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Abstract 
 

This paper explores the presence and characteristics of the asymmetric return- 
volatility relationship (i.e. asymmetric volatility) in bilateral exchange rates and trade 
weighted indices (TWI).  We find evidence of asymmetric volatility in daily realized 
volatilities of AUD, GBP, and JPY against USD, as well as daily GARCH-estimated 
volatilities of their TWI.  The asymmetry in bilateral exchange rates is weaker than it 
is in TWI. For a given currency, the asymmetry is stable in one direction and persists 
over periods of several years. It is driven by the continuous component, not the jump 
component, of realized volatility. However, for different currencies the asymmetry is 
in different directions: Volatilities of AUD and GBP increase when they depreciate 
against USD; but volatility of JPY increases following JPY appreciation. The 
statistical properties of EUR are quite different from the other currencies.  Its returns 
against USD appear to be normally distributed with no fat tails. Its volatility has much 
lower short-term persistence. There is no asymmetric volatility in EUR against USD 
and its TWI.  We also document a strong impact from long-run price trend to daily 
realized volatility. The impact is stronger than past volatilities aggregated at different 
time intervals.  Our findings call for alternative economic explanations for 
asymmetric volatility in exchange rates.  
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I. Introduction 
 

It is well known that volatility in equity markets is asymmetric, i.e. negative 

returns are associated with higher volatility than positive returns. Robert Engle in his 

2003 Nobel Lecture emphasizes the importance of asymmetric volatility. For a 

portfolio of S&P500 stocks, Engle (2004) shows that ignoring the asymmetry in 

volatility leads to a significant underestimation of the Value at Risk (VaR). In the 

foreign exchange markets, however, the consensus seems to be that there is no 

asymmetric volatility.  Bollerslev, Chou, and Kroner (1992) suggest that “[W]hereas 

stock returns have been found to exhibit some degree of asymmetry in their conditional 

variances, the two-sided nature of the foreign exchange market makes such 

asymmetries less likely.”  All of the studies in their survey adopt symmetric models for 

exchange rate volatility. Since then the theoretical advances in volatility models, 

together with the availability of intraday exchange rate data, led to a proliferation of 

studies of exchange rate volatility.  Almost all of them do not consider asymmetric 

volatility models. Recently Andersen, et al. (2001, 2003) (ABDL hereafter) provide an 

extensive examination of the statistical properties and the modeling and forecasting of 

realized volatility of foreign exchange rates.  However the possibility of asymmetric 

volatility is yet to be investigated.   

The “two-sided nature of the foreign exchange market” is probably the primary 

reason for the overwhelming choice of symmetric models for exchange rate volatility.  

By definition, bilateral exchange rates are ratios of currency values: positive returns for 

one currency are necessarily negative returns for the other. As such it seems that the 

link between exchange rate return and volatility should be symmetric. Furthermore, the 

standard explanations for asymmetric volatility in equity markets, i.e. the leverage 

effect and the volatility feedback effect, do not appear to be applicable to exchange 
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rates.  The debt-to-equity ratios in equity markets vary from zero to several hundred 

percent. But the debt-to-GDP ratios for most countries are below 5%, and the debt-to-

national asset ratios are much lower.  If an investor anticipates higher volatility, say for 

USD/AUD rate, it is unclear whether she should sell USD or AUD if she holds both 

currencies.  Empirically, the standard asymmetric GARCH models regularly detect 

asymmetric volatility in daily equity returns. However these models typically fail to 

detect asymmetry in daily exchange rate volatility.  This may be an important factor in 

model selection in favor of symmetric volatility models.   

Despite the apparent symmetry in bilateral exchange rates, currencies are not 

symmetric: some have greater economic importance than others. For example, many 

companies and financial institutions use USD as the base currency for profit and loss 

calculations but few uses AUD. For these institutions, higher expected USD/AUD 

volatility implies greater risk in AUD-denominated assets but not in USD-denominated 

assets. This may lead to the sale of AUD-denominated assets, which lowers USD/AUD 

exchange rate.  This base-currency effect is similar to the volatility feedback effect in 

equity markets. It is likely to be stronger in some currencies than in others. For 

example, higher expected USD/EUR volatility may lead Europeans to sell USD-

denominated assets and Americans to sell EUR-denominated assets.  To the extent that 

the Euro area and the United States are of similar sizes and levels of economic 

development, the base-currency effect should be weaker for the USD/EUR rate than it 

is for other currencies.  Another unique feature of the foreign exchange markets is 

central bank intervention. It is well known that interventions are associated with higher 

volatility. As central banks intervene on one side of the market but not the other, 

interventions may lead to an asymmetric relationship between exchange rate return and 

volatility.  For example the Bank of Japan is known to be a heavy seller of JPY over 
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our sample period. If the selling slows down the speed of JPY appreciation, then the 

higher volatility from intervention is associated with a lower JPY/USD rate.  If the 

selling leads to a lower value for JPY, thus a higher JPY/USD rate, then there should be 

a positive relationship between the JPY/USD rate and its volatility. Finally Avramov, et 

al. (2006) show that contrarian and herding investors can cause asymmetric volatility in 

stock markets: herding trades increase volatility as prices decline while contrarian 

trades reduce volatility following price increases. Since contrarian trading and herding 

are present in the foreign exchange markets, e.g. Gençay, et al. (2003) and Carpenter 

and Wang (2006), one would also expect the presence of asymmetric volatility.   

This study tests for the presence of asymmetric volatility in major world 

currencies. The issue is important for several reasons.  First, the foreign exchange 

markets are several times larger than the equity markets and present a substantial risk to 

investors. As argued by Engle (2004), the presence of asymmetric volatility, if 

unaccounted for, will lead to the underestimation of the Value at Risk. Second, an 

empirical examination of asymmetric volatility will enhance our understanding of 

exchange rate dynamics, particularly in the second moment. This in turn may improve 

volatility forecasting and derivative pricing. Third, the presence of asymmetric 

volatility invalidates the standard normality results associated with a continuous 

diffusion price process (Andersen, Bollerslev, and Dobrev, 2005, Barndorff-Nielsen 

and Shephard, 2006).  These results are used in testing for jumps in volatility, e.g. 

Huang and Tauchen (2005).  Last but not least, the presence of asymmetric volatility 

will challenge the traditional economic explanations for asymmetric volatility in equity 

markets and call for alternative explanations for the foreign exchange markets.   

Studies on asymmetric volatility in the foreign exchange markets are relatively 

scarce. An early study by Hsieh (1989) shows that EGARCH models produce slightly 
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smaller residual kurtosis than GARCH models, while other diagnostics are similar. 

