXadR

1

   nj ,...,2,1=   (1) 

 

 ( ) itiitiiit dWdtXdX σθκ +−=  mi ,...,2,1=   (2) 

 

The application of the Kalman Filter algorithm to estimate the factor loadings, the process parameters 

},,{ iii σθκψ =  mi ,...,2,1=  and the realization of the state vector over time },...,,{ 21 TXXXX = , 

requires that the model is expressed in state space form. State space representation consists of the meas-

urement equation and the transition (or state) equation. 

 

ttt ZXDR ε++=     ( )HNt ,0~ε   (3) 

                                                           
2 The mean-reversion parameter κ is directly related to the time taken for the process to reach its long-run meanθ . 

In the absence of random shocks the difference between the current level and the mean decays exponentially to-

wards zero. The expected time it takes for the process to decay halfway towards its mean is its 'half-life’, equal to 

κ/)2ln(  years. 
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  ttt XCX ηψψ +Φ+= −1)()(    ( ))(,0~ ψη QNt  (4) 

 

The measurement equation (3) maps the vector of observed credit spreads )1( ×nRt  to the state vector 

)1( ×mX t  via a ‘measurement matrix’ )( mnZ × and vector )1( ×nD . Unexpected changes and errors in 

the sampling of observed series are allowed through n  jointly normal error terms )1(nxε  that have zero 

conditional means and covariance matrix )( nnH × . Since the computational burden of estimating a full 

error covariance matrix H increases rapidly with additional observed series, most studies assume error 

independence. In state-space models of the treasury curve, (Chen and Scott (1993), Geyer and Pichler 

(1996), and Babbs and Nowman (1999)) a diagonal matrix with elements nhhh ,...,, 21  was used to cap-

ture the effects of differences in bid-ask spreads across n maturities. In this study we choose the same 

form to allow for different bid-ask spreads across n bond quality groups. The state equation (4) represents 

the discrete-time conditional distribution of the states. The terms of the equation follow directly from the 

discrete form of the Vasicek model for interval size t∆ : 

 

( ) titi
tt

itti XeeX ii
,,, 1 ηθ κκ ++−= ∆−∆−

∆+    (5) 

 

  ( )







− ∆− t

i

i
ti

ieN κ

κ
ση 2

2

, 1
2

,0~      (6) 

 

Innovations in the states occur through the normal ‘noise’ vector tη , with covariance matrix Q. It is as-

sumed that the sources of noise in the state and measurement equations are independent. 
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In state-space representations of affine models of the term structure, where the observed series correspond 

to specific maturities, the elements of the measurement matrix Z and the intercept vector D are usually 

closed-form functions of the term to maturity, the parameters of each risk factor, factor correlations, and 

the market risk premium associated with each factor. The difference in this study is that the observed se-

ries represent different ratings for a single maturity, without a prescribed formula linking the observed 

series via factor process parameters. Instead, we estimate the measurement matrix directly by maximum 

likelihood, along with the process parameters. To reduce the number of parameters in the optimizations 

we also make the simplifying assumption of a zero intercept vector D. Based on numerous experiments 

we find no observable impact of this assumption on either the estimated factor realizations or the sensi-

tivities of the observed series. 

 

B. The Kalman Filter 

At each time step t, the filtered estimate tX̂  of the realized state vector consists of a predictive compo-

nent 1|
ˆ

−ttX , based on information to up to and including time t – 1 , and an updating component incorpo-

rating observations at time t. The predictive component of tX̂  is the conditional mean of tX , [ ]tt XE 1− , 

which is the optimal estimator of tX . For Tt ,...,2,1=  

 

111|
ˆ)()(][ˆ

−−− Φ+== ttttt XCXEX ψψ     (7) 

 

The covariance 1| −Σ tt  of the predictive component 1|
ˆ

−ttX  is given by 

 

[ ] Φ′ΦΣ=′−−=Σ −−−−− 11|1|11| )ˆ)(ˆ( tttttttttt XXXXE   (8) 
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[ ] ( ) 111
1|| )ˆ)(ˆ(

−−−
− ′+Σ=′−−=Σ=Σ ZHZXXXXE tttttttttt  (9) 

 

The estimate tX̂  is defined as the sum of 1|
ˆ

−ttX  and an error-correction term tv  weighted by the Kalman 

Gain matrix tK . The higher the terms of the Kalman Gain tK  the more responsivetX̂  is to new data. 

