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ABSTRACT. This paper considers the dynamics for interest rate processes within a

multi-factor Heath, Jarrow and Morton (1992) specification. Despite the flexibility of

and the notable advances in theoretical research about the HJM models,the number

of empirical studies is still inadequate. This paucity is principally because ofthe

difficulties in estimating models in this class, which are not only high-dimensional,

but also nonlinear and involve latent state variables. This paper treats the estimation

of a fairly broad class of HJM models as a nonlinear filtering problem, andadopts the

local linearization filter of Jimenez and Ozaki (2003), which is known to have some

desirable statistical and numerical features, to estimate the model via the maximum

likelihood method. The estimator is then applied to the interbank offered-rates of the

U.S, U.K, Australian and Japanese markets. The two-factor model, withthe factors

being the level and the slope effect, is found to be a reasonable choice for all of the

markets. However, the contribution of each factor towards overall variability of the

interest rates and the financial reward each factor claims differ considerably from one

market to another.
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1. INTRODUCTION

Management of interest rate risk is of crucial importance to financial institutions and

corporations. The volatility structure of this interest rate market plays a crucial role

in assessing and managing the value as well as the risk of bond and interestrate de-

rivative portfolios. Various interest rate models have been considered, amongst which

the Heath-Jarrow-Morton (1992) (hereafter HJM) framework provides a very flexible

framework for interest rate modelling. Despite its nice theoretical flexibility, theappli-

cation of the HJM class of models to practical problems is hindered by the difficulty

of model estimation. This is principally due to the fact that the underlying state vari-

ables of the HJM models are un-observable quantities, and the dynamics areusually

non-Markovian and non-linear in their (latent) state variables.

Theoretical research on HJM models has shown that for a fairly broad family of

volatility functions, the underlying stochastic system can be Markovianized,and thereby

easing the computational complexity involved. However, the problems of nonlinearity

and the existence of latent variables still exist, and the empirical analysis of HJM mod-

els has centered around certain volatility functions that lead to convenient properties

for the system, for example, the class of affine or square root affine volatilities.

It should also be noted that the estimation for stochastic models is already a chal-

lenging task for systems with affine or square root affine volatilities. Duffee and Stan-

ton (2004) analyze the performance of different estimation methods for dynamic term

structure models. They find that the standard maximum likelihood estimator (MLE)

does a very poor job of estimating the parameters that determine expected changes

in interest rates. Furthermore they find that the efficient method of moment (EMM)

estimator is an unacceptable alternative, even where the MLE performs well.They

conclude that the Kalman filter is a reasonable choice, even in the non-Gaussian set-

ting where the filter is not exact. In that case, they advocate the use of a variant of

the Kalman filter, where the updating equation for the state variables is a linearized

version of the drift using its first derivative.

In light of the findings of Duffee and Stanton (2004) this paper pursuesfurther the

filtering approach. To deal with the nonlinear nature of the problem we advocate the

use of the local linearization filter of Jimenez and Ozaki (2002, 2003). The main idea

is to linearize the system dynamics according to the Itô formula, utilizing both the

drift and the diffusion terms, to better take into account the stochastic behaviour of the

system, and then to apply the (readily available) optimal linear filter. We have chosen

this filter as it has been shown by Shoji (1998) to have good bias properties and by

Jimenez et al. (1999) to have a number of computational advantages. The estimation



VOLATILITY STRUCTURE 3

method is able to exploit both the time series and cross sectional information of the

yield curve.

We propose and motivate a three-factor volatility specification and apply the local

linearization filter to analyze the volatility structure of the interbank offered-rates in

the U.S., the U.K, the Australian and the Japanese markets. These markets have been

chosen to represent different regions in the world. The rest of the paper is organized

as follows. Section 2 introduces the model. The econometric implication of the model

and the proposed estimation method are discussed in Section 3. Empirical results are

then presented in Section 4, and Section 5 concludes the paper.

