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ABSTRACT. This paper considers the dynamics for interest rate processes within a
multi-factor Heath, Jarrow and Morton (1992) specification. Despite ¢xéoflity of
and the notable advances in theoretical research about the HIM ntbdatsimber
of empirical studies is still inadequate. This paucity is principally becaugbeof
difficulties in estimating models in this class, which are not only high-dimeasion
but also nonlinear and involve latent state variables. This paper treatstiimagon
of a fairly broad class of HIM models as a nonlinear filtering problem aaliogts the
local linearization filter of Jimenez and Ozaki (2003), which is known teelsome
desirable statistical and numerical features, to estimate the model via Ki@umna
likelihood method. The estimator is then applied to the interbank offered-ohtbe
U.S, U.K, Australian and Japanese markets. The two-factor modelthétfactors
being the level and the slope effect, is found to be a reasonable choiak &6 the
markets. However, the contribution of each factor towards overathidity of the
interest rates and the financial reward each factor claims differ cenadily from one
market to another.

Key words Term structure; Heath-Jarrow-Morton; Local Linearization; Filtering
JEL classificationsC51, E43, G12

Date Version: Jan 2005.
* Corresponding author.



VOLATILITY STRUCTURE 2

1. INTRODUCTION

Management of interest rate risk is of crucial importance to financial instisiaod
corporations. The volatility structure of this interest rate market plays @atriole
in assessing and managing the value as well as the risk of bond and intgeede-
rivative portfolios. Various interest rate models have been considaneongst which
the Heath-Jarrow-Morton (1992) (hereafter HIM) framework presid very flexible
framework for interest rate modelling. Despite its nice theoretical flexibilityaphi-
cation of the HIM class of models to practical problems is hindered by theuttiffic
of model estimation. This is principally due to the fact that the underlying staie va
ables of the HIM models are un-observable quantities, and the dynamigsuzity
non-Markovian and non-linear in their (latent) state variables.

Theoretical research on HIM models has shown that for a fairly braadyf of
volatility functions, the underlying stochastic system can be Markovianaetithereby
easing the computational complexity involved. However, the problems of reamitg
and the existence of latent variables still exist, and the empirical analysid\dihibd-
els has centered around certain volatility functions that lead to convenigmenies
for the system, for example, the class of affine or square root affilaélitges.

It should also be noted that the estimation for stochastic models is already a cha
lenging task for systems with affine or square root affine volatilities. @uiied Stan-
ton (2004) analyze the performance of different estimation methods famdig term
structure models. They find that the standard maximum likelihood estimator (MLE)
does a very poor job of estimating the parameters that determine expectegksha
in interest rates. Furthermore they find that the efficient method of mom&fvijE
estimator is an unacceptable alternative, even where the MLE performs Tiedly
conclude that the Kalman filter is a reasonable choice, even in the norsiGasst-
ting where the filter is not exact. In that case, they advocate the use ofaatvaf
the Kalman filter, where the updating equation for the state variables is a lie@ariz
version of the drift using its first derivative.

In light of the findings of Duffee and Stanton (2004) this paper purfurtiser the
filtering approach. To deal with the nonlinear nature of the problem wecade the
use of the local linearization filter of Jimenez and Ozaki (2002, 2003.ri&in idea
is to linearize the system dynamics according to tldefdrmula, utilizing both the
drift and the diffusion terms, to better take into account the stochastic ioeina@f the
system, and then to apply the (readily available) optimal linear filter. We haxseaoh
this filter as it has been shown by Shoji (1998) to have good bias propertit by
Jimenez et al. (1999) to have a number of computational advantagessfithaten
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method is able to exploit both the time series and cross sectional information of the
yield curve.

We propose and motivate a three-factor volatility specification and apply taé o
linearization filter to analyze the volatility structure of the interbank offesds in
the U.S., the U.K, the Australian and the Japanese markets. These marlkekebav
chosen to represent different regions in the world. The rest of therpa organized
as follows. Section 2 introduces the model. The econometric implication of thel mode
and the proposed estimation method are discussed in Section 3. Empirids aesu
then presented in Section 4, and Section 5 concludes the paper.

2. MODEL FRAMEWORK

The general framework for the interest rate models considered in thés ajm-
troduced in Heath, Jarrow and Morton (1992), where the instantarfieousrd rates
r(t, ) (the rate that can be contracted at tihfer instantaneous borrowing/lending at
future timet + z) are assumed to satisfy SDEs of the férm

r(t,x) =r(0,t+x) + /0 o(s,t+z) [a(s,t+x)— P(s)] ds
2.1)

t
—|—/ o(s,t+z)dW(s),
0
where
t+x
o(s,t+x)= / o(s,u)du,

ando (t,x), ¢(t) areI-dimensional processes ab¥l (¢) is a standard-dimensional
vector of independent Wiener processes under the market méasihire N and the
superscript represents matrix transposition. The veefgt) can be interpreted as the
market price of interest rate risk vector associated Wi (¢). In generalo and¢
may depend on a number of forward rat¢s ).

The HIM model framework is chosen as it yields arbitrage-free modelsittitiae
initial yield curve by construction. The subclass of HIM models which atticpéarly
suited to practical implementation are those which can be Markovianized.e€arv
hill (1994), Ritchken and Sankarasubramanian (1995), Bhar and¢llhig1997a),
Inui and Kijima (1998), de Jong and Santa-Clara (1999) ariwkBand Svensson
(2001) discuss various specifications of the forward rate volatilitigsz) that lead
to Markovian representations of the forward rate dynamics. Chiarellakavah

IWe are in fact using the Brace et al. (1997) implementation of the HIM m®tes is more appropriate
to capture the dynamics of LIBOR and various other market quoted rates

2In this notationy (¢, 0) denotes the instantaneous rate of interest that we henceforth write) as
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(2001b, 2003) introduce a specification that leads to a fairly broad andenient
class of models. The models in this class satisfy the assumption:

Assumption 2.1. (i) For eachl < i < I, there existd,; € N such that the compo-
nents,o;(t, x), of the forward rate volatility process have the form

L;
oit,z) =Y cqlt)ou() (2.2)
=1

wherec;;(t) are stochastic processes ang (x) are deterministic functions.
(i) There existM € N and asequence; < --- < zj; € R, such that the processes
¢i1(t) have the form

Cil(t) = éil(tv’r(tvxl)" "7T(t»x1\/[))7 (23)

whereé is deterministic in its arguments.

