A Multifactor Model of Credit Spreads

Ramaprasad Bhar
School of Banking and Finance, University of NewaBowWales, Sydney
r.bhar@unsw.edu.au

Nedim Handzic
School of Banking and Finance, University of NewiBowWales, Sydney
n.handzic@student.unsw.edu.au

We represent credit spreads across ratings asciidnmof common unobservable factors of the mean-
reverting normal (Vasicek) form. Using a state-gpapproach we estimate the factors, their procass p
rameters, and the exposure of each observed aediad series to each factor. We find that moshef
systematic variation across credit spreads is cagtoy three factors. The factors are closely eelad the
implied volatility index (VIX), the long bond ratend S&P500 returns, supporting the predictionstiafc-
tural models of default at an aggregate level. Bakimg no prior assumption about the determinants of
yield spread dynamics, our study provides an caigamd independent test of theory. The results edso
tribute to the current debate about the role dfitlidy in corporate yield spreads. While recent &ioal
literature shows that the level and time-variaiiwgorporate yield spreads is driven primarily byyatem-
atic liquidity risk factor, we find that the threeost important drivers of yield spread levels refamt mac-

roeconomic variables. This suggests that liquid#tl is largely driven by the same factors as defésk.
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1. INTRODUCTION

The theoretical link between credit spreads andketarariables is established by structural modéls o
default. Models such as Merton (1974) and Longsaafl Schwartz (1995) are based on the economic
definition of default as the event where a firmédue falls below the face value of its outstandiiedpt.

The unobservable value of the firm is assumed ltovfoBrownian motion under the assumption of risk-

neutrality, allowing the calculation of default pebilities and an endogenous recovery rate. Credit



spreads are attributed entirely to the risk-newdrplected default loss, which is positively relatedirm
leverage and volatility in the firm value. An inase in the firm value through positive equity perfo
ance has the effect of reducing leverage and cspdéads. Under the assumption of risk-neutratigy t
firm value process has a drift rate equal to thke-fiee rate. The models predict that an increaseeas-

ury yields increases the drift of the firm valuegess, leading to lower credit spreads.

In practice, structural models tend to underestnsdort-term credit spreads. The use of smooth-proc
esses to represent the firm value may exclude dBsilgility of default by high grade issuers in #ieort
term, which is inconsistent with the observed wflsurprise in credit markets. In contrast, reduftech
models are flexible enough to empirically fit tleerh structure of credit spreads, but they do novide

an economic interpretation of default. Reduced foradels such as Jarrow and Turnbull (1995) and Duf-
fie and Singleton (1999), define exogenous stoahpsbcesses for the arrival time of default andgex
nous recovery rates. An additional class of modelmbines the advantages of both structural and re-
duced-form approaches by incorporating exogendigstsfsuch as jump-diffusions (Zhou, 1997) in the
firm value process to allow for surprise defaulh Ampirical overview of structural models by Eom,
Helwege and Huang (2004) reveals that existing tsocnnot simultaneously fit both high-grade and
low-grade bond spreads. They conclude that moraratee models would need to correct the common
tendency to overstate the credit spreads of firitls high leverage or volatility while at the sanime

understating the spreads of high-grade bonds.

To the extent that credit spreads reflect expamtaton future default and recovery, we would expget
gregate credit spread indices to vary with macroegoc variables such as interest rates, stock rharke
returns and market volatility. In general, low-geaubnd spreads are observed to be closely relateqg-t
uity market factors (Huang and Kong, 2003) whilghhgrade bonds are more responsive to treasury
yields. Kwan (1996) finds that individual firm yiekpread changes are negatively related to both con

temporaneous and lagged equity returns of the ameOn the other hand, lagged yield spread chsnge



do not help explain current equity returns. Camipiietl Taksler (2003) show credit spreads to be-posi
tively related to the market average of firm-leeguity return volatility, and the increase in maraad
firm volatility documented by Campbell et al. (2004 consistent with the steady rise in credit agee
throughout the 1990s.

A negative relationship between investment-gradeasts and treasury yields is estimated by Longstaff
and Schwartz (1995), while Duffee (1998) finds ttie¢ negative relationship is strongest for cadiabl
bonds. Collin-Dufresne et al (2001) show that dregreads have increasingly negative sensitivities
interest rates as ratings decline across both timerg and non investment grade bonds. In a studylgf
high-yield bonds, Fridson and Jonsson (1995) fiagignificant relationship between credit spreauts a
treasury rates, which is more consistent with tleaithat low-grade bonds are far more responsieg-to
uity variables than interest rate variables. Whiilere is strong empirical evidence of a negatileticmn-
ship between investment-grade spreads and tregigldg, there is no consensus on its economic sause
Intuitively, lower yields should lead to narroweelgd spreads through lower borrowing costs that in-
crease the probability of survival. However, fallitreasury yields, particularly in the shorter nities,
also tend to be a feature of recessionary peridasvdefault risk rises and central banks typiciallyer
short-term rates. One recent example of this isstiieprime crisis, beginning in August 2007, during
which short-term treasury yields declined to histdrlows while credit spreads widened to histdrica
highs. Duffee (1998) concludes that despite thesliof both treasury yields and corporate bond sjsrea
to future variations in aggregate output, it is abvious that these links explain their observegatige
relationship, or that yield spreads are determimedredit quality. To link credit spreads to int&reates
and expected aggregate output, the empirical litezdhas also focused on the slope of the treasume,
defined as the spread between long-term and shront-yields and often used as a barometer of future
economic conditions. Estrella and Hardouvelis (3%8ssociate a positive slope of the yield curvehwit
future increases in real economic activity, so tratincrease (decrease) in the slope of the yietdec
should indicate a lower (higher) probability of ecession, in turn reflected in lower (higher) credi

spreads. This idea is supported by the finding8agfageorgiou and Skinner (2006) that investmertegra



credit spreads are negatively related to chang&stim the level and the slope of the treasury cuiltve
addition they estimate that the negative relatignbbtween credit spreads and the treasury slopaddas

tively stable over time.