2. MODEL FRAMEWORK

The general framework for the interest rate models considered in this paper is in-

troduced in Heath, Jarrow and Morton (1992), where the instantaneousforward rates

r(t, x) (the rate that can be contracted at timet for instantaneous borrowing/lending at

future timet+ x) are assumed to satisfy SDEs of the form1

r(t, x) = r(0, t+ x) +

∫ t

0
σ(s, t+ x)′ [σ̄(s, t+ x) − φ(s)] ds

+

∫ t

0
σ(s, t+ x)′dW (s),

(2.1)

where

σ̄(s, t+ x) =

∫ t+x

s

σ(s, u)du,

andσ(t, x), φ(t) areI-dimensional processes andW (t) is a standardI-dimensional

vector of independent Wiener processes under the market measureP, I ∈ N+ and the

superscript′ represents matrix transposition. The vectorφ(t) can be interpreted as the

market price of interest rate risk vector associated withdW (t). In general,σ andφ

may depend on a number of forward ratesr(t, x).2

The HJM model framework is chosen as it yields arbitrage-free models thatfit the

initial yield curve by construction. The subclass of HJM models which are particularly

suited to practical implementation are those which can be Markovianized. Carver-

hill (1994), Ritchken and Sankarasubramanian (1995), Bhar and Chiarella (1997a),

Inui and Kijima (1998), de Jong and Santa-Clara (1999) and Björk and Svensson

(2001) discuss various specifications of the forward rate volatilitiesσ(t, x) that lead

to Markovian representations of the forward rate dynamics. Chiarella andKwon

1We are in fact using the Brace et al. (1997) implementation of the HJM model. This is more appropriate
to capture the dynamics of LIBOR and various other market quoted rates.
2In this notation,r(t, 0) denotes the instantaneous rate of interest that we henceforth write asr(t).
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(2001b, 2003) introduce a specification that leads to a fairly broad and convenient

class of models. The models in this class satisfy the assumption:

Assumption 2.1. (i) For each1 ≤ i ≤ I, there existsLi ∈ N such that the compo-

nents,σi(t, x), of the forward rate volatility process have the form

σi(t, x) =

Li∑

l=1

cil(t)σil(x) (2.2)

wherecil(t) are stochastic processes andσij(x) are deterministic functions.

(ii) There existM ∈ N and a sequencex1 < · · · < xM ∈ R+ such that the processes

cil(t) have the form

cil(t) = ĉil(t, r(t, x1), . . . , r(t, xM )), (2.3)

whereĉ is deterministic in its arguments.

Chiarella and Kwon (2003) then prove that the forward curve can be expressed as

an affine function of a set ofN discrete tenor forward rates

r(t, τ1, . . . , τN ) = [r(t, τ1), . . . , r(t, τN )]′

(see Appendix A for a brief summary). This set of forward rates forms aMarkov

process. In terms of the real world measure, whereφ ≡ (φ1, . . . , φI) is the vector of

market prices of risk associated with the Wiener processW , the system of stochastic

differential equations for the instantaneous forward rates becomes3

dr(t, x) =[p0(t, x, τ1, . . . , τN ) + p′
1(t, x, τ1, . . . , τN )r(t, τ1, . . . , τN )

− φ′σ(t, t+ x)]dt+ σ(t, t+ x)′dW (t).
(2.4)

The yieldy(t, x) on the(t+ x)-maturity zero coupon bond can be calculated from

the instantaneous forward rates via

y(t, x) =
1

x

∫ x

0
r(t, u)du, (2.5)

and can also be expressed as an affine function of the forward rates,that we write in

the form

y(t, x) = q0(t, x, τ1, . . . , τN ) − q′(t, x, τ1, . . . , τN )r(t, τ1, . . . , τN ), (2.6)

where theqi(t, x, τ1, . . . , τN ) is a set of deterministic functions4. We therefore have an

affine term structure model. This model is not nested inside the popular affine model

class considered in Duffie and Kan (1996), even though there will be occasions when

the two classes overlap.

3For definition of the coefficient functionsp0 andp, see Appendix A.
4Again see Appendix A for definitions of theqi.
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3. ESTIMATION FRAMEWORK

3.1. The model specification.

The empirical work of Litterman and Scheinkman (1991), Chen and Scott (1993),

Knez et al. (1994), Singh (1995), who use principal component analysis, suggests that

there are at most three factors affecting the volatility of interest rates. Guided by this

insights we propose to use a three-dimensional Wiener process in the specification

(2.1), with the corresponding volatility functions

σ1(t, x) = γ1r
λ(t), (3.1)

σ2(t, x) = γ2(r(t, τ) − r(t)), (3.2)

σ3(t, x) = γ3 e−κ(x−t) . (3.3)

The first volatility functionσ1(t, x) represents the level factor. Ifλ1 = 0.5 we would

obtain a Cox-Ingersoll-Ross (1985a) type of volatility. The second volatilityfunction

σ2(t, x) reflects the influence of the slope of the yield curve on interest rate volatility,

with the differencer(t, τ)−r(t) proxying the slope. Finally, the last volatility function

σ3(t, x) allows a shock in the corresponding Wiener process to have different impacts

at different maturities along the yield curve.