Chiarella and Kwon (2003) then prove that the forward curve can peeszed as
an affine function of a set a¥ discrete tenor forward rates

7'<t77'1a~- . 77']\[) = [T(t,Tl),... ,T(t,TN)]/

(see Appendix A for a brief summary). This set of forward rates fornidaakov
process. In terms of the real world measure, whire (¢4, ..., ¢;) is the vector of
market prices of risk associated with the Wiener prod&ssthe system of stochastic
differential equations for the instantaneous forward rates becomes

dr(t,z) =[po(t,x, 71, ..., 78) + DL (t, 2, 71, TN)P(E, 71, -, T)

(2.4)
—@'o(t,t+x)dt + o(t,t +z) dW(t).

The yieldy(t, z) on the(t 4+ z)-maturity zero coupon bond can be calculated from
the instantaneous forward rates via

y(t,z) = = /Omr(t,u)du, (2.5)

x

and can also be expressed as an affine function of the forward tfzéesye write in
the form

y(t,x) = qo(t,x,ﬁ,...,TN) — q/(t,l’,Th...,TN)T'(t,Tl,.. . ,TN), (26)

where they;(t, z, 71, . .., 7v) is a set of deterministic functiofisWe therefore have an
affine term structure model. This model is not nested inside the populas aifilel
class considered in Duffie and Kan (1996), even though there will bastens when
the two classes overlap.

3For definition of the coefficient functions andp, see Appendix A.
4Again see Appendix A for definitions of thg.
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3. ESTIMATION FRAMEWORK

3.1. The model specification.

The empirical work of Litterman and Scheinkman (1991), Chen and Scafgj1
Knez et al. (1994), Singh (1995), who use principal component aisalguggests that
there are at most three factors affecting the volatility of interest rates.e@ g this
insights we propose to use a three-dimensional Wiener process in thécspien
(2.1), with the corresponding volatility functions

01 (tv .I) = ’er)\(t)v (31)
UQ(tv x) = 72(7“(757 T) - ’l“(t)), (32)
o3(t,x) =yze "0 (3.3)

The first volatility functiono (¢, x) represents the level factor. i = 0.5 we would
obtain a Cox-Ingersoll-Ross (1985a) type of volatility. The second volafilitgtion
o9(t, z) reflects the influence of the slope of the yield curve on interest rate volatility,
with the difference-(¢, 7) —r(t) proxying the slope. Finally, the last volatility function
os(t, z) allows a shock in the corresponding Wiener process to have differeatisp

at different maturities along the yield curve.

The market price of risk termg;, ¢-, ¢3 are assumed to follow a square-root type
of processes, ie. they are mean reverting and have volatility functiopsiianal to
the square root of their own levels, ie.

dp; = ai(d; — ¢;)dt + Bin/di(t)dWi(t). (3.4)

Intuitively, the specification suggests that the market prices of differgéetest rate
risks are always positive and tend to converge to their long run equilibria.

3.2. Econometric implication of the model.

Some similar and other specialized models of the HIM class considered kere ha
been empirically analyzed. Bliss and Ritchken (1996) consider the casee\iline
volatility function in (2.2) can be written as

o(t,z) =c(t)e .

This specification covers our single-factor model, as each of our volatilitgtion can
be written in that form. For example, with (¢, 2) = ~17(t), the value of is zero
andc(t) = 17 (t). The key idea of their approach is to exploit the relationship (2.6)
for the yields, into which they introduce an error term, then estimate their maaglel v

SWith this volatility function, the model can be Markovianized using two state bl
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the Maximum Likelihood procedur® The main drawback of this approach is that the
estimation procedure can only identify as the relationship (2.6) does not depend on
the parameters characterizing functign) (-, and in our example). However, all of
the parameters in the models are important in practical work, such as thehetion

of the price of a derivative contract.

de Jong and Santa-Clara (1999) also empirically study two-state varialklendd-
els where the volatility function of the system is proportional to the squareafoo
the state variables. However, they overcome the disadvantages of Blig&tahken
(1996) approach by using both the relationship (2.6) and the Markoy#ers (2.4) in
their estimation procedure. They use the Kalman filtering method where (2v@sse
as the observation equation and (2.4) is discretized into a state transitidioaqua
a more general setting, it is not clear how to discretize the structural stichgstem,
and the behaviour of the estimator is clearly dependent on the method usesd in th
discretization.

In this paper, we advocate the local linearization filter (hereafter the LLl)fittie
Jimenez and Ozaki (2002, 2003). This approach is still based on the Kdiltea for
a discrete linear system. However, Jimenez and Ozaki do not discretinerihirear
system directly, but rather approximate it by a system linear in both its duftitan
diffusion terms, for which a linear Kalman filter turns out to be readily applecab
The approximation is not based on the first order Taylor approximatiod insthe
standard extended Kalman filter framework, but is instead based on adseoter
approximation using thedtformula to better take into account the stochastic behaviour
of the underlying state variables.

In his comparative study, Shoji (1998) analyzed the performance aghthemum
likelihood estimator based on the LL filter and the one based on the extentledrKa
filter for a system with additive noise (i.e. the volatility function is not depehden
on the state variables). Shoji used Monte Carlo simulation to show that the Li filte
provided estimates with smaller bias, particularly in estimation of the coefficient of
the drift term. Jimenez et al. (1999) compared the LL scheme with other liatiariz
schemes for systems with either additive or multiplicative noise (i.e. the volatility
function is dependent on the state variables). They also reported a nahnioenerical
advantages of the LL filter, including numerical stability, better accuradytizmorder
of strong convergence.

5The relationship Bliss and Ritchken use is actually an expression of the wietdecurve as an affine
function of some particular yields rather than the forward rates. Thibeakerived very simply from the
model here.
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3.3. The local linearization filter and the maximum likelihood estimator.