 

  ( )1−Φ+−= ttt XCRv       (10) 

 

tttt vKXX += −1
ˆˆ       (11) 

 

[ ] 1
1|1|

−
−− +′Σ′Σ= HZZZK ttttt      (12) 

 

The recursive equations are started with guesses for the initial state vector 0X  and covariance matrix 0Σ . 

In practice, to ensure that the state vector adapts quickly to the first few observations, the initial state 

noise covariance 0Σ  should be set to an arbitrarily high number so that the Kalman Gain is close to a vec-

tor of ones. With further observations it is expected that the covariance terms and the Kalman gain will 

decrease and stabilize, resulting in a more constant mix of the predictive and error-correcting term in gen-

erating state vector estimates. The number of time-steps required for the Kalman Gain to stabilize is usu-

ally referred to as the 'burn-in' phase. The part of the estimated state vector coinciding with the burn-in 

phase is typically excluded in further analysis. 

 

C. Fitting the Model 

The state parameters ψ , the elements of the measurement matrixZ , and the measurement error covari-

ance matrix H  are estimated by maximizing the log-likelihood function (13) that follows directly from 



 

 15 
 

the prediction error decomposition. Given guesses for ψ , Z , and H , and fixed initialization values 0X , 

and 0Σ , the log-likelihood is 

 

tt

T

t
t

T

t
tT vFvFXHZRRRL 1

1

'

1
0021 2

1
||log

2

1
),,,,;,...,,(log −

==
∑∑ −−=Σψ  (13) 

 

  ( ) 111
1|

111 −−−
−

−−− ′′+Σ−= HZZHZZHHF ttt     (14) 

 

ZHZHF ttttt
11

1|1|
−−

−− ′+Σ⋅Σ⋅=      (15) 

 

In maximizing the log-likelihood function we force all the factor loadings of the first observed credit 

spread series (AAA) to equal 1, so that the first observed series is a non-weighted sum of the latent fac-

tors. We add this assumption as a way of ensuring that loadings and factor realizations are scaled compa-

rably across factors and across models with different numbers of factors. 

 

4. RESULTS 

One, two, and three-factor models are estimated for the period Apr-96 to Mar-03 as well as the full sam-

ple period Apr-96 to Mar-08. We are interested in how model estimates are impacted by the changing 

economic environment. From Apr-96 to Mar-03 lower-grade credit spreads generally increased until 

reaching their peak in Mar-03 (Figure 1). In the period that followed credit spreads generally narrowed 

and remained low until 2007. The full sample period includes three major shocks to liquidity: the LTCM 

crisis of 1998, the bursting of the technology bubble and increase in corporate default rates in 2002, and 

the sub-prime mortgage crisis starting in 2007. 
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A. Results for Apr-96 to Mar-03 

Table 1 shows the estimates for the mean-reversion speed (κ ), mean (µ), and volatility (σ ) of each Va-

sicek factor. The log-likelihood, AIC, and BIC criteria are highest for the three-factor model, under which 

all parameters (with the exception of one mean) are highly significant. The marginal improvement in the 

log-likelihood from the addition of a third factor is far smaller than for a second factor, suggesting that a 

3-factor model is sufficient in capturing the common sources of variation in credit spreads. For compari-

son, the log-likelihoods for the one, two, three, and four-factor models are 1246.0, 1840.6, 2040.6, and 

2100.10, respectively. The parameter estimates for factor 4 in a four-factor model are largely insignifi-

cant3, supporting the choice of the three-factor model. 

Figure 2 shows that the extracted factor under the one-factor model resembles a weighted average of the 

14 observed series. Allowing for a second factor reveals two distinct smooth processes as the drivers of 

the cross-section of credit spreads, while in the three-factor model an additional more noisy process is 

identified. In the three-factor model the half-life is 2.8 months for factor one, 4.1 years for factor two, and 

1.6 years for factor three. The factors under the three-factor model are compared to well-known economic 

time-series in Figure 3. Under the three-factor model, the noisy first factor resembles the VIX for most of 

the sample period, the second resembles the (negative of) 10-year bond rate, and the third the S&P500 

level4. The correlations are 0.08 between factor 1 and the VIX, -0.74 between factor 2 and the long bond 

rate, and 0.92 between factor 3 and the S&P500 level. If a “burn-in" phase of the first 12 months is ex-

cluded under the Kalman Filter approach, the correlation between factor 1 and the VIX increases from 

                                                           
3 A parameter is significant at the 5% level if the estimated parameter divided by its standard error is greater than 

1.96 in absolute value. The standard errors of the estimated parameters are calculated using a finite-difference esti-

mate of the Hessian matrix, as outlined in Hamilton (1994). 