Byers and Peel (1995) document asymmetric volatility in European exchange rates 

during 1922-1925. Asymmetric volatility has been found in Malaysian ringgit (Tse and 

Tsui, 1997), Australian dollar (McKenzie, 2002), and Mexian peso (Adler and Qi, 

2003), all against US dollar. Recently Ederington and Guan (2005) reports marginally 

smaller forecasting errors for JPY/USD using EGARCH relative to GARCH.  While 

not directly examining exchange rate volatility, Andersen, et al. (2003) shows 

asymmetric responses of major exchange rates to economic announcements in the 

United States: bad news leads to greater exchange rate movements than good news.  A 

natural question to ask is whether such asymmetry holds for exchange rate volatility.   

Our study makes several contributions to the literature on exchange rate 

volatility.  First, we test for the presence of asymmetric volatility in the trade weighted 

indices (TWI) and in realized volatility of bilateral exchange rates.  TWI measures 

changes in the absolute value of a currency and is an important input for monetary 

policies as well as investment decisions. The dynamics of TWI, particularly in the 

second moment, has not been examined in the literature.  Realized volatility is an 

unbiased and highly efficient estimator of the underlying integrated return volatility. It 

should capture any asymmetric relationship between return and integrated volatility that 

may have been missed in less-efficient volatility measures.  This leads to our second 

contribution. We draw direct comparison between realized volatility and daily GARCH 

estimated volatility in terms of statistical properties and short-term dynamics.  Despite 

a rapid expansion of studies on realized volatility, “the relationship between these 

models and the standard daily ARCH-type modeling paradigm is not yet fully 

understood, neither theoretically nor empirically.” (Andersen, Bollerslev, and Dobrav, 

2005). Third, our test for asymmetric volatility is based on a dynamic model of realized 
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volatility that encompasses the impact of the long-run volatility as well as the long-run 

price trend.  The long memory in volatility has been documented by many studies since 

Ding, et al. (1993). The association between price trend and volatility has been 

explored by Müller, et al. (1997), Campa, et al. (1998), and Johnson (2002) among 

others. We separately identify the impact of long-term price trend from the asymmetric 

impact of return innovations.  Fourth, using the nonparametric procedure proposed by 

Barndorff-Nielsen and Shephard (2006), we decompose realized volatility into a 

continuous component and a jump component. Understanding the jump component is 

important for a range of investment decisions, from asset allocation (Liu, Longstaff, 

Pan, 2003) to option pricing (Eraker, et al., 2003).  We examine which component is 

associated with volatility asymmetry.   

Our analysis is based on intraday quotes for AUD, EUR, GBP, and JPY against 

USD, over a period of eight years from January 1996 to March 2004.  The empirical 

results reveal several new regularities in exchange rate volatilities.  First asymmetric 

volatility is present in bilateral rates of AUD, GBP, and JPY against USD.  For a given 

bilateral rate, the asymmetry is stable in one direction and persists over periods of 

several years. It is driven by the continuous component, not the jump component, of 

realized volatility.  However, the asymmetry is in different directions for different 

currencies: volatility is higher for AUD and GBP when these currencies depreciate 

against USD, but is higher for JPY when JPY appreciates against USD. To our 

knowledge this has not been documented elsewhere and the economic explanations are 

yet to be explored.  Second, we find a strong and increasing impact from weekly, 

monthly, and quarterly absolute returns to daily realized volatility, and the impacts of 

long-run absolute returns are larger than those of lagged realized volatilities aggregated 

at different time intervals. Although Müller, et al. (1997) document a significant impact 
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from squared long-run return (up to 12 weeks) to half-hourly volatility, the impact 

coefficients diminish with time aggregation and past volatilities are not included.  Our 

finding is clearly different from GARCH models where daily volatility is mostly 

explained by past daily volatility.  Third, the statistical properties of EUR appear to 

defy the stylized facts for other currencies and financial assets, e.g. fat tails and 

volatility clustering. Its returns appear to be normally distributed with no significant 

skewness and kurtosis. Its realized volatility has much lower short-term persistence. 

Contrary to the idea of information spillover from major to minor currencies, e.g. Hong 

(2001) and Evans and Lyons (2002), we find no volatility spillover from EUR to any of 

the other currencies at daily frequency; there is no asymmetric volatility in EUR.  

Overall these findings call for theoretical exploration for the presence of asymmetric 

volatility in exchange rates and for the relationship between price trend and volatility.   

Section II provides details on the data, the calculation of daily realized 

volatility, and summary statistics of daily returns and realized volatility.  Section III 

compares daily realized volatility with GARCH-estimated volatility and explores why 

asymmetric GARCH models fails to capture the asymmetry in realized volatility.  Tests 

and robustness checks for asymmetric volatility are carried out in section IV.  We 

conclude in section V.   

 
II. Data and Preliminary Analysis 
 

Our primary data are intraday Reuters FXFX quotes for AUD, EUR, GBP, and 

JPY, all against USD, kindly provided by the Securities Industry Research Center of 

Australia (SIRCA).  The samples for AUD, GBP, and JPY are from 1 January 1996 to 

31 March 2004 for a period over eight years. The sample for EUR goes from 1 January 

1999 to 31 March 2004 for a period over five years.  AUD, GBP and EUR are quoted 

as USD/AUD, USD/GBP, and USD/EUR respectively, while JPY is quoted as 
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JPY/USD.  Quotes are filtered for anomalies, e.g. out-of-range price or spread.  Daily 

exchange rates and the trade-weighted indices (TWI) are also used for our analysis and 

are downloaded from DataStream for the same currencies and over the same sample 

periods as above.  DataStream provides daily exchange rates on all weekdays sampled 

at different times over the trading day for different currencies. 

Construction of Daily Return and Realized Volatility 

Reuters quotes are used for the construction of daily return and realized 

volatility. We adopt the same 30-minute sampling interval as ABDL (2003) as they 

argue that “the use of equally-spaced thirty-minute returns strikes a satisfactory balance 

between the accuracy of the continuous-record asymptotics underlying the construction 

of our realized volatility measures on the one hand, and the confounding influences 

from microstructure frictions on the other.”1 We first calculate the midpoint of the bid 

and ask quotes at each 30-minute interval as the linear interpolation of the quotes 

immediately before and after the 30-minute time stamp.  Following the convention in 

Bollerslev and Domowitz (1993) and ABDL (2003), a trading day starts at 21 GMT, or 

4pm New York time, and ends at 21 GMT on the next day. Weekend quotes, from 21 

GMT on Friday to 21 GMT on Sunday, are excluded.  Half-hourly returns are the log-

difference of half-hourly prices. Daily returns are the sum of half-hourly returns over 

the trading day. Daily realized volatility is the sum of squared half-hourly returns over 

a trading day.  Numerically the return series are expressed in percentage, not decimals; 

therefore the volatility series contain a factor of 104.  Sometimes a trading day has less 

                                                 
1 Recently several studies have proposed procedures for removing microstructure noise, e.g. Ait-Sahalia, 
et al. (2005), Bandi and Russel (2005), and Hansen and Lunde (2006). Hansen and Lunde (2006) report 
that at 20-30 minute sampling intervals, microstructure noise is independent of asset prices, and such 
independence fails at higher frequencies. Barndoraff-Nielsen and Shaphard (2006) show that the 
difference in realized volatilities from alternative sampling frequencies, e.g. 1 minute versus 10 minutes, 
is theoretically small.  Empirically correcting microstructure noise does not appear to improve volatility 
forecasting, according to Ghysels and Sinko (2006).   
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than 48 half-hourly observations due to holiday in part of the world, slow trading, or 

Reuters system stoppage.  If a trading day has more than 3.5 hours of missing data, we 

exclude the day from our sample.  This process leads to 1920 daily observations for 

AUD, 1925 for GBP, 1935 for JPY, and 1217 for EUR.   