Consider the state space model defined by the continuous state equation
dx(t) = £(t,x())dt + > g;(t, (1)) dW;(t), (3.5)
i=1

and the discrete observation equafion
zt, = C(t;)x(tj) + ey, forj =0,1,...,J, (3.6)

wheref andg; are nonlinear functionsx(t) € R? is the state vector at the instant
of time t, z;, € R" is the observation vector at the instant of titpe W is anm-
dimensional Wiener process, afe};; : e;; ~ N(0,II),j = 0,...,J} is a sequence
of i.i.d. random vectors.

The system function§ andg; can be linearly approximated. Jimenez and Ozaki
(2003) proposed to approximate them via a truncated Ito-Taylor expatsioetter
take into account the stochastic behaviour of the underlying state systesxdfople,
the approximation fof is

d
£(t,x(t)) =f(s,u) + 9t(s, u) —|—% Z (s,u)G’(s, )] laa££2;) (t—s)
ki=1
+ Jf(sa u)(X(t) - u)v
3.7)

where(s,u) € R x RY, J¢(s, u) is the Jacobian of evaluated at the poirft, u) and
G(s,u) is thed x m matrix defined byG (s, u) = (g, .,8m)-

Using such approximations férandg;, the solution of the nonlinear state equation
(3.5) can be approximated by the solution of the piecewise linear stochafiedifal

“Afull (nonlinear) specification of the observation equation would be
z;, = h(t;,x +szt], )&, +er,, forj=0,1,...,J,

whereh and p, are nonlniear functlons{gtj R TN N(O,A),A = diag((A1,...,\n)),J =
0,...,J}is asequence of random vector i.i.d., f{[ﬁ]dandetj are uncorrelated for alland;. However,
in most finance applications, including ours, a linear specificatioh fierall that is required and there is
no need to include the extra noise tefm
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equatiofi

dy(t) = (At 31,3, )y (1) +alt. 15, 31,1, ) dt
(3.8)
+Z( J’yt \t ( )+bi(tatjayt].‘tj)) dWl(t)

forall t € [tj,t;41), starting aty(to) = V.., = Xiolto- The various quantities
appearing in (3.8) are defined as
xX(t)|Zp),  Zp={z; : t; < p},
yt|p =E(y(1)|Z,),
A(s,u) = J¢(s,u),
Bi(s,u) = Jg(s,u),

Xt|p =E

(
(

a(t,s,u) =f(s,u) — Je(s,u)u+ 8fE§; u) (t—s)
1 < , 0*f(s,u
t3 Z G(s,u)G (s,u)]k’lﬁ(t — s),

k=1

b;(t,s,u) = g;(s,u) — Jg. (s,u)u+ %(t —3)

LS G wp B
2 s,u s,u uFoul S).
The approximate stochastic differential equation (3.8) and the corrdsmpobser-
vation equation (see (3.6))

zi;, = C(tj)y(tj) +ey, forj=0,1,...,J, (3.9)

form a linear state space system. The optimal linear filter proposed by Jirandez
Ozaki (2002) can be applied (see Appendix B for its definition) to detertheon-
ditional meany,, and conditional covariance matB;, = E((y(t) — y,)(y(t) —
Yup)|Z,) forall p <t.

Due to the assumption of multivariate normality of the disturbargegand if the
initial state vector also has a proper multivariate normal distribution), the distib
of z;,, conditional onZ,, is itself normal (see (3.9)). The mean and covariance matrix
of this conditional distribution are given directly by the local linearization fiteove.
Therefore, a maximum likelihood estimator for the model parameters can the eas
derived.

Swe usey (t) to denote the solution to the approximate system to distinguish it #@mthe solution to
the true system.
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Let € be the vector of parameters of interest, which include all parameters speci-
fying the state space model (3.8) and (3.9), plus the initial state valueg gf and
P;|¢,- The log likelihood function foi is

J J
rJ 1 1 _
£z(8) = - In(2m) — 5 > %yl - 5 > v 3 vy (3.10)
j=1 j=1
where the innovation equations are
th - Zt]' - C(tj>yt]'|tj_17 (311)
Etj f— C(t])Pt]‘tjflc,(t]) + ]._.[ (312)

The maximum likelihood estimator éFis then

6 = max L7(6). (3.13)

3.4. Econometric implementation.

We now view our model as a continuous-discrete nonlinear state spaesnsys
where (2.4) and (3.4) serve as the nonlinear state equations, andd:€3 ss the
linear (affine) observation equation. Similar to the standard practice in thatliter
we introduce into the observation equation a measurement error, whiettsefie fact
that the model cannot fit all observed yields simultaneously. This measuoremer
is assumed to follow a multivariate normal distribution. The local linearization filter
can be readily applied to yield the maximum likelihood estimatofl ahe vector of
parameters of interest, which includes all of the parameters of the volatilityifurs
(3.1) - (3.3), of the market price of risk specification (3.4) and the initialdétonal
mean vectok, ,, and conditional variance matr,;, -

The numerical difficulties associated with any estimation procedures fdrasttic
systems are well-known. Amongst them, system stability, matrix inversion tolagdcu
the likelihood function, convergence of the optimization routine and significafthe

estimates are the main problems. To partly overcome these problems, we maximize the

likelihood function using a genetic algorithm (Holland (1975), Mitchell (19%®se
(1999), Michalewicz (1999)). Genetic algorithms use the evolutionancipim to
solve difficult problems with objective functions that do not possess “qicgperties
such as continuity and differentiability. The algorithms search the soluticresyfaa
function, and implement a “survival of the fittest” strategy to improve the saigtio
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FIcure 1. 1-month interbank offered-rates
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4. EMPIRICAL ANALYSIS

4.1. The Data.

We estimate the model using the interbank offered-rates in the U.S, U.K, Aaistra
and Japanese markets downloaded from Datasffeahhe data consists of monthly
observations for contracts with maturity from 1 month to 12 months, spanniegadp
from January 1988 to June 2004.

Figure 1 shows the 1-month rates for different markets. Over the 16pgzend,
interest rates change significantly. The overall pattern is an increasind for the
last years of the 80s, followed by a sharp decrease throughoutshbdlf of the 90s.
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In the second half of the 90s, interest rates moved considerably asoterdporary
“long term” level, before decreasing during the year 2001. The ratesigtrélia and
U.K. then picked up again, whereas the U.S. still experienced a declinégs) end
the Japanese rates stayed at a very low level below 10 basis points. thé cdtes
display a high level of autocorrelation, as can be seen in Table 1.