4 S&P500 returns rather than levels are a more appropriate explanatory variable for credit spreads, since S&P500 

levels are strongly upward trending over the long term while yields spreads tend to mean-revert. However, for the 

sample period used the S&P500 level is roughly stationary, and we compare factors to the levels rather than arbi-

trary measures of rolling returns. 
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0.08 to 0.47. Given the results of Campbell and Taksler (2003) linking credit spreads to the average of 

individual firm volatilities, it is possible that factor 1 is more closely related to measures of the average of 

individual firm implied volatilities than it is to the VIX which measures the volatility of the market aver-

age returns. 

The estimated loadings of the observed series to each factor under the one, two and three-factor model are 

shown in Figure 2. Are the sensitivities to the factors consistent with theory? The shape of the loadings on 

the first factor suggests that equity volatility risk has a positive impact on all credit spreads and that expo-

sure to it increases with declining credit quality. To the extent that equity volatility is a proxy for a firm's 

asset value volatility, this result is consistent with the prediction of Merton (1974) that the probability of 

default and credit spreads increase with higher asset value volatility. The sharpest increase occurs in the 

crossing from investment to sub-investment grade bonds, which is consistent with the observations of 

Huang and Kong (2003) and others that lower-grade bonds are more sensitive to equity market variables 

than high-grade bonds. 

The positive loadings on factor two and its negative correlation with the level of the 10-year treasury 

yield are consistent with the strong empirical that increases in treasury yields lower credit spreads. The 

loadings are also consistent with the finding of Colin-Dufresne et al (2001) that the sensitivity of credit 

spread changes to interest rates increases monotonically across declining rating groups. 

The sensitivities to factor 3, which is closely correlated to the S&P500, change sign from positive to 

negative as bonds move from investment to sub-investment grade. The estimated positive relationship 

between equity market performance and investment grade spread indices is at odds with the Merton 

(1974) model since according to the model, higher equity values increase the value of a firm's assets rela-

tive to its fixed level of debt, lowering its probability of default. A possible explanation is that the positive 

equity performance throughout the 1990s coincided with rising aggregate debt levels during the same pe-

riod, with highest rated firms raising their leverage the most. The negative effect of higher asset values on 

spreads may have been more than offset by the positive effect of higher leverage in the case of higher-

grade firms. Changing investor risk preferences may also have played a role. It is possible that for all but 
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the lowest credits, prolonged positive equity market performance contributed more to the substitution out 

of corporate bonds, in favor of equities, than to higher bond values through improved creditworthiness. 

 

B. Results for Apr-96 to Mar-08 

We repeat the analysis for the full sample period with results reported in Table 1 and Figure 2. The signs 

of the correlation coefficients between the factors and macroeconomic variables in the three-factor model 

remain the same as for the first period: factor 1 and the VIX at 0.71; factor 2 and the long bond rate at -

0.54; factor 3 and the S&P500 at 0.76. The general shapes of the loadings and their signs remain un-

changed for the 3-factor model, with the exception that loadings on factor 3 are more strongly negative 

for non-investment grade debt for the full period. This reflects changing market conditions between the 

first and the second period. Low-grade credit spreads increased throughout Apr-96 to Mar-03, while the 

S&P500 reached its peak in mid-2000 and declined until Mar-03. The lack of a strong direction in the 

relationship between low-grade spreads and the equity market is reflected in the estimated loadings of 

low-grade spreads on factor 3 being close to zero for the first period. For most of the period that followed 

(Apr-03 to Mar-08) non-investment grade spreads steadily declined, with lowest grade spreads declining 

the most, while at the same time the S&P500 trended upwards. This feature most likely contributes to the 

estimated loadings of low-grade spreads being more negative and varied across ratings when based on the 

full sample period. There is also a change in the shape of the loadings on factor 2 for the full period. The 

loadings peak for the highest-rated non investment grade index (BB1) but then slowly decline with worse 

ratings. This is in contrast to the finding of Collin-Dufresne et al (2001), supported by our estimates for 

Apr-96 to Mar-03, that interest rate sensitivities increase monotonically with declining ratings. We note 

that for the full period factor 2 is less closely correlated to the long bond yield (coefficient of -0.54), than 

for Apr-96 to Mar-03 (coefficient is -0.74), and that the factor loadings across the two periods are there-

fore not entirely comparable. However, the shape of the loadings for the full period raises the question of 

whether for indices of lower quality than those covered in Collin-Dufresne et al (2001) and this study, the 

sensitivities to interest rates would decline further across declining ratings. The possibility is also raised 



 

 19 
 

by the findings of Fridson and Jonsson (1995), that there is no significant relationship between high-yield 

spreads and treasury levels. 