The empirical literature to date supports bothdigaificance and the direction in which structuraidel
variables influence credit spreads, however, restrties demonstrate that these variables alonecdre
sufficient to fully explain either the levels orariges in credit spreads. Collin-Dufresne et al0{20e-
gress credit spread changes of individual bondtherchanges in treasury yields, the slope of telyi
curve, equity index returns, and index volatilégtimating that these variables explain only al2&96 of
the variation in credit spreads. In addition, theps of the yield curve is not a significant detaramt of
credit spread changes when the other variablesmkes into account. Using principal componentsyanal
sis on the residuals they find that the changessiduals across individual bonds are dominated bin-
gle common systematic component that has no obvidagonship to variables from the interest raid a
equity markets. Their conclusion is that yield sggrehanges are only partly accounted for by the eco
nomic determinants of default risk.

To estimate how much of the yield spread levelstemaccounted for by default risk, Huang and Huang
(2003) calibrate a diverse set of structural motieksctual historical default losses then use ttegen-
erate theoretical values of credit spreads. In eask the model-based spreads are well below drage
observed spreads, suggesting that default riskuatsdor only a small fraction of yield spreadseTiro-
portion explained by default risk is highest fowloated bonds, and decreases for higher-rated batls
have low historical default losses. The inabilifytfeoretical risk variables to account for mosttod lev-
els or changes in yield spreads is sometimes esféar as the ‘credit spread puzzle'. Similar to pheb-
lem of the equity premium puzzle, the expectedrnston corporate bonds, like equities, seem welab
those justified by the risks. The explanation @& tnedit spread premium puzzle has focused ontheth
presence of additional risks as well as associdg&gremiums. Elton, Gruber, et al. (2001) esteriaat

expected loss accounts for less than 25% of theredd corporate bond spreads, with the remainder du



to state taxes and factors commonly associatedthdttequity premium. Similarly, Delianedis and Gesk
(2002) attribute credit spreads to taxes, jumpslidity and market risk. Factors associated with ély-
uity premium include the Fama and French (1996ytHninus-Low’ (HML) factor, found by Huang and
Kong (2003) to account for a significant componefitiow-grade credit spread changes. The signifieanc
of Fama-French factors is also supported by Jaudt €001), who conclude that credit spreads are d

termined by both default risk and systematic marisit

Structural models contain the assumption that diefislt is diversifiable, since yield spreads asswamed

to reflect only default loss, with no risk premidian either default risk or the risk of market-wideanges

in spreads. Jarrow et al (2001) show that jumpdefault in credit spreads cannot be priced if défau
across firms are conditionally independent anfiéf¢ is an infinite number of firms available fovetsi-
fication. One explanation for the credit spreadzbeiis the potential for firms to default on a wisleale
not seen historically, a risk that is difficult éiminate by diversification and is therefore pddgy inves-
tors. It is also observed that defaults acrosssfiramd to be correlated and concentrated arourdsiens
when investors are most risk averse. Chen (200F)Ciren et al (2008) conclude that in order forcstru
tural models to capture observed spreads it isssacg to incorporate a strongly cyclical market@rof
risk that increases along with default losses dutiecessions. Another explanation for wide credit
spreads is that idiosyncratic risk is priced ad aglsystematic risk. Amato and Remolona (2003)&rg
that due to the highly skewed returns in corpobateds, full diversification requires larger portéa than
typically needed for equities. Given the limitegply of bonds, high transaction costs, and possibie
straints on portfolio expected losses, full diviication is difficult to achieve, and it is posgbihat in
practice portfolio managers require a risk premassaociated with individual bond value-at-risk. Rece
studies confirm the presence of both a firm-spedgfault risk premium as well as a market risk- pre
mium. Drisesen (2005) distinguishes between theketavide changes in credit spreads and individual
credit spread jumps-to-default, finding that botimponents are priced. Similar results are obtaimed

Gemmill and Keswani (2008), who show that moshefdredit spread puzzle can be accounted for by the



sum of a systematic risk premium and a larger igiogatic risk premium. While supporting these con-
clusions, Collin-Dufresne et al (2003) also sugdgbat it is not surprise default itself that atteaa sig-
nificant premium, but rather it is the potentiat twedit events of large individual firms to trigge flight
to quality in the treasury market and cause mankeéé increases in credit spreads. So even withibut d
rectly violating the assumption of conditional ipgadence of defaults across firms, idiosyncratfaule
risk could matter due to its potential to impactrke&wide liquidity, which highlights the difficult of

separating the role of default and liquidity invilng credit spread levels.

