Why IPO Auctions Are Not Popular: Interpreting International Experience

Ravi Jagannathan
Northwestern University & NBER

Why Study IPOs?

- IPOs bring new firms to the public
 - An important economic activity

- Market value of firms (other than banks and utilities) that went public during 1997-2006
 - $1.52 Trillion, at the offering price
 - VC backed accounted for $0.41 Trillion
Methods Available for IPOs

- Bookbuilding and its’ variants
- Auctions
 - Uniform price
 - Discriminatory
- Fixed Price Issues
- Hybrids that combine the above methods
Global Patterns in IPO Methods

- Traditional IPO method in most countries was Fixed Price Public Offer
 - Set the price, and let investors place orders
 - Inexpensive, easy on retail investors
- Large Privatizations
 - Margaret Thatcher started the wave of privatizations
 - Other countries followed
 - First tried auctions, and then bookbuilding
 - Early 1990s: Hardly any bookbuilding outside North America
 - Late 1990s: Bookbuilding became dominant
Global Patterns in IPO Methods...

- Just as bookbuilding gained grounds around the world
 - US began having doubts...
The Bookbuilding Method for IPOs

- Common U.S. IPO Method
 - A select group of investors submits bids

- The issue manager:
 - Uses bids to approximate the demand curve
 - Sets Offering Price below what will equate supply and demand
 - Discretion (in consultation with issuer) over level of Underpricing
 - Allocate shares by rationing
 - Discretion over who gets how many shares
Why offer shares at a discount?

- Those with valuation relevant information
 - Have to be compensated to share their information and facilitate price discovery
 - Even those without any “information” have to be induced to participate

- Otherwise they can wait and buy after trading starts
 - If everyone waits, the issue will fail

- How much underpricing is reasonable?
 - Debatable!
Magnitude of Underpricing

- 6,995 U.S IPOs, 1980-2006
 - Average Offer Price:
 - $12.39 ($12.54 for VC backed)
 - Average Net Proceeds:
 - $69.33 million ($47.20 for VC backed)
 - First day return
 - Average: 18.64% (26.93% for VC backed)
 - Median: 6.67% (9.82% for VC backed)
What happened during 1998-2000

- Severe Underpricing
 - Average first day return: 48.8%
- Money left on the table
 - $71 billion
 - $163 Billion Raised through IPOs
- Why so much money was left on the table?
 - Why issuers did not complain?
Popular View in US

- Underpricing + Discretion over share allocation in bookbuilding
 - Potential for abuse
 - Especially with first day returns as large as 50%
 - Some abuse happened
 - Well publicized scandals
- Need for a more transparent process with less discretion
Popular View in the US...

- Auctions are eminently suitable for IPOs
- Transparency
 - Little underwriter discretion
- Widely used for a variety of goods and securities
 - Especially for Government bonds
 - Also for
 - Corporate Bonds and Preferred Shares
 - New Equity Issues in Privatizations
- Why not for new equity issues in general?
 - What do we learn from other countries’ experience?
Popular View in the US...

- Auctions not popular only because
 - Underwriters’ incentive to promote bookbuilding
 - Issuers’ disincentive to try a new method
 - Investors’ unfamiliarity with auctions
Global Experience with Auctions

- Auctions have been tried in over 20 countries
 - Most have abandoned them

- Choice
 - Made by issuers and not regulators
 - Not due to lack of familiarity
 - Does not appear to be due to underwriters’ efforts to higher fees or to allocate shares to “friends”

- No evidence that issuers prefer method with least underpricing
Global Experience, ...

- Country, Introduced, (Abandoned)
 - France, 1960s, (1999?)
 - Italy, 1980s, (1986)
 - Sweden, 1980s, (1980s)
 - Switzerland, 1980s, (1980s)
Global Experience, ...

- Country, Introduced, (Abandoned)
 - Malaysia, 1992, (1994?)
Auctions were tried and abandoned

Dotted line (right axis): # of total IPOs per year;
Solid line (left axis): % of IPO auctions out of all IPOs.
Three Problems with IPO Auctions

- **Winner’s Curse**
 - Accentuated by Uncertainty about the number of bidders and what they know, ...