Descriptive Analysis 

Table 1 provides a brief summary of quote activities.  Based on a sample from 

December 1986 to June 1999, ABDL (2003) report the average daily number of quotes 

around 2000 for JPY and 4500 for Deutschemark.  The quote intensity has increased 

substantially since. EUR is clearly the most active currency.  The median number of 

quotes for EUR is over three times the quotes for JPY, over five times the quotes for 

GBP, and approximately twenty-five times the quotes for AUD.   

Figure 1 depicts the exchange rates and the realized volatility over the sample 

period.  The most notable feature from Figure 1 is the exceptionally high volatility for 

JPY in early October 1998. On October 7, 1998, JPY jumped from around 130 to 120 

in one day.  Our realized volatility measure is 11.3 for October 7 and 34.6 for October 

8.  Both AUD and GBP experienced high volatility on these days. Since this is regarded 

as “once-in-a-generation” volatility2, these two days are treated as outliers and are 

removed for the econometric analysis in the following sections.   

Table 2 provides some summary statistics for three daily samples: (1) daily 

returns based on Reuters quotes at 21 GMT, (2) daily returns sampled at different times 

by DataStream, and (3) daily TWI returns from DataStream.  Our EGARCH estimation 

is based on daily bilateral and TWI returns from DataStream. The statistical properties 

of all three samples are very similar. Compared to standard deviations, the daily means 

are approximately zero.  Volatility and kurtosis rankings are the same for all three 

                                                 
2 See Cai, et al. (2001) for events surrounding these days.   
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samples. GBP has the lowest volatility; EUR has the lowest kurtosis; and JPY is the 

highest in both.  JPY returns are left skewed partially due to the large one-day jump in 

October 19983.  The Ljung-Box statistics show not significant autocorrelation in daily 

returns but strong autocorrelation in squared returns.  As expected, TWI return 

volatilities are lower than volatilities against USD.  AUD TWI returns show negative 

skewness not present in USD/AUD rate.  Interestingly the raw daily return distribution 

of EUR appears to be different from the other currencies.  Its kurtosis is less than 3, 

indicating no fat tails in return distribution. The Ljung-Box statistics for squared returns 

are much lower than other currencies and is marginally significant (critical value is 40 

at 99.5% significance), indicating relatively little persistence in volatility.   

Table 3 reports summary statistics for daily realized volatility and logarithmic 

daily realized volatility. The ranking of the average realized volatility is consistent with 

daily return statistics in Table 2.  The average realized volatility for JPY, 0.540, is very 

similar to the average realized volatility for the 1986-1996 period, 0.538, reported in 

ABDL (2001). However JPY has the highest “volatility of volatility”, partially due to 

the “once-in-a-generation” volatility in October 1998. EUR has much lower realized 

volatility and “volatility of volatility” than Deutsch Mark (DEM) in the earlier sample.  

The Ljung-Box statistics shows that realized volatility is highly persistent after 20 days 

for all four currencies.  The volatility of JPY was highly correlated with those of AUD 

and GBP before the introduction of EUR in 1999. But the correlations dropped sharply 

after EUR. The correlation between JPY and EUR volatilities (0.252) is much lower 

than the correlation between JPY and DEM volatilities (0.539) reported by ABDL 

(2001).  The bottom panel summarizes logarithmic daily realized volatility, which is the 

primary variable we study.  The skewness and the kurtosis indicate that logarithmic 

                                                 
3 After removing the outliers, the skewness of JPY drops -1.004 to -0.513. 
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realized volatility is approximately normally distributed. Logarithmic realized volatility 

has higher Ljung-Box statistics than realized volatility, which in turn has higher Ljung-

Box statistics than squared returns. These characteristics are consistent with the 

findings for DEM/USD and JPY/USD by ABDL (2001, 2003).   Figure 2 shows the 

autocorrelation function of the logarithmic volatility for lags up to 100 days. AUD has 

the slowest decay among four currencies.  JPY appears to have slower decay than 

reported in ABDL (2001, 2003). EUR has lower autocorrelations in the first 15 lags 

than the other currencies.  This is reflected in the lower Q(20) values. But in the long 

run, it has similar autocorrelation function as GBP. The autocorrelations are 

significantly different from zero even after 100 days.   

 
III. Asymmetric GARCH Models and Realized Volatility 
 

Previous studies have found no persistent volatility asymmetry in the foreign 

exchange markets.  We revisit this issue using daily exchange rates from DataStream.  

Two asymmetric GARCH models are deployed to test for asymmetric volatility.  The 

first is the exponential GARCH model of Nelson (1991) with the following 

specification for the variance equation:  

(1)  ⎟⎟
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where ht is the estimated daily return variance and rt is daily return.  The second model 

is that of Glosten, Jaganathan, and Runkle (1993, GJR hereafter):  

(2)  2
1t1t

2
1t1tt rSrhh −−−− γ+β+α+ω=   

 
where St=1 if rt<0; St=0 otherwise.  Engle and Ng (1993) show that EGARCH and GJR 

are superior relative to other asymmetric volatility models. In both models, the 

coefficient γ captures the asymmetric effect of return on volatility.   
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The EGARCH estimation results are reported in top panel of Table 4.  The 

covariance matrix is estimated via Newey-West covariance matrix with the bandwidth 

selected by the automatic bandwidth estimator of Andrews (1991) using the Bartlett 

kernel.  The coefficients ω, α, and β are highly significant for almost all currencies. 

EUR shows some differences from the other currencies.  Its parameters are noisier, 

resulting in an insignificant ω and lower t-statistics for α and β than the others. The 

coefficient for asymmetric volatility, γ, is only significant for JPY.  The GJR estimation 

results (not reported here) show that none of the coefficients for asymmetric volatility 

is significant. Overall the results show no significant asymmetry in the GARCH-

estimated volatility in the foreign exchange markets.  