A recent stream of literature focuses on the rdldicmidity in explaining both the levels and time-
variation of credit spreads. The idea that liqyidit an important and priced determinant of yigldesads

is not new, with Fisher's (1959) hypothesis beihgttthe risk premium of individual bonds consists o
two main components: a default component and aketability’ component. The default component is
in part a function of a firm’s earnings variabilignd debt ratio, measures that directly corresporttie
leverage and asset volatility variables in struadtunodels, while the marketability component isuack

tion of the outstanding issue size. There is n@amsal proxy for liquidity risk, but measures useqbre-
vious studies include the bid-ask spread, tradgufacy, the proportion of zeros in the time-sedka
bond’s returns, a bond’s age, amount outstandidgienm to maturity. Perraudin and Taylor (2003)-est
mate that liquidity premiums are at least as laxganarket risk premiums and far larger than expecte
default losses. De Jong and Driessen (2006) etithatliquidity risk premium on US corporate boatls
0.6% for long-maturity investment-grade bonds arfPdl for speculative-grade bonds. Recent studies
estimate the non-default component of credit sgraticectly by subtracting credit default swap (CDS)
premiums from corresponding corporate bond yieteéags. Being simply contracts, CDS are regarded as

more pure reflections of credit riskThis idea is supported by the findings of Ericest al (2005) that

1 CDS are not subject to the same accessibilityessis physical bonds and difficulties in takindnarsposition.

The absence of coupons also avoids bond-specktiten considerations.



CDS premiums are driven by the theoretical deteamti of credit risk (the risk free rate, leverage a
volatility), but that in contrast to the results Gbllin-Dufresne et al (2001) on corporate bonddyie
spreads, there is only weak evidence of a commsidual factor affecting CDS premiums. The CDS-
based non-default component estimated by Longstadf (2005) is strongly time-varying and related t
both bond-specific and market-wide measures a@jfuitiity. There is a strong cross-sectional relaion
between the non-default component and individuasuees of liquidity such as the bid-ask spread and
issue size. The time-series variation of the ndiatdecomponent is related to macroeconomic oresyst
atic measures of liquidity risk such as i) the sgrbetween on-the-run and off-the-run treasurydgiei)
flows into money market funds, and iii) level ofw&ssuance into the corporate bond market. Theseros
sectional results of Longstaff et al (2005) aresistent with equity market evidence of Amihud and
Mendelson (1986) that market-average returns arm@aeasing function of bid-ask spreads, while the
time-series results are consistent with the preseha single common systematic factor found byliol
Dufresne et al (2001), as well as evidence of syatie liquidity risks in interest rate markets infile
and Singleton (1997), Liu et al (2004) and Londst2004). Liquidity risk itself has also been foutd

be a positive function of the volatility of a firsvassets and its leverage, the same variablearthaeen

as determinants of credit risk (Ericsson and RenaQ06).

Our aim is to estimate the factors driving the dgits of yield spread levels directly from the datéh-

out prior assumption about the specific economitabdes that yield spreads could be related toeBas
on existing evidence, we take the view that thestirariation in credit spreads is driven by two skssof
factors that are non-stationary and mean-revertggpectively. Our initial guess is that the fgsbup of
factors is likely to relate to default risk and bdew rates of mean-reversion that reflect reldyipersis-
tent macroeconomic conditions. The second groufdaelate to liquidity premiums that are presumed t
change with noisy short-term supply and demandkshdgiven that credit risk explains a lower propor-
tion of high-grade spreads than low-grade spreadsyould then expect high-grade spreads to have

stronger mean-reversion that reflects changegjindity due to supply/demand. However, from Figlire



it appears that non investment-grade spreads laavadre noise than investment-grade spreads, sHgges
ing that the default risk component may be mordlfignean-reverting than the remaining component.
One indication this may be true for corporate yisfiteads is the study of swap spreads by Liu et al
(2006), finding time-varying components relatingotath liquidity and default risk, but where the @@t
component is highly mean-reverting and with a téasin structure, while the liquidity component isnmo
persistent and with a steep upward-sloping termcgire. It is worth noting that spikes in the lowes
grade spread indices resemble the behavior of tkeéndex over the same period. These could be inter
preted as short-term increases in default risk uttte frictionless market framework of structuraban

els, but in practice sharp increases in the VIXase closely correlated to declines in liquidityithout
assumption about the source of variations, we obstrat while the two bond classes behave in funda-
mentally different ways during particular sub-pegpthey also appear to have different exposures to

shared common short-term shocks throughout thelsegmepiod.

This study assumes that the time-variation in ¢rgglieads across ratings classes is driven by anoom
set of unobservable factors to which each obsespeshd is exposed with some unknown sensitivity. We
aim to answer the following questions: 1) how méawtors are required to explain the evolution @f ra
ings-based spread indices, 2) what is the expadfueach individual index to each factor, and 3) wha
economic variables, if any, could be proxies far flctors.

Our choice of the state-space methodology is migtil/ay its advantage of allowing for both time-ssri
and cross-sectional data simultaneously. It alsviges a new and opposite approach to the exiiting
erature on credit spread determinants. Most engpisitidies on credit spreads adopt a general-tcifspe
approach where a range of known potential detemménig tested for statistical significance usingSOL
regressions. In contrast, state-space models equly an assumption about the structure of thtofac
that can then be estimated directly from the olexbdata. Another advantage of state-space models is
that they can be applied to both stationary andstationary variables. OLS estimation on the ottard

requires that both dependent and independent Vesiave stationary, forcing most studies to focus o



explaining the changes in credit spreads as aiimof changes in independent variables. In thisl\st

we analyze the dynamics of credit spread leve&stir.

Given an assumed parametric process form for teatldactors, the Kalman Filter maximum likelihood
method can be applied to simultaneously estimatbelparameters of each factor process, 2) thé-sens
tivities or loadings of each observed series tandevidual factors, 3) the realizations of thettacseries,
and 4) the covariance matrix of the model errotse Vasicek (1977) normal mean-reverting process is
chosen for the factors since, depending on thedite mean-reversion coefficient, it is suitabbe rep-
resenting both non-stationary (presumed macroecmoas well as stationary (presumed microeco-
nomic) determinants of credit spreads. A multi-dacd¥asicek form is also supported by the findin§s o

Pedrossa and Roll (1998) that Gaussian mixturesapiure the fat-tailed distributions of creditesus.