The market price of risk termsφ1, φ2, φ3 are assumed to follow a square-root type

of processes, ie. they are mean reverting and have volatility functions proportional to

the square root of their own levels, ie.

dφi = αi(φ̄i − φi)dt+ βi

√
φi(t)dWi(t). (3.4)

Intuitively, the specification suggests that the market prices of differentinterest rate

risks are always positive and tend to converge to their long run equilibria.

3.2. Econometric implication of the model.

Some similar and other specialized models of the HJM class considered here have

been empirically analyzed. Bliss and Ritchken (1996) consider the case where the

volatility function in (2.2) can be written as5

σ(t, x) = c(t) e−κx .

This specification covers our single-factor model, as each of our volatility function can

be written in that form. For example, withσ1(t, x) = γ1r
λ(t), the value ofκ is zero

andc(t) = γ1r
λ(t). The key idea of their approach is to exploit the relationship (2.6)

for the yields, into which they introduce an error term, then estimate their model via

5With this volatility function, the model can be Markovianized using two state variables.
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the Maximum Likelihood procedure6. The main drawback of this approach is that the

estimation procedure can only identifyκ, as the relationship (2.6) does not depend on

the parameters characterizing functionc(t) (γ1 andλ in our example). However, all of

the parameters in the models are important in practical work, such as the determination

of the price of a derivative contract.

de Jong and Santa-Clara (1999) also empirically study two-state variable HJM mod-

els where the volatility function of the system is proportional to the square root of

the state variables. However, they overcome the disadvantages of Bliss and Ritchken

(1996) approach by using both the relationship (2.6) and the Markovian system (2.4) in

their estimation procedure. They use the Kalman filtering method where (2.6) serves

as the observation equation and (2.4) is discretized into a state transition equation. In

a more general setting, it is not clear how to discretize the structural stochastic system,

and the behaviour of the estimator is clearly dependent on the method used in this

discretization.

In this paper, we advocate the local linearization filter (hereafter the LL filter) of

Jimenez and Ozaki (2002, 2003). This approach is still based on the Kalman filter for

a discrete linear system. However, Jimenez and Ozaki do not discretize thenonlinear

system directly, but rather approximate it by a system linear in both its drift and its

diffusion terms, for which a linear Kalman filter turns out to be readily applicable.

The approximation is not based on the first order Taylor approximation used in the

standard extended Kalman filter framework, but is instead based on a second order

approximation using the Itô formula to better take into account the stochastic behaviour

of the underlying state variables.

In his comparative study, Shoji (1998) analyzed the performance of themaximum

likelihood estimator based on the LL filter and the one based on the extended Kalman

filter for a system with additive noise (i.e. the volatility function is not dependent

on the state variables). Shoji used Monte Carlo simulation to show that the LL filter

provided estimates with smaller bias, particularly in estimation of the coefficient of

the drift term. Jimenez et al. (1999) compared the LL scheme with other linearization

schemes for systems with either additive or multiplicative noise (i.e. the volatility

function is dependent on the state variables). They also reported a number of numerical

advantages of the LL filter, including numerical stability, better accuracy and the order

of strong convergence.

6The relationship Bliss and Ritchken use is actually an expression of the wholeyield curve as an affine
function of some particular yields rather than the forward rates. This canbe derived very simply from the
model here.
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3.3. The local linearization filter and the maximum likelihood estimator.

Consider the state space model defined by the continuous state equation

dx(t) = f(t,x(t))dt+
m∑

i=1

gi(t,x(t))dWi(t), (3.5)

and the discrete observation equation7

ztj = C(tj)x(tj) + etj , for j = 0, 1, . . . , J, (3.6)

wheref andgi are nonlinear functions,x(t) ∈ R
d is the state vector at the instant

of time t, ztj ∈ R
r is the observation vector at the instant of timetj , W is anm-

dimensional Wiener process, and{etj : etj ∼ N (0,Π), j = 0, . . . , J} is a sequence

of i.i.d. random vectors.