The traditional explanation for the lack of asymmetric volatility is that exchange 

rates are relative prices: good news for AUD is bad news for USD and vice versa.  The 

rise and fall of a currency is not measured by changes in bilateral exchange rates, but 

rather by changes in the trade-weighted index (TWI). Therefore any asymmetric 

relationship between currency value and its volatility should be reflected in the 

volatility of TWI returns.  We test this hypothesis and report the EGARCH estimation 

results for TWI returns in the middle panel of Table 4.  Indeed TWI return volatilities 

show significant asymmetry for AUD, GBP, and JPY.  The asymmetry is not in the 

same direction. When AUD depreciates, its volatility is higher than normal.  But when 

GBP and JPY depreciate, their volatilities are actually lower.  There is no asymmetric 

volatility in the TWI returns of EUR.  The results confirm that volatility asymmetry is 

stronger in TWI than it is in bilateral exchange rates.   

An alternative explanation for failing to detect asymmetric volatility is that the 

GARCH-estimated daily volatility is not a good volatility measure.  A better volatility 

measure, such as the realized volatility estimated from intraday returns, may capture the 
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asymmetric relationship between return and volatility. This conjecture is tested using 

the EGARCH specification for daily realized volatility, rvt: 

(3)  t
t

t

t

t
tt rv

r
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The results are shown in the bottom panel of Table 4. Indeed when volatility is 

measured using intraday returns, we find that the asymmetric coefficient γ is highly 

significant for AUD, GBP, and JPY, as in the case for TWI4. The EGARCH-RV model 

of equation (3) produces smaller but more significant unconditional volatility eω.  It has 

much lower α therefore the realized volatility is less persistent than the EGARCH-

estimated volatility. Even though that volatility asymmetry is weaker in bilateral 

exchange rates, the results suggest that it is present in realized volatility for bilateral 

exchange rates, but not in GARCH-based volatility estimates.  The exception is EUR, 

which does not show any asymmetry.  

Why do asymmetric GARCH models fail to capture the asymmetry that appears 

to be in the realized volatility? The realized volatility is constructed using high 

frequency observations and in theory, it can capture all available information in a 

trading day. As such it is an unbiased and highly efficient estimator of the daily 

integrated volatility, and is able to reveal the subtle volatility-return asymmetry. On the 

other hand, the GARCH models may be interpreted as consistent filters for the 

conditional volatility (Nelson, 1992). As the length of the time interval for returns 

approaches to zero, the GARCH volatility approaches the true conditional volatility in 

continuous time, comparable to the fitted portion on the right hand side of equation (3). 

                                                 
4 GBP TWI and the USD/GBP rate have opposite asymmetries: volatility is higher when GBP rises in 
TWI and when GBP falls against USD.  This highlights the difference between bilateral rates and TWI.  
One possible explanation is that a rising USD, measured by USD TWI, is associated with a lower 
USD/GBP rate (daily return correlation -0.459). A higher USD/GBP volatility may reflect the market’s 
concern over high USD value.  Indeed an EGARCH estimation for USD TWI shows that USD TWI 
volatility rises with USD TWI value, same as GBP TWI.  The daily return correlation between USD TWI 
and GBP TWI is 0.119, so there is little spillover between them.   
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One would expect that GARCH models at high frequencies to capture return-volatility 

asymmetry as in (3). However, when GARCH models are based on daily returns, there 

is no reason to expect the GARCH volatility to be close to the fitted portion of equation 

(3), which is asymmetrically related to the lagged return.  

In Figure 3, which depicts the realized volatility and EGARCH-based volatility 

for AUD, the contrast between the two measures of volatility is dramatic. The summary 

statistics of EGARCH volatility are presented at the bottom panel of Table 3.  

Compared to realized volatility, EGARCH volatility has similar medians but much 

smaller standard deviations. The skewness and kurtosis of EGARCH volatility are 

much lower than realized volatility, but the autocorrelations at 20 lags are much larger 

than realized volatility.  As conditional expected volatility, EGARCH volatility is much 

smoother and more persistent than realized volatility. The realized volatility mainly 

consists of three components: the true conditional volatility, the contemporaneous 

disturbance (approximately tξ in (3)), and a jump component (large unexpected change 

in price). One might suspect that the asymmetry identified in (3) was caused by the 

jump component. However, we show later on (Table 10) that the asymmetry found in 

(3) remains when the jump component is eliminated from the realized volatility. 

 
IV. Testing for Asymmetric Volatility 
 

The EGARCH(1,1) specification for realized volatility in equation (3) serves to 

draw direct comparison with the EGARCH-estimated volatility.  However it does not 

capture some important features in volatility such as the long-memory effect in 

volatility demonstrated in Figure 2.  Traditionally the long-memory effect is captured 

by fractional integration models.  Müller, et al. (1997) proposes a Heterogeneous 

ARCH (HARCH) model for volatilities of different time resolutions.  The model has its 

root in the “heterogeneous market hypothesis” of Müller, et al. (1993).  It provides an 
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easy way to capture the long-memory effect in volatility. Corsi (2004) adapts the 

HARCH specification to realized volatility and shows that the HAR-RV model 

provides superior volatility forecasting performance. A nice feature of the HAR-RV 

model is that testing for asymmetry, which in GARCH models requires an auxiliary 

regression (see Engle and Ng, 1993), simply becomes a regression coefficient 

significance test. In this section we propose a modified HAR-RV model to test for 

asymmetric volatility in exchange rates.   

The Modified HAR-RV Model 

The basic HAR-RV model includes past volatilities aggregated over different 

time horizons as explanatory variables.  Let D
trv  be the realized volatility on day t.  The 

average realized volatility in the past h days (including day t) is 
t

D
t,h s

s t h 1

1rv rv
h = − +

= ∑ . We 

denote the average weekly (h=5), monthly (h=22), and quarterly (h=66) volatilities as 

Q
t

M
t

W
t rvand,rv,rv  respectively. The HAR-RV model of Corsi (2004) is given by 

Q
D k k
t t 1 t

k D

rv rv −
=

= ω+ α + ξ∑  where k = D (day), W (week), M (month), and Q (quarter).   

To test for any asymmetric impact from return to volatility, we modify the basic 

HAR-RV model by including the lagged daily return as an explanatory variable: 

Q
D k k D
t t 1 t 1 t

k D

ln(rv ) ln(rv ) r− −
=

= ω+ α + γ + ξ∑  

The use of the logarithmic volatility is motivated by its approximately normal 

distribution, as documented in Table 3 and by ABDL (2001, 2003).  When negative 

returns lead to greater volatility than positive returns, as in equity markets, we expected 

the coefficient of the lagged return γ to be negative and significant.  In addition, we 

propose to include past absolute returns at daily, weekly, monthly, and quarterly 
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intervals. Theory (e.g. Forsberg and Ghysels, 2004) and empirical evidence (e.g. 