Early applications of the state-space model inrfigaliterature have focused on the term structfire o
treasury rates. Babbs and Nowman (1999) find ththir@e-factor Vasicek model adequately captures
variations in the shape of the treasury yield cuwigh two factors providing most of the explangtor
power. Chen and Scott (1993) and Geyer and Pi¢h#99) reach similar conclusions based on a multi-
factor CIR (1985) model, and find the factors tockesely related to the short rate and the slopihef
curve. Recent studies build upon the two or thesefr term structure of treasury rates and allavwatb
ditional factors to explain swap or corporate bgialds. Liu, Longstaff, and Mandell (2006) separite
liquidity and credit risk components of swap spee#ttough a five-factor model of swap yields. Swap
yields consist of three factors driving treasurglgs, one influencing credit risk, and the remajnime
influencing liquidity risk. Similarly, Feldhuttema Lando (2008) decompose the factors driving ¢nent
structure of the swap yield spreads into threeofactlriving the risk-free rate, two affecting credsk
and one relating to the liquidity premium or ‘conience yield’' contained in treasury yields over tiis&-
free rates. They find that while credit risk is ion@ant, the strongest determinant of swap spresatisei

convenience yield contained in treasury pricesolda@nd Li (2008) use the state-space approacstito e



mate a reduced-form model of default, where théandity of default is modeled directly as a stostim
volatility process. They find that the additionabtecond, volatility factor to the level factortive diffu-
sion of default probabilities leads to significamiprovements in both in-sample and out-of-sampke fi
for credit spreads.

Our work is a natural progression in the applicgatd state-space methodology from treasury yieldle

to corporate yield spreads. We apply the stateespathodology directly to credit spreads to findhbo
the number of factors and compare their behaviowegth-known macroeconomic variables. This is the
first work to relate the estimated factors drivoarporate yield spreads to variables from bothtgcnd

interest rate markets.

2. DATA

All data is from Bloomberg with observations taksrthe end of each month Apr-96 to Mar-08. We use
the 10-year maturity industrial corporate bond digldices of 14 available ratings: AAA, AA, Al, A2,
A3, BBB1, BBB2, BBB3, BB1, BB2, BB3, B1, B2, and BBloomberg ratings are composites of S&P
and Moody's ratings, with bonds rated BB1 or lowensidered sub-investment grade. The yield indices
are converted into credit spreads by subtractieglthryear benchmark bond yield from each. Othdr var

ables sourced are the option-implied volatilityeraf the S&P500 (VIX) and the S&P500 level.
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3.METHOD
A. The Multifactor Vasicek Model in State Space Form

For a given term to maturity, eachrobbserved credit spread indices by ratRg={R;,R,,,...,R,}' is

expressed as a functionmfindependent latent factors or statés ={ X,,, X,,,...,X,,}' of the Vasicek
form. Changes in thpth observed seridg; are a linear combination of the changesnifatent factors
X, weighted by factor loadings,;,a;,,...,a;, . Each factor evolves according to its three patarse

the long-term mead, the speed of mean-reversigrf, and the volatility . In continuous time,
m -
drR, =) a;dX, j=12...n 1)
—

dX, =,(6 - X, )dt+o,dw, i=12..m )

The application of the Kalman Filter algorithm tstimate the factor loadings, the process parameters
Y ={k;,6,0} i=12,...m and the realization of the state vector over tie={X,, X,,...,X;},

requires that the model is expressed in state dpace State space representation consists of #esm

urement equation and the transition (or state) tamua

R =D+ZX, +& g ~N(OH) ©)

% The mean-reversion parametetis directly related to the time taken for the psxto reach its long-run meén
In the absence of random shocks the differencedsatwthe current level and the mean decays expaiigrt-
wards zero. The expected time it takes for thegseto decay halfway towards its mean is its fifelf-equal to

In(2)/k years.
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X, =C@) + PW) X, +17, 7, ~N0OQW) @

The measurement equation (3) maps the vector &robd credit spreadR (nx1) to the state vector
X,(mx1) via a ‘measurement matrix (nx m) and vectorD(nx1) . Unexpected changes and errors in
the sampling of observed series are allowed thraughintly normal error terms(nxl) that have zero

conditional means and covariance matii{nxn). Since the computational burden of estimatinglia fu
error covariance matrik increases rapidly with additional observed senmegst studies assume error
independence. In state-space models of the tre@suwe, (Chen and Scott (1993), Geyer and Pichler
(1996), and Babbs and Nowman (1999)) a diagonatimaith elementsh,,h,,...,h, was used to cap-
ture the effects of differences in bid-ask spreaci®ssn maturities. In this study we choose the same

form to allow for different bid-ask spreads acrogmond quality groups. The state equation (4) repitsse

the discrete-time conditional distribution of thates. The terms of the equation follow directiynfrthe

discrete form of the Vasicek model for intervalesixt :
Xipo =6 (L7 )+ e X, +17, 5)

2

M - N(O,ZJ—‘ f1- e )J ©)

K.