TABLE 1. The 1-month interbank offered-rates

U.S. Australia U.K. Japarn

Mean 5.09% 7.55% 7.54% 2.34%
Standard deviation2.27 % 3.80% 3.37% 2.65%
AC(1) 0.9832 0.9938 0.9916 0.9922

We also analyzed the principal components of the zero yield curve cotesirinom
the interbank offered-rates. In all of the markets, three componenébba¢o explain
100% of the variation in the yields, however the last component plays anegligible
role, only explaining 0.01%-0.02% of the total variation, as reported in Table

TABLE 2. Principal component analysis of zero yield curves

% variation explained U.S. Australia U.K. Japa

Principal component 199.64 99.76 99.68 99.87
Principal component 2 0.34 0.23 0.31 0.11
Principal component 8 0.02 0.01 0.01 0.01

—

4.2. Empirical Results.

To increase the computational accuracy we estimated the 1-factor, 2-dact@-
factor models separately, as follows:

e 1-factor model
o1(t,z) = yr(t)
e 2-factor model
o1 (t,z) = nr(t),
oa(t, z) = y2(r(t,7) — r(t))

e 3-factor model

o1(t,x) = nr(t),
ozt ) = 72(r(t, 7) — (1)),

o3(t,z) =73 e r@t)
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We expected the third factor to contribute very slightly to the total variation ofitid
curve, and therefore including it may make the task of separating diffeoemponents
harder. There are also a lot more parameters involved in the 3-factot,mdiieh may
cause difficulties in the numerical optimization of the likelihood function.

4.2.1. The U.S market.

The parameter estimates for the U.S. market can be found in Table 3. All of the
estimates are highly significant. However, the numerical optimization routinetdails
find a higher likelihood function for the 3-factor model.

For the 1-factor model (whose interest rate volatility function;is*), the estimate
of X\ is 1.97, higher than the value close to 1.5 found by Chan et al. (1992thand
range of 0.5 to 1.5 (dependent on the interest rate series used) in &@aja(1996)
For the 2-factor model, the estimateofs 0.59, which is very close to the 0.5 speci-
fication of the Cox-Ingersoll-Ross (1985a) type of volatility. The marketgs of risk
display very high rates of mean reversion. The mean reversion parametanda,
imply a halflife (the expected time that it takes for a state variable to return dhe ha
way back to its steady state level following a deviation) of around 0.5 and Onthsi0
for the first and second market price of risk respectively.

Table 4 reports the prediction errors obtained by the models. It can belsgdhe
2-factor model delivers the lowest mean absolute errors, averagiblasis points
across maturities. The errors are higher at the two ends of the yield. cliivese
prediction errors are in line with, and somewhat smaller than those in the study o
Jegadeesh and Pennacchi (1996) who also used the Kalman filtetiffeaa2-factor
model with constant volatilities) and reported a mean error (not mean absufl @& 5
basis points for the 1-month rate and 47.5 basis points for the 12-month rate.

Based on the estimates and the fitness of the models, the 2-factor model is-our p
ferred choice. Figure 2 shows the volatilities of the short rate over the ditimze-
riod. The 2-factor model implies an average of 0.8% short rate volatility. rébelts
for the period 1988-1992 are consistent with previous finding by AminMadon
(1994), who studied the implied volatility of the short rate over that period.a®n
erage, the first volatility factor (the level effect) explains 99.87% whetka second
factor (the slope effect) explains 0.13% of the total variation of the yieldecur

As the volatility of the short rate increases, the drift should be lower (e datcount
compared to the zero volatility case), so that the corresponding driftédsdhd price

9Bhar et al. (2005) have employed a Bayesian updating algorithm to estih@tdistribution for the
parameten in one factor HIM model implied by LIBOR rates of various maturities. Thmey that the
distribution lies in the interval [0.5,4], giving support to the rather higinfpared to some other studies)
values for this parameter estimated in all markets here.
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TABLE 3. Estimated Parameters for the U.S market

This table reports the estimated parameter values for eacdelising U.S data. The robust
asymptotic standard errors are given in square parentiiesis,” stands forz « 10~

Par. 1-factor 2-factor 3-factor| Par.| 1l-factor 2-factor 3-factor

v | 3.2295 00462  1.2420 oy | 11.4681 15.9900  6.2500
[3.83e-5] [3.33e-8] [4.26e-4] [8.33e-5] [1.19e-5] [0.0013]

Yo - 0.1261  6.6221]| a» - 11.3091  12.0068
[6.13e-9] [0.0023] [5.40e-7]  [0.0006]

3 - - 0.0018 | aj - - 11.7078
[4.89¢-8] [0.0034]

A 1.9662  0.5859  4.6823 4; | 18.5931 39.5238  18.6997
[5.26e-6] [3.42e-7] [4.76e-5] [1.47e-4] [1.75e-6] [0.0406]

K - - 0.4623 | ¢o - 16.2375  0.5028
[0.0001] [1.45e-5] [1.56e-5]

o2 2.13e-6  2.71le-7 1.2e-6( ¢3 - - 19.6867
[1.52e-11] [5.13e-13] [5.46e-9] [0.0329]

5 | 00104 0.8189  3.5873
[1.14e-7] [5.59e-9] [0.0092]

B - 4.1248  0.0095
[1.78e-6] [4.14e-5]

2InL | 33025.7 213025.8 28412.5 33 - - 4.9948
[0.0007]

is higher which compensates investors for bearing higher risk. Figuh®ssshow
these discounts (calculated by multiplying the standard deviation associatezbwith
Wiener process by its corresponding market price of risk) are chgrayier time. As
the level effect has a much larger impact on the volatility, most of the disceauats
for this type of risk. The risk coming from the yield curve changing its slopatsh
lower, and therefore calls for a smaller bond premium.

4.2.2. The Australian market.

Similar to the U.S. market, the 2-factor model is also our preferred choiciaédor
Australian market. The absolute prediction errors average at 30 basts,pshich
is slightly higher than that in the U.S. market. The estimate\fag 3.5 times higher,
predicting a smaller impact of the level of the interest rate on the overall volatility
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TABLE 4. The prediction errors for the U.S. market

This table reports the prediction errors for interbank igfterates of different maturities in the U.S.
market. The “Avr” column reports the average of the preditterrors, whose standard deviation
is reported under “Std” column. The “MAE” and “SAE” columneport the mean and standard
deviation of the absolute errors. All values are reportebleasss points.