Ghysels, et al., 2006) suggest that absolute returns outperform square return-based 

volatility measures in predicting future increments in quadratic variation.  Long-run 

absolute returns also captures price trends that increase volatility; see Campa, et al. 

(1998) and Johnson (2002).  Our modified HAR-RV model is given by  

(4)  
Q Q

D k k k k D
t t 1 t 1 t 1 t

k D k D

ln(rv ) ln(rv ) | r | r− − −
= =

= ω+ α + β + γ + ξ∑ ∑  

where ∑
+−=

=
t

1hts

D
s

k
t r

h
1r  and h=1 for k=D, 5 for k=W, 22 for k=M, and 66 for k=Q.  

Following Corsi (2004) and the GARCH-family notations, we label the modified model 

as HAR-RV(4,4).  Although the same model is fitted for all four currencies here, it is 

possible that the best HAR-RV(p,q) is different for different currencies.  We also use 

returns standardized by the corresponding realized volatility as in the EGARCH 

specification.  The results for standardized returns are qualitatively the same.   

Table 5 reports the estimation results.  The unconditional volatility, given by eω, 

is highly significant.  The coefficients for lagged volatilities at different intervals are 

almost all positive and significant5.  The finding of strong impact from long-horizon 

volatilities to daily volatility is consistent with Müller, et al. (1997), Corsi (2004), and 

Andersen, et al. (2005). The model does a good job in removing any long-run 

dependence in logarithmic volatility. The Q(20) statistics for residuals is drastically 

reduced relative to Table 3 and is no longer significant. The lagged quarterly volatility, 

not examined in previous studies, is significant for AUD, GBP, and JPY. In Corsi 

(2004) and Andersen, et al. (2005), the lagged daily volatility has the largest impact on 

today’s volatility, and the size of the coefficient declines from daily to weekly to 

monthly.  That pattern does not hold for the four currencies in our sample.  Our results 

                                                 
5 When the lagged half-yearly volatility is included, only AUD shows significant impact. 
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indicate that the lagged weekly volatility has the largest impact.  It is unclear whether it 

is the currency or the sample period caused the difference.  Our results are in line with 

the results for S&P500 examined by Andersen, et al. (2005) where the lagged weekly 

volatility has the largest impact on both the current daily and weekly volatilities.   

The size of past returns at different intervals has a significant impact on daily 

volatility, independent of the past volatility measures. In general, monthly or quarterly 

absolute returns have greater impact than daily or weekly absolute returns. For AUD 

and EUR, the impact of past absolute returns increases monotonically with time 

interval. To compare the impact of past volatility with past absolute return, we rewrite 

D
trv  as squared daily standard deviation and divide both sides of Eq (4) by 2.  Realized 

volatilities are now realized standard deviations which have the same percentage 

measure as absolute returns.  The coefficients of lagged standard deviation remain the 

same but the coefficients of lagged absolute returns are halved.  The impact of absolute 

returns at monthly or quarterly intervals has greater impact than any of the lagged 

standard deviations.  For example, βM/2 = 0.3815 is still larger than any of the αk for 

GBP.   It appears that the size of long-turn returns contains more information about 

short-run volatility than past volatilities at various horizons. This finding calls for 

further theoretical exploration of the dynamics of exchange rate volatility.   

As in the EGARCH-RV model in Table 4, the asymmetric coefficient γ is 

significant for AUD, GBP, and JPY, but not EUR.  Therefore negative returns at t-1 

leads to greater volatility in these bilateral rates regardless the long-run trend. We also 

find evidence of a strong and negative contemporaneous relationship between return 

and volatility in AUD and JPY.  Given that JPY is quoted in the opposite way as AUD 

and GBP, it is puzzling to see that the sign of γ for JPY is the same as those for AUD 

and GBP: AUD volatility is higher when AUD depreciates against USD, but JPY 
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volatility is higher when JPY appreciates.  One plausible explanation is the intervention 

by the Bank of Japan (BOJ) in the JPY/USD market.  Data from BOJ show that with 

the exception of a short period from December 1997 to June 1998, BOJ was mostly 

selling JPY and buying USD. The selling became more intense from January 2003 to 

March 2004.  When the BOJ interventions are included in Eq (4)6, the size of the 

asymmetric coefficient γ drops by 20% to -0.102 with a t-statistics of 5.40.  On the 

other hand, when AUD reached the historical low in 2001, the Reserve Bank of 

Australia (RBA) intervened in support of the Australian currency.  The ad hoc evidence 

is consistent with the conjecture that intervention in JPY is associated with JPY 

appreciation, and intervention in AUD is associated with AUD depreciation.  As 

discussed before, central bank intervention is not the only source for asymmetric 

volatility.  Other factors, e.g. exchange rate level, may also affect market expectations 

and the volatility-return relationship.   

Robustness Check 

Our first robustness check is to test the stability of the asymmetric coefficient γ 

over the sample period. We use both the classic CUSUM test and the test for multiple 

breaks proposed by Bai and Perron (1998).  The Bai-Perron tests endogenously identify 

the number of structural breaks as well as the break points from historical data. The 

UDmax and WDmax statistics test the null hypothesis of no break against the 

alternative hypothesis of at least one break. The SupF(k+1|k) tests the null of k breaks 

against the alternative of k+1 breaks. The critical values for these test statistics are 

given in Bai and Perron (1998, 2003). The Appendix provides a brief description of the 

test procedure. More details on implementation can be found in Bai and Perron (2003).  

                                                 
6 Let xt be the JPY amount, in billion yen, purchased by BOJ on day t, therefore xt< 0 when BOJ sells 
JPY. Let yt = sign(xt)ln|xt|.  We include the contemporaneous and lagged |yt| and yt in Eq (4).  The 
coefficients of |yt| and yt are positive and significant.   
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The CUSUM statistics and the SupF statistics are plotted in Figure 4. The 

CUSUM test fails to identify any structural break in Eq (4) for all four currencies.  The 

Bai-Perron procedure fails to detect any structural break for GBP and EUR7. Table 6 

reports Bai-Perron test statistics for structural breaks and parameter estimates for AUD 

and JPY. UDmax and WDmax are significant at 5% for both currencies. The SupF(2|1) 

statistics tests the null hypothesis of one break versus the alternative of two breaks.  

The critical value at 5% is 27.64 therefore the test fails to reject the null.  The break for 

AUD occurred early in the sample around 4 September 1998, and the break for JPY 

occurred at the end of 2002. The confidence interval for the break date is not symmetric 

around the dates and is much larger for AUD.  Asymmetric volatility is present in AUD 

in the five and half years after the break point, and is present in JPY in the seven years 

before the break point.  Even though the asymmetries for different currencies are in 

different direction, for a given currency, the asymmetry is stable in one direction and 

persists for several years.  Given the small sample size after the break for JPY and the 

need for a long lag of 66 days, we do not fit Eq. (4) to JPY’s post-break period.   