Innovations in the states occur through the normabe’ vectors;, , with covariance matriQ. It is as-

sumed that the sources of noise in the state aagdumament equations are independent.
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In state-space representations of affine modelseoferm structure, where the observed series smoral

to specific maturities, the elements of the measarg matrixZ and the intercept vect® are usually
closed-form functions of the term to maturity, frerameters of each risk factor, factor correlati@msl

the market risk premium associated with each fadtbe difference in this study is that the obsersed
ries represent different ratings for a single mgtuwithout a prescribed formula linking the obseal
series via factor process parameters. Instead stimate the measurement matrix directly by maximum
likelihood, along with the process parameters. dduce the number of parameters in the optimizations
we also make the simplifying assumption of a zetercept vectoD. Based on numerous experiments
we find no observable impact of this assumptioreither the estimated factor realizations or thesisen

tivities of the observed series.

B. TheKaman Filter

At each time step, the filtered estimatk'f(t of the realized state vector consists of a pragiatompo-
nent)ztlt_l, based on information to up to and including tiel, and an updating component incorpo-

rating observations at tinteThe predictive component dﬁt is the conditional mean oX,, E_l[Xt],

which is the optimal estimator ok, . Fort =12,...,T

Xya = ELlX ] =CW) + @)X (7)

The covariancer, , of the predictive componeb?tm_l is given by

Zt|t—1 = Et—ll(xt - tht—l)(xt - xtlt—l)'J = q)zt—lq)' (8)
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S, =%, = E|(X, - X)(X, - >Zt)'] =(z2, +zHZ)t (9

tt-1

The estimatézt is defined as the sum dim_l and an error-correction terwy weighted by the Kalman

Gain matrixK, . The higher the terms of the Kalman G#n the more responsi\bét is to new data.

Vi = Rt - (C + cDXt—l) (10)
X, = X, + Ky, (11)
Kt = Zt|t—lz’ Zztlt—lz' +H N (12)

The recursive equations are started with guessehdanitial state vectoiX, and covariance matriX ;.
In practice, to ensure that the state vector adgyitkly to the first few observations, the initstate
noise covariance , should be set to an arbitrarily high number so the Kalman Gain is close to a vec-

tor of ones. With further observations it is exgelcthat the covariance terms and the Kalman gdin wi
decrease and stabilize, resulting in a more constanof the predictive and error-correcting temmgen-
erating state vector estimates. The number of staps required for the Kalman Gain to stabilizess-
ally referred to as the 'burn-in' phase. The phathe estimated state vector coinciding with thenbin

phase is typically excluded in further analysis.

C. Fitting the M odel

The state parametetg, the elements of the measurement marjxand the measurement error covari-

ance matrixH are estimated by maximizing the log-likelihood dtion (13) that follows directly from
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the prediction error decomposition. Given gueseeg/f, Z , and H , and fixed initialization values{,,

and 2, the log-likelihood is
. _ 13 1S oo
logL(R,R,,....R;¢,Z,H,X,,Z,) _—§Z|og| F, |—§th|:t v, (13)
t=1 t=1

Fr=H?-H"Z(Z,, +ZH"Z) ZH " (14)

|Ft| = |H| [Pzt|t—1| I:Pzt_nl—l +ZH _1Z| (15)

In maximizing the log-likelihood function we foraal the factor loadings of the first observed ctedi
spread series (AAA) to equal 1, so that the fitstavved series is a non-weighted sum of the |di&ent
tors. We add this assumption as a way of ensuhiagldadings and factor realizations are scaledpesm

rably across factors and across models with diftenembers of factors.

4 RESULTS

One, two, and three-factor models are estimatethoperiod Apr-96 to Mar-03 as well as the fulinsa
ple period Apr-96 to Mar-08. We are interested awhmodel estimates are impacted by the changing
economic environment. From Apr-96 to Mar-03 loweadg credit spreads generally increased until
reaching their peak in Mar-03 (Figure 1). In theiqe that followed credit spreads generally narrdwe
and remained low until 2007. The full sample peililmcdudes three major shocks to liquidity: the LTCM
crisis of 1998, the bursting of the technology Hebdnd increase in corporate default rates in 2864,

the sub-prime mortgage crisis starting in 2007.
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A. Resultsfor Apr-96toMar-03

Table 1 shows the estimates for the mean-revesgierd & ), mean (U), and volatilityd ) of each Va-
sicek factor. The log-likelihood, AIC, and BIC @iita are highest for the three-factor model, unddch

all parameters (with the exception of one meanhaghbly significant. The marginal improvement ireth
log-likelihood from the addition of a third factt far smaller than for a second factor, suggedtiag) a
3-factor model is sufficient in capturing the conmeources of variation in credit spreads. For cainpa
son, the log-likelihoods for the one, two, threegd dour-factor models are 1246.0, 1840.6, 204006, a
2100.10, respectively. The parameter estimate$afror 4 in a four-factor model are largely insfgni
cant, supporting the choice of the three-factor model.

Figure 2 shows that the extracted factor undeotiefactor model resembles a weighted averageeof th
14 observed series. Allowing for a second facteeats two distinct smooth processes as the drivers
the cross-section of credit spreads, while in tired-factor model an additional more noisy prodgsss
identified. In the three-factor model the half-lie2.8 months for factor one, 4.1 years for fatiar, and
1.6 years for factor three. The factors under hinee-factor model are compared to well-known ecaoom
time-series in Figure 3. Under the three-factor ehotthe noisy first factor resembles the VIX for shof

the sample period, the second resembles the (megafli 10-year bond rate, and the third the S&P500
levef'. The correlations are 0.08 between factor 1 aadViiX, -0.74 between factor 2 and the long bond
rate, and 0.92 between factor 3 and the S&P500. l§ve “burn-in" phase of the first 12 months is-e

cluded under the Kalman Filter approach, the catie between factor 1 and the VIX increases from

3 A parameter is significant at the 5% level if gstimated parameter divided by its standard esrgreater than
1.96 in absolute value. The standard errors oésitienated parameters are calculated using a filifiterence esti-
mate of the Hessian matrix, as outlined in Hamil{b®94).