1-factor 2-factor 3-factor
Avr Std MAE SAE| Avr Std MAE SAE| Avr Std MAE SAE

1-mth | -9.1 674 33.0 594-195 253 264 18.036.7 38.2 450 27.9
2-mth | -5.8 63.2 27.8 57.0-16.9 199 215 146354 374 435 275
3-mth | -3.3 59.7 240 548-151 154 182 11.633.6 37.3 421 272
4-mth | -1.4 57.0 204 53.2-13.8 116 116 9.6 31.6 365 40.7 259
5-mth | 0.9 548 18.1 51.7-123 86 132 7.0/30.3 36.0 39.7 252
6-mth | 2.7 529 176 499-11.2 6.8 118 56/290 356 385 249
7-mth | 5.3 521 19.3 486 -92 6.6 98 57288 348 380 245
D
3
3
}
)

8-mth | 75 515 213 475 -77 81 91 65/285 345 375 245
9-mth | 99 516 238 46.8 -6.0 106 95 75/289 34.0 374 241
10-mth| 12.6 52.3 26.8 46.7 -4.0 131 10.7 8.5 29.7 33.8 37.9 243
11-mth| 15.6 534 30.3 46.6 -1.7 158 12.3 10.031.3 339 38.6 24.4
12-mth| 184 55.1 33.8 47.1 04 186 145 11.6329 334 39.7 244

FIGURE 2. The instantaneous volatilities of the U.S. short rate
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The overall instantaneous short rate volatilities for the Australian marketraphed
in Figure 4. Compared to the U.S. market, Australian rates have much highaét-vo
ity during the period 1988-1990, which reflects the very sharp riseahih the rates
during that period. After 1990, the two markets have a similar volatility evolution.
However, the contribution of each risk factor to this overall volatility is vefiedent.
In the U.S. market, the level factor explains more than 99.5% of the ovelatilitg
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FIGURE 3. The “discount” on short rate drift to compensate for risk,
2-factor model, U.S. market
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FIGURE 4. The instantaneous volatilities of the Australian short rate
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throughout the whole period, whereas the slope effect plays a muchgigmiécant
role in the Australian market, as can be seen in Figure 5.

Even though the slope factor contributes significantly to the overall inteagsst
volatility, the unit price of this risk is only a half of the unit price of the level riSke
long run value ofp; is 40 compared to the long run value of 19.9 for The level of
risk scaled by the unit price of risk is the discount on the short rate drcbtopensate
investors for bearing risk. Figure 6 shows how this discount changgstione. The
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TABLE 5. Estimated Parameters for the Australian market

This table reports the estimated parameter values for eadelising Australian data. The
robust asymptotic standard errors are given in square fhergn. re-y” stands forr « 107

Par. 1-factor 2-factor 3-factor| Par.| 1-factor 2-factor 3-factor

Y1 0.9683 0.9277 1.2496 o | 9.3681 9.1533 8.9302

[3.22e-6] [4.52e-9] [0.0001] [1.42e-9] [2.26e-9] [0.3390]

72 - 0.5322  4.5897| oy - 12.204  12.4505
[3.21e-9] [1.85e-7] [3.54e-8] [0.0360]

3 - - 0.0187 | a3 - - 12.0037
[5.27e-5] [0.0298]

A 1.8723 1.9993  4.9130 ¢; | 8.3133  39.9988  25.3901
[1.20e-6] [9.69e-9] [0.0008] [1.42e-9] [1.72e-7] [14.9103]

K - - 0.0780 | ¢» - 19.9088  1.4157
[0.0002] [4.09e-7] [0.0004]

o2 2.14e-6  3.34e-6  2.59e-6 ¢ - - 0.7040
[4.66e-11] [1.87e-14] [5.90e-8§] [0.0030]

B | 01145  0.0230  5.9436
[4.53e-5] [4.50e-11] [1.7169]

B - 0.0337  0.7964
[9.00e-11] [0.0021]

2InL | 39198.9  49511.6  26626.4 5 - - 0.7027
[0.0015]

FIGURE 5. The contribution of each factor toward the overall instan-
taneous volatility of the Australian short rate. 2-factor model.

100% 2nd vol. Slope effect
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TABLE 6. The prediction errors for the Australian market
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This table reports the prediction errors for interbank refterate of different maturities in the Aus-

tralian market. The “Avr” column reports the average of thediction errors, whose standard devia-
tion is reported under “Std” column. The “MAE” and “SAE” caohns report the mean and standard
deviation of the absolute errors. All values are reportebleasss points.

1-factor 2-factor 3-factor

Avr Std MAE SAE| Ar Std MAE SAE | Avr Std MAE SAE
1-mth | -25 82.3 315 76.0-13.2 96.8 40.2 89.0 3.0 1199 83.2 86.3
2-mth | -0.9 79.8 269 75.1-11.1 943 350 88324 120.7 827 87.8
3-mth | -0.9 77.3 223 74.0-10.6 93.2 29.2 89.2 04 1209 82.0 88.6
4-mth | -05 75.3 183 73.1 -98 934 239 90.8-1.2 1209 814 81.4
5-mth | 0.1 74.0 153 724 -8.7 943 193 92.7-2.4 120.5 80.6 894
6-mth | 1.2 73.1 14.2 717 -7.2 957 17.6 94.3-3.0 1195 795 89.1
7-mth | 29 726 154 71.0-50 985 19.7 96.6-3.0 117.7 78.1 87.9
8-mth | 46 725 18.2 70.3 -3.0 101.7 243 98.8-29 1152 765 86.1
9-mth | 6.6 729 220 69.8 -05 1054 299 101.1-2.3 112.8 75.2 83.9
10-mth| 8.8 73.6 256 69.5 2.1 109.3 35.7 103.3-1.4 1100 73.8 815
11-mth| 11.0 74.6 294 694 48 113.8 42.0 105.8-0.7 107.0 719 79.1
12-mth| 13.1 75.7 329 69.3 7.3 1181 47.8 108.20.6 103.2 70.0 755

FIGURE 6. The “discount” on short rate drift to compensate for risk,

2-factor model, Australian market

1.4

0.6

021,

1st factor

12/88

6/04 Year

discount coming from bearing the risk of change in the level of interéss ia much

higher than that coming from the risk of change in the slope of the yield curve
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4.2.3. The U.K. market.