 

We find none of the extracted factors in models containing between one to four factors to be correlated to 

the slope of the treasury curve, either in the spot or forward yields, contemporaneously or with a lag. This 

is consistent with the findings of Collin-Dufresne et al (2001) that the treasury slope does not help explain 

credit spread changes, but the result remains surprising given that the treasury curve is commonly used as 

an indicator of future economic conditions by market participants. One explanation is that the slope of the 

treasury curve contains no useful information beyond that already contained in the combination of equity 

returns, volatility and interest rate levels. Another is simply that the period Apr-96 to Mar-08 contains 

highly contrasting relationships between credit spreads and the treasury slope, due to the sub-prime crisis. 

The period since August 2007 has been marked by rapidly widening credit spreads while at the same time 

fears of stagflation, high inflation and low growth, contributed to short-term treasury yields reaching his-

torically low levels relative to long-term yields. Hence the end of the sample period is marked by a strong 

positive contemporaneous relationship between the slope of the treasury curve and general credit spread 

levels, which is in contrast to the negative relationship previously documented by Papageorgiou and 

Skinner (2006). 

We examine the estimated measurement error variances, defined as the diagonals of matrix H in the 

Measurement Equation (3). Figure 4 shows the square-roots of the error variances across rating classes for 

the one, two, and three-factor models. As expected, for each model the lowest-rated bonds which have the 

widest credit spreads also have the highest estimated measurement error variance. The variances fall 

sharply across ratings with the addition of a second factor, particularly for sub-investment grade bonds. 

The addition of a third factor does not lead to a large reduction in variances, which is similar to the mod-

est impact of a third factor on the maximum likelihood. We note that in the two and three-factor models 

the measurement error variances also peak around the middle ratings, which is in contrast to the more 

monotonic shapes of the loadings on each factor, across ratings. The variances increase as indices ap-
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proach the cross-over point between investment and non-investment grade bonds, with a local maximum 

for the BB1 index which is the highest-rated non-investment grade index. Both the shape and magnitude 

of the error variances are comparable to the results of Babbs and Nowman (1999), where a multifactor 

Vasicek model is used to fit the term structure of 8 observed treasury yields across maturities (0.25, 0.5, 

1, 2, 3, 5, 7, and 10-year). In that study, the errors on longer maturities are the highest and decline sharply 

with the addition of a second factor. The middle maturities around the two-year series have higher error 

terms than the surrounding maturities. 

We provide two possible explanations for the pattern in the error variances. Firstly, the time-series of the 

first two factors are closely related to averages of the investment-grade bonds and non-investment grade 

indices, respectively. We would expect that the further an observed index is from the ‘average’ invest-

ment-grade or non-investment grade series, the less precisely it will be captured by the two first and most 

important factors. A second explanation is that the observed BB1 index is a relatively noisy proxy for the 

yield spreads of BB1 quality. From Figure 1 it can be observed that the BB1 index closely follows in-

vestment-grade bonds early in the sample period, but follows non-investment grade bonds more closely 

for the remainder of the period. This changeover could be related to changes in the composition of the 

BB1 index, or changes in the pricing of included bonds that does not get reflected by rating changes. The 

finite sample of bonds within any rating class creates the potential for measurement errors in the relative 

pricing of various rating indices, and it is possible that these are more pronounced for indices near the 

cross-over point between investment and non-investment grade. The fact that the estimated measurement 

error variances peak around the crossing point of rating classes while the factor loadings remain relatively 

smooth can be interpreted as the effectiveness of state-space models in separating the idiosyncratic and 

systematic effects. Given a wide enough cross-section of time-series, the features of individual series that 

are not common to multiple indices can be expected to be absorbed into higher measurement error vari-

ances, while leaving factor loadings relatively smooth across the series. 

We also analyze the time-series of the fit errors under a three-factor model. Table 2 shows that for each 

index the average fit errors are close to zero and strongly stationary based on ADF unit root tests. We take 



 

 21 
 

this as support for the multifactor Vasicek as an unbiased model of credit spreads across ratings over the 

sample period. 