As a further test for the robustness of the asymmetric volatility, we test whether 

incorporating the cross-currency impact on return and volatility eliminates the 

asymmetric volatility8. It is motivated by the Evans and Lyons (2002) finding of 

significant cross-currency impact of order flows.  Returns are driven by own lagged 

returns and past returns of other currencies: 
10 EUR

i,t j,s j,t s i,t
s 1 j AUD

r r −
= =

= β + ε∑ ∑ .  The volatility 

                                                 
7 We use 10% trimming of the sample, therefore the minimum length of each regime is 10% of the 
sample size, i.e. 119 days for EUR. The SupF, UDmax, WDmax statistics are significant for EUR, with a 
break point occurs at the 206th sample point. After trimming 66 days for lagged volatility and 119 days 
for the test, the break point is less than 119 days from the start of the sample, therefore is discarded.   
8 To facilitate the examination of cross-currency volatility impact, we synchronize the sample across 
currencies by keeping days when all three (four) currencies have observations before (after) the 
introduction of EUR in 1999.  Our sample has 1908 daily observations for AUD, GBP, JPY, and 1193 
observations for EUR.   
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equation now includes the day-of-the-week effect Dd, d=MON, TUE, …, FRI, as well 

as volatility spillover from other currencies at daily interval: 

(5)  
QFRI EUR

D D D k k
i,t d d j j,t 1 i,t 1

d MON j AUD k M

ln(rv ) D ln(rv ) ln(rv )− −
= = =

= ω + α + α∑ ∑ ∑  

t,i
D

1t,i

Q

Dk

k
1t,i

k || ξ+γε+εβ+ −
=

−∑  

 
The results for equation (5) are reported in Table 7.  The coefficients of the day-

of-the-week dummies, not reported here, are highly significant.  Friday has the highest 

unconditional volatility except for EUR where the highest volatility tends to be on 

Thursday.  For AUD, GBP, and JPY, the own lagged daily volatility has stronger 

impact than spillover from other currencies.  EUR is different again.  Its own lagged 

daily volatility has no impact in both Table 5 and Table 7, and it has no impact on other 

currencies.  Again the asymmetric coefficients for AUD, GBP, and JPY survive the 

new specification and are negative and significant.  Removing cross-currency impact in 

returns also seems to reduce autocorrelation in volatility.  The Q(20) statistics are even 

lower than in Table 5.  It also appears to strengthen the negative contemporaneous 

correlation between return and volatility innovations in AUD and JPY.  

Continuous and Jump Components of Realized Volatility 

Recently Barndorff-Nielsen and Shephard (2004, 2006) propose a procedure 

that allows for a direct nonparametric decomposition of the realized volatility into a 

continuous component and a jump component. Volatility jumps have significant impact 

on asset allocation (Liu, Longstaff, Pan, 2003) and option pricing (Eraker, et al., 2003). 

Andersen et al. (2005), Huang and Tauchen (2005), and Tauchen and Zhou (2005) 

demonstrate that the decomposition significantly improve volatility forecasts.   

Therefore we examine whether both components, or only one of them, drive the 

asymmetry in realized volatility.   
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The continuous component of realized volatility is approximated by the bipower 

variation proposed by Barndorff-Nielsen and Shephard (2004):  

∑
=

−−
×

π
=

m

2j
1j,tj,tt |r||r|

1m
m

2
BV  

where m is the number of intraday sampling intervals, rt,j is the intraday return for 

interval j.  In our study, the intraday sampling interval is 30 minutes.  Therefore m = 48 

on most days and rt,j is the 30-minute return for jth interval.  Barndorff-Nielsen and 

Shephard (2004) show that as m→∞, BVt converges to the volatility component 

associated with the continuous diffusion process.  The jump component is then given 

by the limit (as the sampling interval tends to zero) of the difference between realized 

volatility and bipower variation: RVt-BVt.   

The descriptive statistics of BV, ln(BV) and ln(RV/BV) for the currencies 

AUD, GBP, JPY and EUR are given in Table 8.  Compared to RV in Table 3, BV has 

smaller mean, median, and standard deviation as expected. Similar to ln(RV), ln(BV) is 

approximately normally distributed with much smaller skewness and kurtosis than BV. 

Note that ln(BV) of EUR has much larger skewness and kurtosis than the other 

currencies.  Huang and Tauchen (2005) show by simulation that the log difference 

ln(RV)-ln(BV) is an empirically more robust measure for volatility jumps.  We adopt 

the same jump measure as do Andersen, et al. (2005).  Not surprisingly, the jump 

component ln(RV/BV) has larger skewness and kurtosis than the continuous 

component ln(BV), but has no persistence.   

To test for asymmetry in ln(BV) and ln(RV/BV), we re-estimate the baseline 

model of equation (4) using both variables and present the results for ln(BV) in Table 9. 

Qualitatively the results for ln(BV) are the same as for ln(RV) in Table 6.  The only 

noticeable difference is the t-ratio of γ for GBP, which is smaller for ln(BV) than it is 
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for ln(RV).  The estimation results for jumps ln(RV/BV) are not reported here.  Most 

coefficients are mostly not significant, including the coefficient for volatility 

asymmetry γ.  It appears that the asymmetry in realized volatility is entirely driven by 

the continuous component measured by the bi-power variation. Bollersleve et al. (2005) 

report similar results for realized volatility of the S&P500 index futures.  

 
V. Conclusion 
 

This paper presents some new evidence on asymmetric volatility in realized 

exchange rate volatilities.  The asymmetry in exchange rates is more complex than it is 

in stocks and equity indices. It varies in direction between bilateral rates and TWI, and 

across different currencies.  The presence of asymmetric volatility in exchange rates 

calls for alternative economic explanations to those based on equity markets.  One 

possible explanation is the direction and size of central bank interventions.  Another is 

the base-currency effect in which the base currency is used for profit and loss 

calculation, therefore the variations in the bilateral rate becomes risk of the other 

currency.  Future research should also explore the impact of asymmetric volatility on 

volatility forecasting and option pricing.   
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Appendix: The Bai-Perron Test 
 

Without presenting the full range of the Bai-Perron tests, we choose the 

following procedure for our study. We use 10% trimming at both ends of the sample 

period, which implies that the minimum length of a regime is 10% of the sample size. 

The first step is to test the null hypothesis of no break against the alternative hypothesis 

of at least one break.  An F-test in the spirit of the Chow test is constructed for a given 

set of k breaks. The SupF(k) statistic is the highest value of the F statistics from all 

possible combinations of the k breaks. By varying k from one to an upper bound M, the 

double maximum statistic is calculated as the highest value of akSupF(k) for a set of 

fixed weights ak, k=1,..,M.  The UDmax statistic is when the weights are equal to unity.  