Once again, the numerical optimization for the 3-factor model fails to distinguish
the impact of each factor, see Table 7. The 2-factor model is also trerg@imodel in
terms of model fithess. The prediction errors are below 40 basis points &taehend
of the yield curve, and below 20 basis points in the middle range, as repoifadle 8.

The estimates of and~s are much higher than those in the U.S. or Australian market.
Therefore, the contribution of each risk factor towards the total instantewolatility

is the opposite of what happens in the U.S. market. Here the volatility coming from
the slope risk factor dominates the total risk, and the level risk factor plagglayible

role. The total instantaneous short rate volatility, illustrated in Figure 7, indkas
pattern as the Australian market, though at a slightly higher level.

TABLE 7. Estimated Parameters for the U.K. market

This table reports the estimated parameter values for eadelmsing U.K. data. The robust
asymptotic standard errors are given in square parenttiesis,” stands forz « 10~

Par. | 1-factor 2-factor 3-factor| Par.| 1-factor 2-factor 3-factor
" 0.1171 0.4560 1.1813 «; | 11.5962 11.6327 9.2382
[9.37e-5] [?7] [0.0031] [0.0015] [?7] [1.4875]

Yo - 9.9591 0.5843| ay - 11.9505 12.4326
[??]  [0.0014] [?7] [0.0084]

Y3 - - 0.0163 | a3 - - 11.7322
[2.19e-5] [0.0010]
A 1.0134 3.8671 4.0522 ¢, | 6.8210 37.8598 33.6271
[0.0001] [?7?] [0.0008] [0.0014] [?7] [2.3820]

K - - 0.0757 | ¢» - 1.8489 5.7021
[5.99e-5] [?7] [0.1855]

o2 4.00e-6 2.44e-6 3.80e-6 ¢3 - - 0.2516
[8.85e-9] [?7] [2.85e-8 [0.0047]

51 0.1200 4.1356 0.2293

[1.38e-5] [?7] [0.0034]

B - 4.6554 0.4558

[?7?] [0.3468]

2InL | 34176.2 35599.6 26469.1 (3 - - 0.3697
[0.0009]

The unit priceg; of this level risk (the risk coming from changes in the level of
interest rate) is of similar magnitude as in the other two markets. On the other hand
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TABLE 8. The prediction errors for the U.K. market

This table reports the prediction errors for interbank iefterate of different maturities in the U.K.
market. The “Avr” column reports the average of the preditterrors, whose standard deviation
is reported under “Std” column. The “MAE” and “SAE” columneport the mean and standard
deviation of the absolute errors. All values are reportebleasss points.

1-factor 2-factor 3-factor
Avr Std MAE SAE| Arr Std MAE SAE | Avr Std MAE SAE

1-mth | -21.2 184.8 40.8 181.5-6.2 1085 38.0 101.8-6.7 70.1 48.7 50.7
2-mth | -16.8 1824 335 180.1-45 1059 31.0 101.8-45 705 47.1 52.6
3-mth | -14.1 180.6 28.4 1789-44 104.7 258 101.5-39 71.0 46.0 54.1
4-mth | -125 1789 235 177.8-55 1039 20.5 102.0-4.3 70.1 445 542
5-mth | -10.8 177.6 19.4 176.9-6.4 103.6 16.2 102.5-44 694 436 54.2
6-mth | -9.2 1765 184 1758-7.5 1039 142 103.2-4.7 68.8 429 54.(
7-mth | -7.1 175.6 204 1746-8.1 1041 15.0 103.83-44 67.2 419 52.8
8-mth | -5.1 175.0 243 173.3-8.7 104.7 185 103.5-40 66.4 416 519
9-mth | -3.1 1745 286 172.2-94 1056 22.2 103.Y-3.5 655 415 50.7
10-mth| -0.6 1742 32.8 171.1-95 106.6 25.7 103.9-25 64.5 41.2 491
11-mth| 1.8 1741 37.3 170.1-9.8 107.9 29.5 104.2-1.5 63.8 41.3 48.1
12-mth| 4.2 1741 415 169.1-10.0 109.1 329 104.5-04 63.1 41.6 47.3

FIGURE 7. The instantaneous volatilities of the U.K. short rate
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the risk coming from the change in the slope of the yield curve calls for a muadr lo
compensation. Despite this low compensation, due to the dominant risk valuet almo
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FIGURE 8. The “discount” on short rate drift to compensate for the
slope risk, 2-factor model, U.K. market
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all discount on the short rate drift to compensate investors for bedskgsrfrom the
slope risk factor. The time variation nature of this discount can be seenuneRsy

4.2.4. The Japanese market.

Similar to other markets, the 2-factor model is the model that delivers the smallest
absolute prediction errors in the Japanese market. The estimataddr.9, close to
the level in the Australian market. Both of the market prices of risk have adéghee
of mean reversion. One unit of the level risk is priced much more heavilyahanit
of the slope risk, evidenced by the 35.9 estimate ptompare to the 4.5 estimate of
2.

At the end of 1995, the Japanese market moved to a period of low intatest r
slowly declining from around 50 basis points to around 5 basis points in-2002.
The instantaneous volatility of the short rate decreased accordingty, drievel of
30 basis points to nearly zero, as can be seen in Figure 9. During the laesinte
rate period, the factor that contributed most to interest rate risk was the sfape
yield curve. Figure 10 shows that the slope factor increased its influenmeghout
the declining period of 1991-1995, then became the most crucial risk fdwating the
near-zero interest rate of 1995-2004. However, each unit of slsbelaims less re-
ward than one unit of the level risk, therefore the level risk still contribaignificantly
to the overall financial reward to investors, as illustrated by Figure 11.
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TABLE 9. Estimated Parameters for the Japanese market

robust asymptotic standard errors are given in square fhegn. re-y” stands forr « 107

Par. 1-factor 2-factor 3-factor| Par.| 1-factor 2-factor 3-factor
" 1.8982 1.7255 1.4308| oy 13.9753 12.4794 1.0739
[1.14e-7] [??] [0.0002] [8.34e-7] [??] [0.0032]