 

C. Discussion 

The results for both periods suggest that all credit spreads vary in response to three common systematic 

factors that have proxies in the VIX, the long bond rate, and S&P500 returns. The co-movement between 

the factors and the variables is particularly evident from the beginning of the sub-prime crisis. Figure 3 

shows that from the second half of 2007 factor 1 sharply increased as well as the VIX, factor 2 increased 

with (the negative of) the long-bond rate, and factor 3 declined with the S&P500 level. 

However, the ability of the three factors to explain observed spreads can rapidly decline during financial 

crises, as shown by the conditional density likelihoods in Figure 5. 

Log-likelihoods dropped during the LTCM liquidity crisis of August 1998, the end of the technology 

bubble in 2002, and since the start of the 2007 sub-prime mortgage crisis. The implication is that credit 

spreads reached levels that were not accounted for or fully reflected by the macroeconomic conditions at 

those times. Interestingly, during the LTCM crisis a two or three-factor model does not improve the fit 

over a one-factor model. One interpretation is that this crisis was of a more exogenous nature and more 

specifically relating to changes in credit market liquidity than changes in the macroeconomic outlook. 

While the end of the bubble in 2002 and the sub-prime crisis both had long-lasting impacts real economy, 

reflected in lower yields, lower equity returns and higher volatility, the LTCM crisis was characterized by 

a relatively sharper increase in volatility and smaller changes in rate and equity returns. It is likely that 

almost all of the change in credit spread levels during LTCM is explained by the sharp rise in factor 1 

which is representative of the VIX, which is in turn closely related to liquidity risk. The sharp falls in log-

likelihood that accompany the largest market moves point either to the presence of additional risk factors 

and risk premiums that are not captured by the Vasicek form, or the need to allow for time-variation in the 

factor loadings. 
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5. CONCLUSION 

This study concludes that most of the systematic variation in credit spread indices by rating is explained 

by three factors. The factors vary broadly with the VIX, the long bond rate, and S&P500 returns, which 

are the theoretical determinants of credit risk. The sensitivities of credit spread indices to each of the fac-

tors suggest that the predictions of the Merton (1974) structural model hold on an aggregate level. While 

most empirical literature considers liquidity risk, rather than credit risk, to be the major determinant of 

credit spread levels and changes, we find that the three most important factors driving credit spreads vary 

with macroeconomic variables. The implication is that the dynamics of a potential liquidity risk premium 

are not easily separable from those of known macroeconomic variables, a result that is consistent with the 

findings of Ericsson and Renault (2006) that liquidity risk is determined by the same factors as credit risk. 

This is the first known study to use state-space representation and the Kalman Filter method to find credit 

spread factors. By making no prior assumptions about the risk variables driving credit spreads, the ap-

proach provides a contrast to existing empirical literature and an independent test of theory. 
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Figure 1 Industrial Corporate Bond Yield Spread Indices by Rating 

Credit Spread Indices (10-year Maturity)
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Table 1 Parameter Estimates, for the One, Two and Three-factor Models 

The table shows the maximum-likelihood estimates for each of the three parameters },,{ σθκ  of 

each factor, under the one, two, and three-factor models. The Log-likelihood calculations are based 

on Equation (12), and used to calculate the Akaike Information Criterion (AIC), and Bayesian In-

formation Criterion (BIC). Standard errors based on the inverse Hessian matrix are shown below the 

parameter estimates. 

 

Period 1: Apr-96 to Mar-03    Period 2: Apr-96 to Mar-08 

One Factor Two Factor Three Factor

LogL 1,246 1,841 2,041
AIC 2,556 3,782 4,217
BIC 2,633 3,903 4,382

0.391 0.411 2.981
(0.281) (0.401) (0.231)

0.351 0.171
(5.011) (0.021)

0.421
(0.041)

0.791 0.601 0.251
(0.211) (0.201) (0.021)

0.161 0.641
(0.351) (0.171)

0.161
(0.111)

0.181 0.141 0.121
(0.021) (0.011) (0.011)

0.141 0.081
(0.021) (0.011)

0.131
(0.011)

1κ

2κ

3κ

1θ

2θ

3θ

2σ

3σ

1σ

  

One Factor Two Factor Three Factor

LogL 2,316 3,076 3,327
AIC 4,697 6,251 6,790
BIC 4,792 6,400 6,992

0.120 0.127 0.486
(0.040) (0.145) (0.197)