The system functionsf andgi can be linearly approximated. Jimenez and Ozaki

(2003) proposed to approximate them via a truncated Ito-Taylor expansion to better

take into account the stochastic behaviour of the underlying state system. For example,

the approximation forf is

f(t,x(t)) ≈f(s,u) +


∂f(s,u)

∂s
+

1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2f(s,u)

∂uk∂ul


 (t− s)

+ Jf (s,u)(x(t) − u),

(3.7)

where(s,u) ∈ R × R
d, Jf (s,u) is the Jacobian off evaluated at the point(s,u) and

G(s,u) is thed×m matrix defined byG(s,u) ≡ (g1, . . . ,gm).

Using such approximations forf andgi, the solution of the nonlinear state equation

(3.5) can be approximated by the solution of the piecewise linear stochastic differential

7A full (nonlinear) specification of the observation equation would be

ztj
= h(tj ,x(tj)) +

n∑

i=1

pi(tj ,x(tj))ξ
i
tj

+ etj
, for j = 0, 1, . . . , J,

whereh and pi are nonlniear functions,{ξtj
: ξtj

∼ N (0,Λ),Λ = diag((λ1, . . . , λn)), j =

0, . . . , J} is a sequence of random vector i.i.d., andξi
tj

andetj
are uncorrelated for alli andj. However,

in most finance applications, including ours, a linear specification forh is all that is required and there is
no need to include the extra noise termξ.
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equation8

dy(t) =
(
A(tj , ŷtj |tj )y(t) + a(t, tj , ŷtj |tj )

)
dt

+
m∑

i=1

(
Bi(tj , ŷtj |tj )y(t) + bi(t, tj , ŷtj |tj )

)
dWi(t)

(3.8)

for all t ∈ [tj , tj+1), starting aty(t0) = ŷt0|t0 = x̂t0|t0 . The various quantities

appearing in (3.8) are defined as

x̂t|ρ = E (x(t)|Zρ) , Zρ = {ztj : tj ≤ ρ},

ŷt|ρ = E (y(t)|Zρ) ,

A(s,u) = Jf (s,u),

Bi(s,u) = Jgi
(s,u),

a(t, s,u) = f(s,u) − Jf (s,u)u +
∂f(s,u)

∂s
(t− s)

+
1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2f(s,u)

∂uk∂ul
(t− s),

bi(t, s,u) = gi(s,u) − Jgi
(s,u)u +

∂gi(s,u)

∂s
(t− s)

+
1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2gi(s,u)

∂uk∂ul
(t− s).

The approximate stochastic differential equation (3.8) and the corresponding obser-

vation equation (see (3.6))

ztj = C(tj)y(tj) + etj , for j = 0, 1, . . . , J, (3.9)

form a linear state space system. The optimal linear filter proposed by Jimenezand

Ozaki (2002) can be applied (see Appendix B for its definition) to determinethe con-

ditional mean̂yt|ρ and conditional covariance matrixPt|ρ = E((y(t) − ŷt|ρ)(y(t) −

ŷt|ρ)
′|Zρ) for all ρ ≤ t.

Due to the assumption of multivariate normality of the disturbancesetj (and if the

initial state vector also has a proper multivariate normal distribution), the distribution

of ztj+1
conditional onZtj is itself normal (see (3.9)). The mean and covariance matrix

of this conditional distribution are given directly by the local linearization filterabove.

Therefore, a maximum likelihood estimator for the model parameters can be easily

derived.

8We usey(t) to denote the solution to the approximate system to distinguish it fromx(t) the solution to
the true system.
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Let θ be the vector of parameters of interest, which include all parameters speci-

fying the state space model (3.8) and (3.9), plus the initial state values ofx̂t0|t0 and

Pt0|t0 . The log likelihood function forZ is

LZ(θ) = −
rJ

2
ln(2π) −

1

2

J∑

j=1

ln |Σtj | −
1

2

J∑

j=1

ν ′
tj
Σ−1

tj
νtj (3.10)

where the innovation equations are

νtj = ztj − C(tj)ŷtj |tj−1
, (3.11)

Σtj = C(tj)Ptj |tj−1
C′(tj) + Π. (3.12)

The maximum likelihood estimator ofθ is then

θ̂ = max
θ

LZ(θ). (3.13)

3.4. Econometric implementation.

We now view our model as a continuous-discrete nonlinear state space system,

where (2.4) and (3.4) serve as the nonlinear state equations, and (2.6) serves as the

linear (affine) observation equation. Similar to the standard practice in the literature,

we introduce into the observation equation a measurement error, which reflects the fact

that the model cannot fit all observed yields simultaneously. This measurement error

is assumed to follow a multivariate normal distribution. The local linearization filter

can be readily applied to yield the maximum likelihood estimator ofθ, the vector of

parameters of interest, which includes all of the parameters of the volatility functions

(3.1) - (3.3), of the market price of risk specification (3.4) and the initial conditional

mean vector̂xt0|t0 and conditional variance matrixPt0|t0 .