- **Free Riders**
 - Inadequate incentive for information gathering and price discovery, ...

- **Return Chasers**
 - Destabilizing effect, ...
Winner’s Curse

□ Bidding in auctions requires sophistication

■ Even risk neutral bidders will have to adjust bids down to be below their own estimate of value

■ Adjustment depends on

□ Number of bidders, and their bidding strategies

□ Their information
Winner’s Curse ...

- Learning from the past experience is difficult
 - Example: K shares, N bidders. Everyone gets a signal about the value and has a private estimate.
 - How should one bid?
Winner’s Curse: Example with Naïve Bidders

- K = 100 shares being offered
 - True value = $20
 - i’th bidder’s estimate of value, IV$_i$
 - IV$_i$ = $20 + e_i$
 - e$_i$ ~ Normal (0, 6)
 - 101$^{\text{st}}$ highest bid is the auction clearing price.
- N = 200 Naïve bidders, i = 1,2...200
 - Each bidder bids his estimate
 - Almost No Winner’s Curse
Winner’s Curse: Example, cont..

- 200 bidders as expected, N = 200, # of auctions = 100

B. 200 Bidders Average Bid = $19.23
Clearing Price = $19.08
Winner’s Curse: Example, cont..

- Suppose a risk neutral participant observed 100 past auctions where exactly 200 bidders participated

- Finds,
 - Average bid price is about $20
 - Winning bid is also about $20
 - Range, $18.32 to $21.27
 - True value is about $20
 - Maximum Winner’s Curse
 - $1.27 (Loss)
 - Minimum Winner’s Curse
 - -$1.68 (Gain)

- Naïve bidding strategy seems acceptable
Winner’s Curse: An Example, cont..

- Suppose the investor bids his private estimate of intrinsic value
 - Unexpectedly 1000 investors decide participate
 - 10 times expected
 - Not unusual

- Winner’s Curse
 - Average loss: $8.20
 - 41% of the value of the stock being auctioned
 - 6.5 times $1.27 (worst case observed in the past!)
Winner’s Curse: An Example, cont..

- Too many bidders, $N = 1,000$, # of auctions = 100

D. 1,000 Bidders
Average Bid = $19.90
Clearing Price = $28.20
Sophisticated Bidders

- What if all investors correctly analyze the auction structure?
 - Equilibrium optimal bidding strategy is given in Milgrom (1981)
Winner’s Curse & Sophisticated Bidders

- Adjusting for Winner’s Curse
 - Shave your bid, depending on how many others will be bidding and how they will bid
 - But, how many are bidding?
 - What do they know and what strategy do they follow?
Sophisticated Bidders: Equilibrium

☐ To follow:
☐ Properties of the equilibrium
A numerical exercise

- $K=5$
- **Number of bidders = N, Each bidder can bid for one unit or zero unit**
- Initial capital of 30
- V lognormal, $E(V) = $10, $\sigma(V) = 0.3$
- $\{S_i\}$ lognormal, $E(S_i) = V$, $\sigma(S_i|V) = 0.3$
- After the auction, all the information is revealed and the issue is traded at a price equal to the average of the signals
- Bidders are Risk Neutral
Equilibrium Bid Function

Equilibrium bid shaving increases with the number of participants:

![Equilibrium Bid Function Graph](image-url)
Little reward to participation in the auction!

- Discount = \(E(V|\text{All Signals}) - \) Auction Price
Allowing for Randomness in N...

- As long as the number of bidders is known, there is little risk for any N
- What if N is random?
- Suppose $N=10$ with probability 0.80, but there is a 0.20 chance that $N=5000$
- Bidders’ Coefficient of Relative Risk Aversion is 15
Allowing for Randomness in N...

- As long as the number of bidders is known, there is little risk for any \(N \).
- What if \(N \) is random?
- Suppose \(N = 10 \) with probability 0.80, but there is a 0.20 chance that \(N = 5000 \).
- Bidders’ Coefficient of Relative Risk Aversion is 15.