The WDmax statistic is given by the set of weights such that the marginal p-values are 

equal for different k.  When the test statistics exceed the critical values given in Bai and 

Perron (1998, 2003), we reject the null of no break in favor of at least one break.   

If there is evidence of at least one break, the second step is to implement the 

sequential procedure to test m versus m+1 breaks.  The test statistic is constructed by 

comparing the sum of squared residuals (SSR) from the estimation of the best (in the 

sense of minimum SSR) m-break model to the best (m+1)-break model, starting from 

m=1.  The number of breaks is given by the first m for which the test fails to reject the 

null of m breaks in favor of m+1 breaks.   

Given the number of breaks, m, the break dates are estimated by minimizing the 

SSR over different partitions of the sample period.  Confidence intervals are then 

constructed for the break dates. Minimizing the SSR also produces parameter estimates 

with robust (heteroskedasticity and autocorrelation consistent) covariance estimation. 

Note that the variance of the error term is different in each of the break periods, 

resulting in asymmetric confidence intervals around the break dates. 
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Table 1: Summary Statistics for Reuters Quotes 
 

 AUD GBP JPY EUR 
Total Quotes  (million) 2.49 13.6 18.1 27.6 
Quotes per Weekday     

Average 1,238 6,777 9,064 22,048 
Median 845 3,920 5,775 20,763 

Maximum 5,841 34,101 32,794 59,798 
 
 

Table 2: Daily Return Summary  
 

  AUD GBP JPY EUR 
Return based on prices at 21 GMT    

Mean 0.009 0.015 -0.01 0.016 
St Dev 0.679 0.481 0.718 0.674 

Skewness 0.007 0.013 -1.004 0.022 
Kurtosis 5.79 4.02 10.9 2.14 

Q(20) 16.3 27.5 26.8 11.8 
Q2(20) 90.3 90.2 132.3 50.8 

     
Return based on prices from DataStream   

Mean 0.0014 0.0087 0.00017 0.0038 
St Dev 0.686 0.502 0.754 0.673 

Skewness 0.088 -0.163 -0.781 0.099 
Kurtosis 6.3 5.34 11.3 2.56 

Q(20) 27.3 18.7 25.1 15.3 
Q2(20) 109.2 117.3 85.9 43.0 

     
TWI returns from DataStream    

Mean 0.0032 0.0064 0.0041 0.0017 
St Dev 0.594 0.384 0.655 0.423 

Skewness -0.281 -0.320 0.432 0.017 
Kurtosis 5.89 4.73 7.06 4.49 

Q(20) 35.5 22.4 23.7 28 
Q2(20) 131.1 267.4 522.6 199.1 

Q(20) and Q2(20) are Ljung-Box statistics for autocorrelation in return and squared 
return for the first 20 lags.  Bold numbers indicate significantly different from zero (3 
for kurtosis) at 5%.  
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Table 3: Daily Realized Volatility Summary  
 

 AUD GBP JPY EUR 
Realized Volatility     

Mean 0.527 0.260 0.540 0.466 
Median 0.397 0.217 0.357 0.387 
St Dev 0.521 0.202 0.996 0.364 

Skewness 4.58 6.56 22.43 3.99 
Kurtosis 37.7 103.2 728.2 56.5 
Q(20) 2934 1345 1229 621 

Cross-Cor before EUR     
GBP 0.365    
JPY 0.407 0.508   

Cross-Cor after EUR     
GBP 0.360    
JPY 0.186 0.146   
EUR 0.433 0.599 0.252  

     
Logarithmic Volatility     

Mean -0.936 -1.536 -0.981 -0.953 
Median -0.924 -1.529 -1.030 -0.950 
St Dev 0.753 0.607 0.771 0.602 

Skewness 0.103 -0.009 0.518 0.048 
Kurtosis 3.31 3.80 4.26 2.26 
Q(20) 8991 3730 6047 1516 

     
EGARCH Volatility     

Mean 0.420 0.219 0.536 0.396 
Median 0.392 0.209 0.454 0.390 
St Dev 0.182 0.065 0.358 0.067 

Skewness 0.963 0.762 3.24 0.336 
Kurtosis 3.96 4.03 17.66 2.14 
Q(20) 27704 24733 29032 19471 
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Table 4: Exponential GARCH Estimations 
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 ω α β γ 
EGARCH    
AUD -0.007 0.987 0.093 -0.010 
t-stat -2.34 329 7.91 -1.51 
GBP -0.035 0.974 0.099 -0.007 
t-stat -3.03 131 6.19 -0.93 
JPY 0.002 0.997 0.070 -0.008 
t-stat 2.83 701 11.9 -1.91 
EUR -0.016 0.981 0.050 -0.007 
t-stat -1.35 77.9 2.65 -0.83 

EGARCH-TWI    
AUD -0.043 0.952 0.120 -0.030
t-stat -4.70 113 8.63 -3.46
GBP -0.027 0.985 0.098 0.032
t-stat -3.05 222 7.76 3.84
JPY -0.013 0.982 0.107 0.032
t-stat -3.84 303 9.66 4.33
EUR -0.008 0.994 0.049 -0.008
t-stat -1.86 361 4.53 -1.52

EGARCH_RV    
AUD -0.391 0.631 0.064 -0.032 

 -12.1 27.8 2.60 -2.28 
GBP -0.844 0.480 0.057 -0.029 

 -19.2 19.9 2.60 -2.29 
JPY -0.484 0.570 0.079 -0.076 

 -11.8 21.1 2.80 -4.57 
EUR -0.663 0.368 0.062 -0.004 

 -14.6 11.2 2.39 -0.23 
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Table 5: Modified HAR-RV Estimation 
 

Q Q
D k k k k D
t t 1 t 1 t 1 t

k D k D

ln(rv ) ln(rv ) | r | r− − −
= =

= ω+ α + β + γ + ξ∑ ∑  

 
 AUD GBP JPY EUR 
 Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 
ω -0.409 -9.08 -0.544 -7.91 -0.571 -9.77 -0.589 -8.08 
αD

 0.192 6.77 0.160 5.42 0.156 4.38 0.040 0.94 
αW

 0.249 5.18 0.275 4.97 0.287 5.49 0.314 4.27 
αM

 0.202 3.16 0.154 2.21 0.011 0.17 0.171 1.72 
αQ

 0.203 3.75 0.216 3.04 0.319 5.55 0.237 2.44 
βD

 0.108 3.65 0.174 4.01 0.122 3.75 0.126 3.32 
βW

 0.163 2.04 0.229 2.44 0.287 3.67 0.290 2.92 
βM

 0.387 2.63 0.763 3.88 0.686 4.26 0.682 4.08 
βQ

 0.853 3.28 0.477 1.45 0.585 2.03 0.810 2.39 
γ -0.046 -2.69 -0.049 -2.10 -0.128 -6.41 -0.010 -0.39 

R2 0.504 0.347 0.472 0.294 
Q(20) 17.85 29.4 7.9 13.14 

Cor(rt, tξ̂ ) -0.075 -0.0094 -0.175 0.0132 
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Table 6: Endogenous Breaks 
 

Q Q
D k k k k D
t t 1 t 1 t 1 t

k D k D

ln(rv ) ln(rv ) | r | r− − −
= =

= ω+ α + β + γ + ξ∑ ∑  

Break points are selected by the sequential method at 10% significance level. 
 