The numerical difficulties associated with any estimation procedures for stochastic

systems are well-known. Amongst them, system stability, matrix inversion to calculate

the likelihood function, convergence of the optimization routine and significance of the

estimates are the main problems. To partly overcome these problems, we maximize the

likelihood function using a genetic algorithm (Holland (1975), Mitchell (1996), Vose

(1999), Michalewicz (1999)). Genetic algorithms use the evolutionary principle to

solve difficult problems with objective functions that do not possess “nice” properties

such as continuity and differentiability. The algorithms search the solution space of a

function, and implement a “survival of the fittest” strategy to improve the solutions.
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FIGURE 1. 1-month interbank offered-rates
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4. EMPIRICAL ANALYSIS

4.1. The Data.

We estimate the model using the interbank offered-rates in the U.S, U.K, Australian

and Japanese markets downloaded from Datastreamr. The data consists of monthly

observations for contracts with maturity from 1 month to 12 months, spanning a period

from January 1988 to June 2004.

Figure 1 shows the 1-month rates for different markets. Over the 16-year period,

interest rates change significantly. The overall pattern is an increasing trend for the

last years of the 80s, followed by a sharp decrease throughout the first half of the 90s.
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In the second half of the 90s, interest rates moved considerably arounda temporary

“long term” level, before decreasing during the year 2001. The rates in Australia and

U.K. then picked up again, whereas the U.S. still experienced a decline in rates, and

the Japanese rates stayed at a very low level below 10 basis points. All ofthe rates

display a high level of autocorrelation, as can be seen in Table 1.

TABLE 1. The 1-month interbank offered-rates

U.S. Australia U.K. Japan

Mean 5.09% 7.55% 7.54% 2.34%
Standard deviation2.27 % 3.80% 3.37% 2.65%

AC(1) 0.9832 0.9938 0.9916 0.9922

We also analyzed the principal components of the zero yield curve constructed from

the interbank offered-rates. In all of the markets, three components areable to explain

100% of the variation in the yields, however the last component plays a verynegligible

role, only explaining 0.01%-0.02% of the total variation, as reported in Table2.

TABLE 2. Principal component analysis of zero yield curves

% variation explained U.S. Australia U.K. Japan

Principal component 199.64 99.76 99.68 99.87
Principal component 2 0.34 0.23 0.31 0.11
Principal component 3 0.02 0.01 0.01 0.01

4.2. Empirical Results.

To increase the computational accuracy we estimated the 1-factor, 2-factor and 3-

factor models separately, as follows:

• 1-factor model

σ1(t, x) = γ1r
λ(t)

• 2-factor model

σ1(t, x) = γ1r
λ(t),

σ2(t, x) = γ2(r(t, τ) − r(t))

• 3-factor model

σ1(t, x) = γ1r
λ(t),

σ2(t, x) = γ2(r(t, τ) − r(t)),

σ3(t, x) = γ3 e−κ(x−t) .
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We expected the third factor to contribute very slightly to the total variation of theyield

curve, and therefore including it may make the task of separating different components

harder. There are also a lot more parameters involved in the 3-factor model, which may

cause difficulties in the numerical optimization of the likelihood function.

4.2.1. The U.S market.

The parameter estimates for the U.S. market can be found in Table 3. All of the

estimates are highly significant. However, the numerical optimization routine failsto

find a higher likelihood function for the 3-factor model.

For the 1-factor model (whose interest rate volatility function isγ1r
λ), the estimate

of λ is 1.97, higher than the value close to 1.5 found by Chan et al. (1992), andthe

range of 0.5 to 1.5 (dependent on the interest rate series used) in Paganet al. (1996).9

For the 2-factor model, the estimate ofλ is 0.59, which is very close to the 0.5 speci-

fication of the Cox-Ingersoll-Ross (1985a) type of volatility. The market prices of risk

display very high rates of mean reversion. The mean reversion parametersα1 andα2

imply a halflife (the expected time that it takes for a state variable to return one half

way back to its steady state level following a deviation) of around 0.5 and 0.7 months

for the first and second market price of risk respectively.