- The discount that bidders require, and the riskiness of the auction payoff, increase substantially:
 - Average discount = 20%
The Free Rider Problem

- Unlike Treasury Bills and Preferred Shares of Utilities
- Coming up with a reasonable value for IPO shares requires effort, even for sophisticated investors
- With large number of investors
 - If everyone gathers information through effort, auction clearing price will reflect that information
 - Why not free ride, and bid high without effort?
- One possible equilibrium
 - “Free ride” with probability, p, and gather information with probability, 1-p
- Limiting the number of bidders & knowing their identity/information quality may help design a better mechanism
The Free Rider Problem...

- Another possibility
 - Adaptive learning strategy
 - Bidders assume others may behave in one way
 - Respond optimally
 - No one free rides
 - Followed by free riding
 - Followed by no free riding
 - May not converge, ...unstable, volatile auction prices, ...investors and issuers may shy away from auctions
Free Riders: Singapore Evidence

Free Riders Placing Excessive Bids

<table>
<thead>
<tr>
<th>Company</th>
<th>Reservation Price</th>
<th>Clearing Price</th>
<th>Highest Bid</th>
<th>Premium over Reservation Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIC</td>
<td>$0.85</td>
<td>$1.20</td>
<td>$9.80</td>
<td>1,053%</td>
</tr>
<tr>
<td>Eng Wah</td>
<td>$0.65</td>
<td>$0.66</td>
<td>$7.80</td>
<td>1,100%</td>
</tr>
<tr>
<td>Hwa Tat Lee</td>
<td>$0.60</td>
<td>$1.02</td>
<td>$10.20</td>
<td>1,600%</td>
</tr>
<tr>
<td>SingTel</td>
<td>$2.00</td>
<td>$3.60</td>
<td>$100.00</td>
<td>4,900%</td>
</tr>
</tbody>
</table>

Singapore Telecom: A mature, established company scheduled to lose its current monopoly in a few years.
- At the $2.00 reservation price, the PE was 27 times.
- At the highest bid, the PE was 1,350 times.
Return Chasers

- Suppose some investors do not know how to bid in an auction and go by the results of preceding auction
 - Unexpectedly low auction participation
 - Low auction clearing price
 - High return to auction participation
 - Induces more participation in subsequent auction
 - Unexpectedly large participation
 - High auction clearing price
 - Low return to auction participation
 - Discourages participation in subsequent auction
 - Induces volatile auction prices and participation levels,...,
An Anecdote from Argentina

- Argentina began a massive privatization program with the IPO auction of Telefonica de Argentina in December, 1991.

- The clearing price was 45% above the already-high reservation price.

- But the price rose another 20% on the first day of trading, and kept climbing from there.

- A “smashing success”.
An Anecdote from Argentina...

- Four months later, they auctioned off Argentina Telecom.

- People thought “if I had only bid in the Telefonica auction, I’d be rich now”, so they piled into Telecom.

- Telecom was later described as “viciously overpriced”.
Evidence from Singapore

- 20 uniform price auctions from 1993-1994
- (as well as 31 fixed price public offers)

- Simultaneous hybrids – investors could also place fixed price orders at the reservation price, but the fixed price tranche was usually heavily oversubscribed and had to be rationed.

- We find evidence of
 - Free riders placing excessively high bids
 - Deteriorating and eventually negative returns to bidders
- Fewer bidders over time, eventually leading to two undersubscribed offerings.
Learning, Winners Curse: Past Auction Return affects Future Participation

Regression Equation: $y = 14.112x + 2.9134; R^2 = 0.4611$

$x = $One month return following (i-2)\text{'th auction}$

$y = \frac{\text{#Shares Bid}}{\text{#Shares Auctioned}}$ in i\text{'th auction}$
Singapore, 1993-94, cont...
Subscription Rate Affects Auction Price (Stronger Winner’s Curse?)