* S&P500 returns rather than levels are a more @piate explanatory variable for credit spreads;esi8&P500
levels are strongly upward trending over the l@rgitwhile yields spreads tend to mean-revert. Hawneor the
sample period used the S&P500 level is roughlyastaty, and we compare factors to the levels ratiear arbi-

trary measures of rolling returns.
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0.08 to 0.47. Given the results of Campbell andsleak(2003) linking credit spreads to the averafje o
individual firm volatilities, it is possible thaa€tor 1 is more closely related to measures oéteeage of
individual firm implied volatilities than it is tthe VIX which measures the volatility of the markeer-
age returns.

The estimated loadings of the observed seriesdio fe&tor under the one, two and three-factor madel
shown in Figure 2. Are the sensitivities to thedas consistent with theory? The shape of the fogalbn
the first factor suggests that equity volatilitgkihas a positive impact on all credit spreadsthatiexpo-
sure to it increases with declining credit qualfg. the extent that equity volatility is a proxy fa firm's
asset value volatility, this result is consisteithwhe prediction of Merton (1974) that the proitigbof
default and credit spreads increase with higheztasdue volatility.The sharpest increase occurs in the
crossing from investment to sub-investment gradedbpwhich is consistent with the observations of
Huang and Kong (2003) and others that lower-gram®l® are more sensitive to equity market variables
than high-grade bonds.

The positive loadings on factor two and its negatborrelation with the level of the 10-year tregsur
yield are consistent with the strong empirical tilareases in treasury yields lower credit spredtis.
loadings are also consistent with the finding ofi®ufresne et al (2001) that the sensitivity oédit
spread changes to interest rates increases mocaltgracross declining rating groups.

The sensitivities to factor 3, which is closely retated to the S&P500, change sign from positive to
negative as bonds move from investment to sub-imerst grade. The estimated positive relationship
between equity market performance and investmesdegispread indices is at odds with the Merton
(1974) model since according to the model, higlyeiitg values increase the value of a firm's assdts
tive to its fixed level of debt, lowering its prdiility of default. A possible explanation is thaetpositive
equity performance throughout the 1990s coincidéH rsing aggregate debt levels during the same pe
riod, with highest rated firms raising their levgeahe most. The negative effect of higher asdeegzon
spreads may have been more than offset by theiygositfect of higher leverage in the case of higher

grade firms. Changing investor risk preferences alag have played a role. It is possible that fobat

17



the lowest credits, prolonged positive equity maperformance contributed more to the substitutiah

of corporate bonds, in favor of equities, thanighbr bond values through improved creditworthiness

B. Resultsfor Apr-96to Mar-08

We repeat the analysis for the full sample peridtth vesults reported in Table 1 and Figure 2. Tigas

of the correlation coefficients between the factord macroeconomic variables in the three-factadeho
remain the same as for the first period: factond the VIX at 0.71; factor 2 and the long bond rte
0.54; factor 3 and the S&P500 at 0.76. The gergrapes of the loadings and their signs remain un-
changed for the 3-factor model, with the exceptiwat loadings on factor 3 are more strongly neegativ
for non-investment grade debt for the full peridtiis reflects changing market conditions between th
first and the second period. Low-grade credit sfsaacreased throughout Apr-96 to Mar-03, while the
S&P500 reached its peak in mid-2000 and declingd Mar-03. The lack of a strong direction in the
relationship between low-grade spreads and thetyemarket is reflected in the estimated loadings of
low-grade spreads on factor 3 being close to zarthk first period. For most of the period thdideed
(Apr-03 to Mar-08) non-investment grade spreadadike declined, with lowest grade spreads declining
the most, while at the same time the S&P500 tremgheeards. This feature most likely contributestte t
estimated loadings of low-grade spreads being megative and varied across ratings when basedeon th
full sample period. There is also a change in tiape of the loadings on factor 2 for the full pdridhe
loadings peak for the highest-rated non investrgeade index (BB1) but then slowly decline with wers
ratings. This is in contrast to the finding of @uiDufresne et al (2001), supported by our estimébe
Apr-96 to Mar-03, that interest rate sensitivitissrease monotonically with declining ratings. Waten
that for the full period factor 2 is less closetyrelated to the long bond yield (coefficient of54), than
for Apr-96 to Mar-03 (coefficient is -0.74), andatithe factor loadings across the two periods lzeeet
fore not entirely comparable. However, the shapiefloadings for the full period raises the questf
whether for indices of lower quality than those ed in Collin-Dufresne et al (2001) and this stutie

sensitivities to interest rates would decline farthcross declining ratings. The possibility isoaigised
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by the findings of Fridson and Jonsson (1995), thette is no significant relationship between hyigld

spreads and treasury levels.

We find none of the extracted factors in modelsaioimg between one to four factors to be correlate
the slope of the treasury curve, either in the spdbrward yields, contemporaneously or with a [Blgis

is consistent with the findings of Collin-Dufresetal (2001) that the treasury slope does not &ghtain
credit spread changes, but the result remainsisunggiven that the treasury curve is commonlyduze

an indicator of future economic conditions by marg@rticipants. One explanation is that the sldpthe
treasury curve contains no useful information belythat already contained in the combination of gqui
returns, volatility and interest rate levels. Armtlis simply that the period Apr-96 to Mar-08 cansa
highly contrasting relationships between credieapgs and the treasury slope, due to the sub-priisis.c
The period since August 2007 has been marked hglyapidening credit spreads while at the same time
fears of stagflation, high inflation and low growttontributed to short-term treasury yields reagHiis-
torically low levels relative to long-term yielddence the end of the sample period is marked bsoag
positive contemporaneous relationship between ltpe of the treasury curve and general credit shrea
levels, which is in contrast to the negative relaghip previously documented by Papageorgiou and
Skinner (2006).