Table 4 reports the prediction errors obtained by the models. It can be seen that the

2-factor model delivers the lowest mean absolute errors, averaging at14 basis points

across maturities. The errors are higher at the two ends of the yield curve. These

prediction errors are in line with, and somewhat smaller than those in the study of

Jegadeesh and Pennacchi (1996) who also used the Kalman filter (for alinear 2-factor

model with constant volatilities) and reported a mean error (not mean absolute) of 23.5

basis points for the 1-month rate and 47.5 basis points for the 12-month rate.

Based on the estimates and the fitness of the models, the 2-factor model is our pre-

ferred choice. Figure 2 shows the volatilities of the short rate over the estimation pe-

riod. The 2-factor model implies an average of 0.8% short rate volatility. Theresults

for the period 1988-1992 are consistent with previous finding by Amin andMorton

(1994), who studied the implied volatility of the short rate over that period. Onav-

erage, the first volatility factor (the level effect) explains 99.87% whereas the second

factor (the slope effect) explains 0.13% of the total variation of the yield curve.

As the volatility of the short rate increases, the drift should be lower (ie. ata discount

compared to the zero volatility case), so that the corresponding drift for the bond price

9Bhar et al. (2005) have employed a Bayesian updating algorithm to estimatethe distribution for the
parameterλ in one factor HJM model implied by LIBOR rates of various maturities. Theyfind that the
distribution lies in the interval [0.5,4], giving support to the rather high (compared to some other studies)
values for this parameter estimated in all markets here.
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TABLE 3. Estimated Parameters for the U.S market

This table reports the estimated parameter values for each model using U.S data. The robust
asymptotic standard errors are given in square parenthesis. “xe-y” stands forx ∗ 10−y

Par. 1-factor 2-factor 3-factor Par. 1-factor 2-factor 3-factor

γ1 3.2295 0.0462 1.2420 α1 11.4681 15.9900 6.2500
[3.83e-5] [3.33e-8] [4.26e-4] [8.33e-5] [1.19e-5] [0.0013]

γ2 - 0.1261 6.6221 α2 - 11.3091 12.0068
[6.13e-9] [0.0023] [5.40e-7] [0.0006]

γ3 - - 0.0018 α3 - - 11.7078
[4.89e-8] [0.0034]

λ 1.9662 0.5859 4.6823 φ̄1 18.5931 39.5238 18.6997
[5.26e-6] [3.42e-7] [4.76e-5] [1.47e-4] [1.75e-6] [0.0406]

κ - - 0.4623 φ̄2 - 16.2375 0.5028
[0.0001] [1.45e-5] [1.56e-5]

σ2
e 2.13e-6 2.71e-7 1.2e-6 φ̄3 - - 19.6867

[1.52e-11] [5.13e-13] [5.46e-9] [0.0329]

β1 0.0104 0.8189 3.5873
[1.14e-7] [5.59e-9] [0.0092]

β2 - 4.1248 0.0095
[1.78e-6] [4.14e-5]

2 lnL 33025.7 213025.8 28412.5 β3 - - 4.9948
[0.0007]

is higher which compensates investors for bearing higher risk. Figure 3 shows how

these discounts (calculated by multiplying the standard deviation associated witheach

Wiener process by its corresponding market price of risk) are changing over time. As

the level effect has a much larger impact on the volatility, most of the discountsare

for this type of risk. The risk coming from the yield curve changing its slope ismuch

lower, and therefore calls for a smaller bond premium.

4.2.2. The Australian market.

Similar to the U.S. market, the 2-factor model is also our preferred choice forthe

Australian market. The absolute prediction errors average at 30 basis points, which

is slightly higher than that in the U.S. market. The estimate forλ is 3.5 times higher,

predicting a smaller impact of the level of the interest rate on the overall volatility.
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TABLE 4. The prediction errors for the U.S. market

This table reports the prediction errors for interbank offered rates of different maturities in the U.S.
market. The “Avr” column reports the average of the prediction errors, whose standard deviation
is reported under “Std” column. The “MAE” and “SAE” columns report the mean and standard
deviation of the absolute errors. All values are reported asbasis points.