Auction Price Vs Auction Subscription

Regression Equation: \(y = 0.1225x + 0.0278, \quad R^2 = 0.3842 \)

\[y = \frac{\text{Auction Price} - \text{Reservation Price}}{\text{Reservation Price}} \]

\[x = \frac{\text{(#shares bid in auction)}}{\text{(#shares auctioned)}} \]
Singapore, 1993-94, cont...
Winner’s Curse? Continued...

\[r_i = \alpha_0 + \alpha_1 \left(\frac{P_A - P_F}{P_F} \right)_i + \alpha_2 s F_i + u_i \]

- Higher auction price from Winner’s Curse =>
 - Controlling for participation rate in fixed price tranche
 - Lower one month return following auction
 - First slope coefficient negative (significant, 10%, one tail)
- Larger participation rate in fixed price tranche =>
 - Controlling for auction price / fixed price, stronger demand once trading starts
 - Higher prices after trading starts
 - Second slope coefficient significant (significant, 2%, one tail)
- Adjusted R-Square: 14.3%
Evidence from Singapore...

Deteriorating Returns Over Time

- Initial returns –
 - Mean: 4.6%; Median: 2.8%; Standard deviation: 8.7%
 - Half of the auctions had negative market-adjusted initial returns.

- One month returns –
 - Mean: -0.5%; Median: -2%; Standard deviation: 12.4%
 - 13 out of 20 had negative market-adjusted initial returns.

- One month returns over time –
 - First 7 auctions: 11.7% average return (5 of 7 positive)
 - Last 13 auctions: -6.2% average return (11 of 13 negative)
 - Singapore’s auctions were known as tenders;
 - People joked that the stocks must be catching a new disease, ‘tenderitis’
Evidence from Singapore...

Deteriorating Returns Over Time...

Figure 3.A. One Month Raw Returns on Singapore Auctions Over Time

- IPC International
- STIC
- Keppel Bank
- Intern'l Factor
- Rotary Engineering
- Hwa Tat Lee
- Singapore Telecom
- Vickers Balleas
- Pan United Co.
- Hup Seng Hat
- Datapulse Tech.
- Aztech Systems
- Nippecraft Ltd.
- Berger International
- Comfort Group
- Liang Hiat
- Eng Wah Org.
- Superbowl
- Pokka Corp.
- Sunright Ltd.

- 4-offering moving average raw 1-month returns
- One month raw returns
Evidence from Singapore...

- **Fewer Bidders Over Time**
 - Average number of bidders, first 9 auctions: 45,517
 - Average number of bidders, 4 of last 5 auctions: 1,422 (a 97% reduction)
 - The 5th-to-last auction, Liang Huat, was 38% undersubscribed.
 - The last auction, Sunright, was 82% undersubscribed.
 - But there were still a few placing high bids – the highest bids for Liang Huat and Eng Wah were 250% and 1,000% over the reservation prices.

- **Summary** –
 - All of this is consistent with the idea that return-chasing free riders made auctions less attractive over time
 - less attractive to sophisticated investors;
 - and ultimately less attractive to issuers.
Singapore, 1993-94

- Dotted Line: #IPOs; Solid Line: % IPOs Using Auctions

A. Singapore
Improving on standard auctions

- Consider Nonstandard Auctions & Allocations

 - Allocations to depend on price as well as "quality" and "timing" of bid
 - Reward long-term investors, early firm bids, reward information that helps price the issue, favor limit bids to market bids, ...
 - Pre-qualify and limit number of bidders to minimize risk to bidders
 - Encourage small retail participation without discouraging sophisticated institutional investors
 - Fixed price tranche for qualified small retail investors immediately following issue price is set with predetermined allocation rules
 - Make decision rules public and discretion subject to oversight
Conclusion

- IPO auctions have been tried repeatedly in various countries, but have been abandoned by issuers.

We argue that there are three problems:
- the winner’s curse
- the free rider problem
- return chasers

- The problems are all related to the fact that entry is not controlled, making auction outcomes uncertain for both investors and issuers.

- We find evidence of these problems for IPO auctions in Singapore and elsewhere.

- Need to address these issues for IPO auctions to become popular