Yo - 1.1972 0.1249 | oy - 11.8275 11.3946
[??] [2.43e-6] [??] [0.0033]

Y3 - - 0.0097 | a3 - - 10.5193
[1.54e-6] [0.0005]
A 1.9782 1.8945 3.7487| ¢, 35.3001 35.8588 27.2719
[5.21e-9] [?7] [0.0009] [4.56e-9] [??] [0.0192]

K - - 0.0852 | ¢ - 45297  12.4674
[2.76€e-6] [??] [0.0024]

og 1.14e-7 5.32e-7 1.13e-§ ¢3 - - 0.5566
[5.05e-15] [??] [5.94e-10] [3.25e-5]

51 0.0071 0.0256 1.5606

[3.40e-13] [??] [0.0013]

B - 0.0286 4.9166

[??] [0.0063]

2In L | 43043.1 79896.8 29670.1 (3 - - 0.2134
[9.80e-5]
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TABLE 10. The prediction errors for the Japanese market
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This table reports the prediction errors for interbank ifterate of different maturities in the Japan-
ese market. The “Avr” column reports the average of the ptexnhi errors, whose standard deviation
is reported under “Std” column. The “MAE” and “SAE” columneport the mean and standard
deviation of the absolute errors. All values are reportebleasss points.

1-factor 2-factor 3-factor
Avr  Std MAE SAE | Avwr Std MAE SAE|Avwr Std MAE SAE
1-mth | 5.2 115.8 33.8 110.9-7.3 63.1 19.3 60.53.6 30.3 175 25.Q
2-mth | -19.3 138.4 24.6 137.6-7.0 623 164 60537 29.0 16.8 23.9
3-mth | -17.5 135.6 23.2 134)-6.9 625 141 61.33.6 29.0 16.2 24./
4-mth | -15.8 132.1 21.7 131.2-6.9 624 125 61535 291 157 24.§
5-mth | -14.0 129.1 20.4 128.3-6.8 62.7 11.3 62134 29.0 155 24.7
6-mth | -11.6 126.6 18.6 125[-6.1 629 10.6 62.33.8 28.1 14.7 24.2
7-mth | -9.7 1235 17.3 122.y-59 635 105 62939 280 146 24.2
8-mth | -74 121.0 17.1 120.0-53 63.9 112 63142 278 147 23.9
9-mth | -5.2 1189 18.0 117.6-4.1 648 126 63.84.6 27.8 153 23.6
10-mth| -2.8 116.4 19.2 114.8-41 653 135 64.05.0 274 156 231
11-mth| -0.6 1145 21.1 1125-3.6 66.2 148 64.6 53 275 16.3 22.7
12-mth| 1.9 112.3 234 109.9-2.8 66.7 159 64.859 274 274 223
FIGURE 9. The instantaneous volatilities of the Japanese short rate
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FIGURE 10. The contribution of each factor toward the overall in-
stantaneous volatility of the Japanese short rate. 2-factor model.
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FIGURE11l. The “discount” on short rate drift to compensate for risk,
2-factor model, Japanese market
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5. CONCLUSION

The HIM framework provides a very flexible tool for interest rate modellixgn
though theoretical research has advanced quickly, the advantagébiahodels have
not been fully realized in practical applications due to the lack of empiriced wdore
research needs to be done on the challenging task of HJM model estimatia®ein o
to obtain a better understanding of interest rate volatility that is much needed in th
process of assessing and managing risk as well as pricing derivatuetges. This
paper has attempted to contribute to the empirical literature by proposing antestima
framework that can be applied for a broad class of nonlinear HJM models.

The paper uses the local linearization filter to build up a maximum likelihood esti-
mator which is able to identify all parameters of the model, and to exploit both time
series and cross-sectional data. The local linearization scheme is drased 16-
Taylor expansion of the nonlinear drift and diffusion terms of the drivdggamics
to better take into account the stochastic behaviour of the interest ratensyste an
optimal linear filter is subsequently applied. This filter has been chosemud®od
its advantages over other filters claimed by Shoji (1998) and its better nainanid
stability properties demonstrated by Jimenez et al. (1999).

The estimator is then used to estimate the interest rate volatility structure in the U.S,
the U.K, the Australian and the Japanese markets, using interbank eféeesd In all
markets, a 2-factor model, with the factors being the level and the slope gidide
curve, is found to be a reasonable choice. The influence of each tactbe overall
instantaneous short rate volatility varies over time and across markets.veh&aldor
is the dominant factor in the U.S market whereas the slope factor is the doroimant
in the U.K. market. The two factors play a more equal role in the Australian marke
In the Japanese market, the level effect has more impact on the ovéadilityovhen
interest rates are around a few percent, but the slope effect hasimuaiet when
interest rates stay at very low levels of less than 50 basis points.

Despite the different influence on the overall volatility, in all of the markets, th
level risk claims a much higher financial reward than the slope risk. A kriyelef
how each factor contributes to the overall volatility and the rewards fairmgethe risk
will help investors manage the risk of interest rate portfolios.

The filter adopted here is certainly not the only nonlinear filter available to mod-
ellers. Itis left for future research to explore other filters, so as todigdod trade-off
between reduction in computational requirements, increase in accurbetar sta-
tistical reliability, all of which are crucial if financial managers are to reeas their
models frequently.
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APPENDIXA. MARKOVIANIZATION OF THE INTEREST RATE DYNAMICS

Assuming that the forward rate(t, x) defined in (2.1) has a volatility function
o(t,z) that satisfies Assumption 2.1. Proposition 3.4 in Chiarella and Kwon (2003)
states that the forward rate curve can be expressed as an affitieriusfcsome state
variables, i.e.

I L,
r(t,x) = r(0,t+2)+ Y Y oalt+x)yi(t)
=1 [=1
I L ' (A.1)
+ Z Z [O’il(t =+ .%‘)5‘2'1* (t + l‘) + €04+ (t —+ {L‘)a'il(t + LU)]QO;Z* (t),
=1 *=
l’llgz*l
where
ou(z) = / oi(s) ds,
0
) t
e (6) = [ ealo)eu(5)ds,
0

t N di ot
W(t):/o ci(s) dWi(s) — Z/o cit(s)ci (s)ay=(s) ds,

1*=1
1, ifl#1",
0, ifl=1"

6”* =

N

andW;, (i = 1,...,I) are standard Wiener processes under the equivalent measure

P.