1-factor 2-factor 3-factor
Avr Std MAE SAE Avr Std MAE SAE Avr Std MAE SAE

1-mth -9.1 67.4 33.0 59.4 -19.5 25.3 26.4 18.0 36.7 38.2 45.0 27.9
2-mth -5.8 63.2 27.8 57.0 -16.9 19.9 21.5 14.6 35.4 37.4 43.5 27.5
3-mth -3.3 59.7 24.0 54.8 -15.1 15.4 18.2 11.6 33.6 37.3 42.1 27.2
4-mth -1.4 57.0 20.4 53.2 -13.8 11.6 11.6 9.6 31.6 36.5 40.7 25.9
5-mth 0.9 54.8 18.1 51.7 -12.3 8.6 13.2 7.0 30.3 36.0 39.7 25.2
6-mth 2.7 52.9 17.6 49.9 -11.2 6.8 11.8 5.6 2.90 35.6 38.5 24.9
7-mth 5.3 52.1 19.3 48.6 -9.2 6.6 9.8 5.7 28.8 34.8 38.0 24.5
8-mth 7.5 51.5 21.3 47.5 -7.7 8.1 9.1 6.5 28.5 34.5 37.5 24.5
9-mth 9.9 51.6 23.8 46.8 -6.0 10.6 9.5 7.5 28.9 34.0 37.4 24.3
10-mth 12.6 52.3 26.8 46.7 -4.0 13.1 10.7 8.5 29.7 33.8 37.9 24.3
11-mth 15.6 53.4 30.3 46.6 -1.7 15.8 12.3 10.0 31.3 33.9 38.6 24.4
12-mth 18.4 55.1 33.8 47.1 0.4 18.6 14.5 11.6 32.9 33.4 39.7 24.9

FIGURE 2. The instantaneous volatilities of the U.S. short rate

Year12/88 12/92 12/96 12/00 6/04
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1-factor model
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The overall instantaneous short rate volatilities for the Australian market are graphed

in Figure 4. Compared to the U.S. market, Australian rates have much higher volatil-

ity during the period 1988-1990, which reflects the very sharp rise and fall in the rates

during that period. After 1990, the two markets have a similar volatility evolution.

However, the contribution of each risk factor to this overall volatility is very different.

In the U.S. market, the level factor explains more than 99.5% of the overall volatility
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FIGURE 3. The “discount” on short rate drift to compensate for risk,
2-factor model, U.S. market
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FIGURE 4. The instantaneous volatilities of the Australian short rate
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throughout the whole period, whereas the slope effect plays a much moresignificant

role in the Australian market, as can be seen in Figure 5.

Even though the slope factor contributes significantly to the overall interestrate

volatility, the unit price of this risk is only a half of the unit price of the level risk. The

long run value ofφ1 is 40 compared to the long run value of 19.9 forφ2. The level of

risk scaled by the unit price of risk is the discount on the short rate drift tocompensate

investors for bearing risk. Figure 6 shows how this discount changes over time. The
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TABLE 5. Estimated Parameters for the Australian market

This table reports the estimated parameter values for each model using Australian data. The
robust asymptotic standard errors are given in square parenthesis. “xe-y” stands forx ∗ 10−y

Par. 1-factor 2-factor 3-factor Par. 1-factor 2-factor 3-factor

γ1 0.9683 0.9277 1.2496 α1 9.3681 9.1533 8.9302
[3.22e-6] [4.52e-9] [0.0001] [1.42e-9] [2.26e-9] [0.3390]

γ2 - 0.5322 4.5897 α2 - 12.204 12.4505
[3.21e-9] [1.85e-7] [3.54e-8] [0.0360]

γ3 - - 0.0187 α3 - - 12.0037
[5.27e-5] [0.0298]

λ 1.8723 1.9993 4.9130 φ̄1 8.3133 39.9988 25.3901
[1.20e-6] [9.69e-9] [0.0008] [1.42e-9] [1.72e-7] [14.9103]

κ - - 0.0780 φ̄2 - 19.9088 1.4157
[0.0002] [4.09e-7] [0.0004]

σ2
e 2.14e-6 3.34e-6 2.59e-6 φ̄3 - - 0.7040

[4.66e-11] [1.87e-14] [5.90e-8] [0.0030]

β1 0.1145 0.0230 5.9436
[4.53e-5] [4.50e-11] [1.7169]

β2 - 0.0337 0.7964
[9.00e-11] [0.0021]

2 lnL 39198.9 49511.6 26626.4 β3 - - 0.7027
[0.0015]

FIGURE 5. The contribution of each factor toward the overall instan-
taneous volatility of the Australian short rate. 2-factor model.

Year12/88 12/92 12/96 12/00 6/04
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TABLE 6. The prediction errors for the Australian market

This table reports the prediction errors for interbank offered rate of different maturities in the Aus-
tralian market. The “Avr” column reports the average of the prediction errors, whose standard devia-
tion is reported under “Std” column. The “MAE” and “SAE” columns report the mean and standard
deviation of the absolute errors. All values are reported asbasis points.