We examine the estimated measurement error vasamedined as the diagonals of matHxin the
Measurement Equation (3). Figure 4 shows the seqaats of the error variances across rating clafses
the one, two, and three-factor models. As expedtecdtach model the lowest-rated bonds which hhee t
widest credit spreads also have the highest estimateasurement error variance. The variances fall
sharply across ratings with the addition of a sdcfactor, particularly for sub-investment grade t&n
The addition of a third factor does not lead tammé reduction in variances, which is similar te thod-
est impact of a third factor on the maximum likeldd. We note that in the two and three-factor medel
the measurement error variances also peak aroenchithidle ratings, which is in contrast to the more

monotonic shapes of the loadings on each factoosacatings. The variances increase as indices ap-
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proach the cross-over point between investmentanenvestment grade bonds, with a local maximum
for the BB1 index which is the highest-rated novestment grade index. Both the shape and magnitude
of the error variances are comparable to the egflBabbs and Nowman (1999), where a multifactor
Vasicek model is used to fit the term structuré afbserved treasury yields across maturities (D2,
1,2, 3,5, 7, and 10-year). In that study, thersron longer maturities are the highest and dedarply
with the addition of a second factor. The middlgurities around the two-year series have highesrerr
terms than the surrounding maturities.

We provide two possible explanations for the pattarthe error variances. Firstly, the time-sedéthe

first two factors are closely related to averagethe investment-grade bonds and non-investmeregra
indices, respectively. We would expect that thehieir an observed index is from the ‘average’ invest
ment-grade or non-investment grade series, thepkesssely it will be captured by the two first amwst
important factors. A second explanation is thatdhserved BB1 index is a relatively noisy proxy tioe
yield spreads of BB1 quality. From Figure 1 it d@ observed that the BB1 index closely follows in-
vestment-grade bonds early in the sample periodfdllows non-investment grade bonds more closely
for the remainder of the period. This changeoveidde related to changes in the composition of the
BB1 index, or changes in the pricing of includedt® that does not get reflected by rating chanfes.
finite sample of bonds within any rating class teedhe potential for measurement errors in thetivel
pricing of various rating indices, and it is possithat these are more pronounced for indices thear
cross-over point between investment and non-invesstgrade. The fact that the estimated measurement
error variances peak around the crossing poinataig classes while the factor loadings remairtiradby
smooth can be interpreted as the effectivenestaté-space models in separating the idiosyncratit a
systematic effects. Given a wide enough crossaecti time-series, the features of individual setteat

are not common to multiple indices can be expetdik absorbed into higher measurement error vari-
ances, while leaving factor loadings relatively sithoacross the series.

We also analyze the time-series of the fit erraordean a three-factor model. Table 2 shows that émhe

index the average fit errors are close to zerosairwhgly stationary based on ADF unit root teste. tAke
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this as support for the multifactor Vasicek as ahiased model of credit spreads across ratingstbeer

sample period.

C. Discussion

The results for both periods suggest that all ¢rgglieads vary in response to three common systemat
factors that have proxies in the VIX, the long boatk, and S&P500 returns. The co-movement between
the factors and the variables is particularly entdeom the beginning of the sub-prime crisis. Feg@
shows that from the second half of 2007 factordrlly increased as well as the VIX, factor 2 insezh
with (the negative of) the long-bond rate, andda& declined with the S&P500 level.

However, the ability of the three factors to explabserved spreads can rapidly decline during &izn
crises, as shown by the conditional density liladiths in Figure 5.

Log-likelihoods dropped during the LTCM liquidityrisis of August 1998, the end of the technology
bubble in 2002, and since the start of the 2007psitbe mortgage crisis. The implication is thatdite
spreads reached levels that were not accounteaf foitly reflected by the macroeconomic conditiais
those times. Interestingly, during the LTCM crisigwo or three-factor model does not improve the fi
over a one-factor model. One interpretation is thi crisis was of a more exogenous nature ana mor
specifically relating to changes in credit markguidity than changes in the macroeconomic outlook.
While the end of the bubble in 2002 and the sub@ririsis both had long-lasting impacts real econom
reflected in lower yields, lower equity returns dmgher volatility, the LTCM crisis was charactexizby

a relatively sharper increase in volatility and Berachanges in rate and equity returns. It isllikibat
almost all of the change in credit spread levelsndguLTCM is explained by the sharp rise in faclor
which is representative of the VIX, which is inriwlosely related to liquidity risk. The sharp $aith log-
likelihood that accompany the largest market mqast either to the presence of additional riskdex
and risk premiums that are not captured by thedékdiorm, or the need to allow for time-variationthe

factor loadings.
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5. CONCLUSION

This study concludes that most of the systemati@tian in credit spread indices by rating is expia

by three factors. The factors vary broadly with YH&, the long bond rate, and S&P500 returns, which
are the theoretical determinants of credit riske $hansitivities of credit spread indices to eactheffac-
tors suggest that the predictions of the Mertory4)%tructural model hold on an aggregate levelil&Vh
most empirical literature considers liquidity rigiather than credit risk, to be the major determitraf
credit spread levels and changes, we find thathife® most important factors driving credit sprezaly
with macroeconomic variables. The implication iattthe dynamics of a potential liquidity risk premmi
are not easily separable from those of known maomanic variables, a result that is consistent with
findings of Ericsson and Renault (2006) that liégpyidisk is determined by the same factors as tirisk.
This is the first known study to use state-spapeesentation and the Kalman Filter method to firetlit
spread factors. By making no prior assumptions abiwirisk variables driving credit spreads, the ap

proach provides a contrast to existing empiridalditure and an independent test of theory.
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Industrial Corporate Bond Yield Spread Indices by Rating