Under this setting, the economic meaning of the state varigbéasly is not clear.
The next step is to use the forward rates themselves as the state variables.

Let.” = {¢}(t), ¢} (t)}. DefineN = |.#|, choose an ordering fo#” and write
xn(t) for the elements of” so that” = {xi(t),...,xw~(t)}. Then (A.1) can be
written

N
r(t,x) = ao(t,x) + > an(t, z) xu(t), (A.2)

n=1

for suitable deterministic functions (¢, z) anda, (¢, ).
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Corollary A.1. Suppose that the conditions of Assumption 2.1 are satisfied. If there

existry, 7o, ..., 7n € Ry such that the matrix
ay(t,m) ag(t,m) -+ an(t,m)
A7 Ty = ai(t,m) as(t,) -+ an(t, ) A3)
ar(t,7v) ag(t,7n) - an(t,TN)

is invertible for allt € R, then the variableg,, (¢) can be expressed in the form

X(t) = A(thla s ,TN)_I [G’O(taTb s 7TN) - T(taTla s ’TN)] ) (A4)
where
x(t) = (), ... xn ()],
ao(t,ﬁ, .. .,TN) = [ao(t,’ﬁ), “en ,ao(t,TN)}/,
r(t, T, ..., 7)) = [r(t, 1), ..., r(t,TN)] -

The whole forward curve then can be written in terms of these new econgmica
meaningful state variables
T(t, ':U) = a‘O(tv .%') - a’(ta l’)/A(t, T1y- - 77_N)_1a0(t7 T1, .- - 77—N)

) (A.5)
+a(t,z) Alt,m,...,78) vt 1, .., TN),

where
a(t,z) = la1(t,z),...,an(t,z)].

Therefore, the HIM models admits a N-dimensional affine realization in terthe of
set of discrete tenor forward rateét, 71, ..., 7n). This set of forward rates forms a
Markov process, and undét each forward rate(t, z) satisfies the stochastic differ-
ential equation

Oap(t,z) Oa(t,z)
dr(t,z) = %& ) _ (&B )

da(t,z)
+ ox
+o(t,t+z)dW(t).

A(t,r,... ,TN)_lao(tﬂ'l, Ce oy TN)

A(t, 7, ..., mNn) et T, TN) ot t 4 x) a(tt+2) | dt
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In terms of the real world measure, whebe= (¢, ..., ¢s) is the vector of market

prices of risk associating with the Wiener proc&gs the system becomes

dag(t,x)  Oda(t, )
ox ox
da(t,z)’

o

— ¢lo(t,t+a)|dt+o(t,t+z)dW(t),

which is (2.4) in the main text.

dr(t,ac): A(t,Tl,...,TN)_lao(t,Tl,...,TN)

At 7, ..., 7n) It 1, . ) + ot t +2) et t+ )

The yieldy(t, z) can also be expressed as an affine function of forward rates
y(t7 ZL’) :bO(t> $) - b(tv .T),A<t, Tly--- aTN)_la’O(ta Tly-- -y TN)
+b(t,x) At 11, ..., 7n) et T, TN,

where

xT

b(t, z) = l/oxa(t,u)du.

T

1 X
boit.2) = [ aolt,upd
0

This affine yield expression is equation (2.6) in the main text.

APPENDIXB. LOCAL LINEARIZATION FILTER FORLINEAR
CONTINUOUS-DISCRETESTATE SPACE MODELS

Jimenez and Ozaki (2002) analyzed a linear state space model defitteel dyn-
tinuous state equation

dx(t) = (A(t)x(t) ) dt + Z )+ bi(t)) dW(t), (B.1)

and the discrete observation equatfon
Zy; = C(tj)x(tj)—i—etj, forj=0,1,...,J, (B.2)

wherex(t) € R? is the state vector at the instant of time,, € R” is the observation
vector at the instant of timg;, W is am-dimensional vector of independent Wiener
processes, anfe;; : e;;, ~ N(0,II),j = 0,...,J} is a sequence of random vector
i.i.d.
107 heir original specification is

2z, = C(t +ZD 5z +ey, forj=0,1,...,J,

where{gtj : gtj ~N(0,A),A = d1ag((>\1, ..yAn)),7 =0,...,J}is a sequence of random vector
iid., andIE(gij ,et;) = 9°(t;). However, in most finance applications, the noise térisinot required.
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Definex,, = E (x(t)|Z,) and Py, = E((x(t) — %4,)(x(t) — %X4,)'|Z,) for all
p < t,whereZ, = {ztj 1ty < p}.

Suppose thak (W (t)W'(t)) = I, Xy, < 00 andPy,, < oo.

Theorem B.1. (Jimenez and Ozaki (2002)) The optimal (minimum variance) linear
filter for the linear model (B.1)- (B.2) consists of equations of evolution fectndi-
tional meanx,, and the covariance matri¥, ;. Between observations, these satisfy
the ordinary differential equation

dxy; = (A(t)%ye + a(t)) dt, (B.3)

dPy, = (A(t)Ptt + Pt|tA/(t) + Z B;(t) (Pt|t + it|t5(£|t> Bj(t)

=1 (B.4)

5 (Bi(t)%yeb (1) + bi(t)3), BI(1) + bi<t>b;<t>)> d,
=1

forall ¢ € [t;,t;41). At an observation at;, they satisfy the difference equation

A~

Xtjaltjrr = )A(tj+1|tj + Ktj+1 (th+1 - C(tj+1))/\(tj+1|tj> ) (B-5)
Pty = Pryajy — Ktjﬂc(tJH)PtHlltj’ (B.6)

where

-1
Ki., = Pr o, C(t4) (C(t]—H)Pth‘tjC'(th) + n) (B.7)

is the filter gain. The predictios,, and P,|, are accomplished, respectively, via
expressions (B.3) and (B.4) with initial conditiokg ;, and P, ;, andp < t.

The analytical solution for this system of equations can be easily foundgtails
see Jimenez and Ozaki (2003). They also provide some equivalegeseigns that are
easier to implement via computer programs.
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