0.757 0.004
(0.304) (0.003)

0.786
(0.357)

1.177 1.195 0.329
(0.299) (0.653) (0.043)

-0.010 17.298
(0.026) (2.274)

0.068
(0.047)

0.153 0.175 0.105
(0.011) (0.011) (0.009)

0.067 0.126
(0.022) (0.011)

0.097
(0.009)

1κ

2κ

3κ

1θ

2θ

3θ

2σ

3σ

1σ
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Figure 2 Estimated Factor Time Series and the Factor Loadings by Rating 

Period 1: Apr-96 to Mar-03   Period 2: Apr-96 to Mar-08 

One-Factor Model    One-Factor Model 

  

  

Two-Factor Model    Two-Factor Model 

  

  
 

Three-Factor Model    Three-Factor Model 
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Figure 3  Estimated Factors of the Three-Factor Model and Macroeconomic Variables 
 
  Period 1: Apr-96 to Mar-03   Period 2: Apr-96 to Mar-08 
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Figure 4 Measurement Error Variances 

 
The figure shows the square roots of the estimated measurement error variances for each rating series 

under the one, two, and three-factor model. The maximum-likelihood estimates are based on the full 

period (Apr-96 to Mar-08), where the variances are the diagonal elements of matrix )1414( ×H  in the 

Measurement Equation 
ttt ZXR ε+=  where ),0(~ HNtε . All variance estimates are significant at the 

5% level within each model. 

Square Root of Estimated Measurement Error Variances for the
One, Two and Three-Factor Model (in basis points)
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Figure 5 Conditional Density Log-Likelihoods for the One, Two, and Three-Factor 

Model: Apr-96 to Mar-08  
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Table 2 Credit Spread Summary Statistics and Model Fit Errors 

The following table summarizes observed credit spreads for the 144 months from 30-Apr-96 to 31-

Mar-08. For each month we calculate a vector of model fit errors, defined as the difference between the 

14 observed credit spreads )114( ×tR  and the fitted spreads defined by the Measurement Equation 

(3)
tt XZR ˆˆ = . The estimated state vector )13(ˆ ×tX  and measurement matrix )314( ×Z  are based on the 

three-factor full period model. For each of the 14 credit spreads by rating we generate a time-series of 

144 fit error terms and calculate the average, standard deviation, and mean absolute percentage error 

(MAPE). Two Augmented Dickey-Fuller tests (ADF) are performed on each error time-series. The 

first ADF test is based on an AR model with drift
tttt yycy εςφ +∆++= −− 11
and the second is based on 

the trend-stationary AR model
tttt ytycy εςδφ +∆+++= −− 11
. For most of the series the ADF test p-

values show that the null hypothesis of a unit root )1( =φ  can be strongly rejected at the 5% signifi-

cance level. The stationary error terms with averages close to zero suggest that the three-factor Vasicek 

model on average provides an unbiased fit for credit spreads across ratings. 

 

Index Avg (bp) SD (bp) Avg (bp) MAPE SD (bp) No Trend Trend

AAA 64.5 25.4 0.01 7.8% 5.7 <0.0001 <0.0001
AA 71.9 27.9 -0.02 5.3% 4.3 <0.0001 <0.0001
A1 83.9 31.3 -0.01 4.3% 4.1 <0.0001 0.0032
A2 94.7 33.7 0.14 2.9% 3.4 <0.0001 <0.0001
A3 108.9 38.4 0.30 3.5% 4.4 <0.0001 <0.0001

BBB1 123.3 40.8 -0.41 5.1% 7.3 0.0020 0.0126
BBB2 138.1 43.2 -0.77 6.2% 9.7 0.0075 0.0350
BBB3 159.9 47.9 -1.36 6.9% 13.0 0.0068 0.0522
BB1 247.1 96.5 4.25 9.5% 24.5 0.0045 0.0221
BB2 292.4 88.5 -0.13 2.5% 8.7 <0.0001 <0.0001
BB3 325.5 98.1 0.54 3.3% 12.8 <0.0001 <0.0001
B1 359.1 99.7 -1.19 2.8% 11.9 <0.0001 <0.0001
B2 415.0 119.6 -0.26 3.7% 19.6 <0.0001 <0.0001
B3 502.8 165.3 4.26 6.6% 39.5 0.0025 0.0112

Spread Statistics Error Statistics ADF Test p-values

 
 