AUD Tests: UDmax WDmax SupF(2|1)        
 5% sig. 32.8 36.5 26.8        
 Break Dates: TB = 1998.9.4      
 95% Conf. Int: [1998.2.24, 1999.5.13]      

 Sub-periods ω αD αW αM αQ βD βW βM βQ γ 
 [1996.1.1, TB] -0.556 0.173 0.292 -0.040 0.403 0.162 0.449 0.558 1.290 -0.047 
  -6.22 3.31 3.66 -0.40 3.99 2.59 2.97 1.72 2.12 -1.25 
 [TB+1, 2004.4.14] -0.388 0.182 0.194 0.373 0.050 0.095 0.062 0.369 0.630 -0.044 
  -7.49 5.08 3.52 5.34 0.80 2.72 0.77 2.18 2.18 -2.25 
            

JPY Tests: UDmax WDmax SupF(2|1)        
 5% sig. 53.1 53.1 22.6        
 Break Dates: TB = 2002.12.23        
 95% Conf. Int: [2002.10.1, 2002.12.26]        
 Sub-periods ω αD αW αM αQ βD βW βM βQ γ 
 [1996.1.1, TB] -0.555 0.169 0.281 -0.002 0.322 0.104 0.257 0.597 0.879 -0.139 
  -10.19 4.66 5.23 -0.03 5.54 2.98 3.37 3.58 3.21 -7.25 
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Table 7: The Modified HAR-RV Model with Cross-currency Impact 
 

Return:    
10 EUR

i,t j,s j,t s i,t
s 1 j AUD

r r −
= =

= β + ε∑ ∑  

Realized Volatility:  
QFRI EUR

D D D k k
i,t d d j j,t 1 i,t 1

d MON j AUD k M
ln(rv ) D ln(rv ) ln(rv )− −

= = =

= ω + α + α∑ ∑ ∑  

Q
k k D

i,t 1 i,t 1 i,t
k D

| |− −
=

+ β ε + γε + ξ∑  

where i = AUD, GBP, JPY, EUR. 
 

 AUD GBP JPY EUR 
 Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 

D
AUDα  0.191 6.27 0.039 2.14 0.024 1.26 0.052 1.84 
D
GBPα  0.067 3.01 0.163 5.34 0.074 2.90 0.045 1.11 
D
JPYα  0.037 1.89 0.017 0.99 0.130 3.45 0.021 0.71 
D
EURα  -0.022 -1.15 -0.002 -0.13 0.023 1.09 0.006 0.10 
αW

 0.223 4.63 0.264 4.66 0.267 5.24 0.314 4.30 
αM

 0.212 3.28 0.142 2.04 0.007 0.12 0.156 1.62 
αQ

 0.188 3.40 0.180 2.55 0.337 6.02 0.184 2.02 
βD 0.074 2.60 0.171 3.88 0.126 4.02 0.126 3.36 
βW

 0.171 2.05 0.196 2.03 0.280 3.62 0.229 2.34 
βM

 0.379 2.47 0.734 3.67 0.689 4.15 0.631 3.58 
βQ

 0.922 3.33 0.436 1.18 0.778 2.59 0.725 2.02 
γ -0.049 -2.96 -0.041 -1.79 -0.128 -6.31 0.007 0.31 

R2 0.528 0.366 0.487 0.322 
Q(20) 3.26 20.76 10.04 5.85 

Cor( tt
ˆ,ˆ ξε ) -0.080 -0.0045 -0.184 0.0184 
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Table 8: Bi-power Variations and Jumps 
 

 Mean Median St Dev Skewness Kurtosis Q(20) 

AUD       
bvt 0.450 0.340 0.448 4.904 43.78 2757 

Ln(bvt) -1.099 -1.078 0.767 0.007 3.33 8520 
Ln(rvt/bvt) 0.152 0.128 0.190 1.046 5.05 20.1 

GBP       
bvt 0.233 0.194 0.179 4.83 48.37 1246 

Ln(bvt) -1.656 -1.642 0.628 -0.275 5.55 2738 
Ln(rvt/bvt) 0.111 0.081 0.211 4.223 66.20 19.6 

JPY       
bvt 0.469 0.312 0.717 15.364 407.07 2086 

Ln(bvt) -1.122 -1.165 0.788 0.353 4.27 5771 
Ln(rvt/bvt) 0.122 0.092 0.197 1.629 9.12 16.1 

EUR       
bvt 0.401 0.334 0.313 5.014 53.58 768 

Ln(bvt) -1.131 -1.098 0.706 -1.368 11.82 933 
Ln(rvt/bvt) 0.144 0.098 0.284 7.808 141.22 22.0 

 
 
 

Table 9: Dynamics of Bi-power Variations 
 

t
D

1t

Q

Dk

k
1t

k
Q

Dk

k
1t

k
t r|r|)bvln()bvln( ξ+γ+β+α+ω= −

=
−

=
− ∑∑  

 
 AUD GBP JPY EUR 
 Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 
ω -0.466 -9.56 -0.601 -7.86 -0.627 -9.91 -0.646 -7.72
αD

 0.160 5.96 0.168 5.35 0.165 4.63 0.067 1.53
αW

 0.261 5.34 0.236 4.40 0.264 5.41 0.242 3.27
αM

 0.193 2.86 0.188 2.47 0.003 0.05 0.126 1.11
αQ

 0.230 4.14 0.194 2.61 0.342 6.15 0.331 2.77
βD

 0.149 4.92 0.175 3.90 0.135 4.22 0.188 4.06
βW

 0.181 2.18 0.264 2.71 0.324 4.36 0.199 1.68
βM

 0.385 2.63 0.575 2.71 0.726 4.51 0.612 3.11
βQ

 0.778 2.92 0.606 1.52 0.566 1.90 0.876 2.10
γ -0.049 -2.71 -0.050 -1.75 -0.117 -6.14 -0.002 -0.06

R2 0.483 0.30 0.459 0.239 
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Figure 1: Exchange Rates and Realized Volatility 
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Figure 2: Autocorrelation of Realized Volatility 
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Figure 3: Realized Volatility and EGARCH-estimated Volatility for AUD 
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Figure 4: CUSUM and SupF Statistics for Structural Breaks 
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