Figurel

Credit Spread Indices (10-year Maturity)
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Tablel Parameter Estimates, for the One, Two and Three-factor M odels
The table shows the maximum-likelihood estimatesefach of the three parametdig, 8,0} of
each factor, under the one, two, and three-factmtets. The Log-likelihood calculations are based
on Equation (12), and used to calculate the Akailtermation Criterion (AIC), and Bayesian In-

formation Criterion (BIC). Standard errors basedtminverse Hessian matrix are shown below the

parameter estimates.

Period 1. Apr-96to Mar-03 Period 2: Apr-96to Mar-08
One Factor Two Factor Three Factor One Factor Two Factor Three Factor

LogL 1,24¢ 1,841 2,041 LogL 2,31¢ 3,07¢ 3,327
AIC 2,55¢ 3,782 4,217 AIC 4,697 6,251 6,79(C
BIC 2,63: 3,90: 4,38 BIC 4,792 6,40(C 6,992
K, 0.391 0.411 2.981 K, 0.12( 0.127 0.48¢
(0.281, (0.401; (0.231 (0.040 (0.145 (0.197

K, 0.351 0.171 K, 0.757 0.00¢
(5.011; (0.021, (0.304 (0.003

Ky 0.421 Ky 0.78¢
(0.041 (0.357.

6, 0.791 0.601 0.251 6, 1.177 1.19¢ 0.32¢
(0.211 (0.201 (0.021 (0.299 (0.653 (0.043
6, 0.161 0.641 6, -0.01¢ 17.29¢
(0.351 (0.171 (0.026 (2.274

6, 0.161 6, 0.06¢
(0.111 (0.047.

o, 0.181 0.141 0.121 o, 0.15: 0.17¢ 0.10¢
(0.021, (0.011; (0.011, (0.011, (0.011, (0.009

o 0.141 0.081 o 0.067 0.12¢
2 . . 2 N .
(0.021; (0.011, (0.022 (0.011
g, 0.131 g, 0.097
(0.011 (0.009
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Estimated Factor s of the Three-Factor Modd and M acroeconomic Variables

Figure3
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Figure4 Measurement Error Variances
The figure shows the square roots of the estimateasurement error variances for each rating series
under the one, two, and three-factor model. Theimamx-likelihood estimates are based on the full

period (Apr-96 to Mar-08), where the variancestheediagonal elements of matrix (14x14) in the
Measurement Equatior = ZX +¢& Whereg, ~ N(0,H) - All variance estimates are significant at the

5% level within each model.

Square Root of Estimated Measurement Error Variances for the
One, Two and Three-Factor Model (in basis points)
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Table2 Credit Spread Summary Statisticsand Model Fit Errors

The following table summarizes observed credit agsefor the 144 months from 30-Apr-96 to 31-
Mar-08. For each month we calculate a vector of ehfitlerrors, defined as the difference between th

14 observed credit spread® (14x1) and the fitted spreads defined by the Measurerienftion

(3)R =ZX,. The estimated state vectyr (3x1) and measurement matrix(14x3) are based on the

three-factor full period model. For each of thectddit spreads by rating we generate a time-sefies
144 fit error terms and calculate the average,dstahdeviation, and mean absolute percentage error
(MAPE). Two Augmented Dickey-Fuller tests (ADF) gverformed on each error time-series. The

first ADF test is based on an AR model with dyift= c+ gy, , + @y, _, + & and the second is based on
the trend-stationary AR modgl=c+gy,_, + & +@\y,_, +¢& - For most of the series the ADF test p-
values show that the null hypothesis of a unit rgot 1) can be strongly rejected at the 5% signifi-

cance level. The stationary error terms with avesagose to zero suggest that the three-factorceksi

model on average provides an unbiased fit for tigatieads across ratings.

Spread Statistics Error Statistics ADF Test p-values

Index | Avg (bp) SD (bp) | Avg (bp) MAPE SD (bp) |No Trend Trend
AAA 64.5 254 0.01 7.8% 5.7 <0.0001 <0.0001
AA 71.9 27.9 -0.02 5.3% 4.3 <0.0001 <0.0001
Al 83.9 31.3 -0.01 4.3% 4.1 <0.0001 0.0032
A2 94.7 33.7 0.14 2.9% 3.4 <0.0001 <0.0001
A3 108.9 384 0.30 3.5% 4.4 <0.0001 <0.0001
BBB1 123.3 40.8 -0.41 5.1% 7.3 0.0020 0.0126
BBB2 138.1 43.2 -0.77 6.2% 9.7 0.0075  0.0350
BBB3 159.9 47.9 -1.36 6.9% 13.0 0.0068  0.0522
BB1 247.1 96.5 4.25 9.5% 24.5 0.0045 0.0221
BB2 2924 88.5 -0.13 2.5% 8.7 <0.0001 <0.0001
BB3 325.5 98.1 0.54 3.3% 12.8 <0.0001 <0.0001
B1 359.1 99.7 -1.19 2.8% 11.9 <0.0001 <0.0001
B2 415.0 119.6 -0.26 3.7% 19.6 <0.0001 <0.0001
B3 502.8 165.3 4.26 6.6% 39.5 0.0025 0.0112
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