1-factor 2-factor 3-factor
Avr Std MAE SAE Avr Std MAE SAE Avr Std MAE SAE

1-mth -2.5 82.3 31.5 76.0 -13.2 96.8 40.2 89.0 3.0 119.9 83.2 86.3
2-mth -0.9 79.8 26.9 75.1 -11.1 94.3 35.0 88.3 2.4 120.7 82.7 87.8
3-mth -0.9 77.3 22.3 74.0 -10.6 93.2 29.2 89.2 0.4 120.9 82.0 88.6
4-mth -0.5 75.3 18.3 73.1 -9.8 93.4 23.9 90.8 -1.2 120.9 81.4 81.4
5-mth 0.1 74.0 15.3 72.4 -8.7 94.3 19.3 92.7 -2.4 120.5 80.6 89.4
6-mth 1.2 73.1 14.2 71.7 -7.2 95.7 17.6 94.3 -3.0 119.5 79.5 89.1
7-mth 2.9 72.6 15.4 71.0 -5.0 98.5 19.7 96.6 -3.0 117.7 78.1 87.9
8-mth 4.6 72.5 18.2 70.3 -3.0 101.7 24.3 98.8 -2.9 115.2 76.5 86.1
9-mth 6.6 72.9 22.0 69.8 -0.5 105.4 29.9 101.1-2.3 112.8 75.2 83.9
10-mth 8.8 73.6 25.6 69.5 2.1 109.3 35.7 103.3-1.4 110.0 73.8 81.5
11-mth 11.0 74.6 29.4 69.4 4.8 113.8 42.0 105.8-0.7 107.0 71.9 79.1
12-mth 13.1 75.7 32.9 69.3 7.3 118.1 47.8 108.2 0.6 103.2 70.0 75.5

FIGURE 6. The “discount” on short rate drift to compensate for risk,
2-factor model, Australian market
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discount coming from bearing the risk of change in the level of interest rates is much

higher than that coming from the risk of change in the slope of the yield curve.
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4.2.3. The U.K. market.

Once again, the numerical optimization for the 3-factor model fails to distinguish

the impact of each factor, see Table 7. The 2-factor model is also the preferred model in

terms of model fitness. The prediction errors are below 40 basis points at the two end

of the yield curve, and below 20 basis points in the middle range, as reportedin Table 8.

The estimates ofλ andγ2 are much higher than those in the U.S. or Australian market.

Therefore, the contribution of each risk factor towards the total instantaneous volatility

is the opposite of what happens in the U.S. market. Here the volatility coming from

the slope risk factor dominates the total risk, and the level risk factor plays anegligible

role. The total instantaneous short rate volatility, illustrated in Figure 7, has similar

pattern as the Australian market, though at a slightly higher level.

TABLE 7. Estimated Parameters for the U.K. market

This table reports the estimated parameter values for each model using U.K. data. The robust
asymptotic standard errors are given in square parenthesis. “xe-y” stands forx ∗ 10−y

Par. 1-factor 2-factor 3-factor Par. 1-factor 2-factor 3-factor

γ1 0.1171 0.4560 1.1813 α1 11.5962 11.6327 9.2382
[9.37e-5] [??] [0.0031] [0.0015] [??] [1.4875]

γ2 - 9.9591 0.5843 α2 - 11.9505 12.4326
[??] [0.0014] [??] [0.0084]

γ3 - - 0.0163 α3 - - 11.7322
[2.19e-5] [0.0010]

λ 1.0134 3.8671 4.0522 φ̄1 6.8210 37.8598 33.6271
[0.0001] [??] [0.0008] [0.0014] [??] [2.3820]

κ - - 0.0757 φ̄2 - 1.8489 5.7021
[5.99e-5] [??] [0.1855]

σ2
e 4.00e-6 2.44e-6 3.80e-6 φ̄3 - - 0.2516

[8.85e-9] [??] [2.85e-8] [0.0047]

β1 0.1200 4.1356 0.2293
[1.38e-5] [??] [0.0034]

β2 - 4.6554 0.4558
[??] [0.3468]

2 lnL 34176.2 35599.6 26469.1 β3 - - 0.3697
[0.0009]

The unit priceφ1 of this level risk (the risk coming from changes in the level of

interest rate) is of similar magnitude as in the other two markets. On the other hand,
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TABLE 8. The prediction errors for the U.K. market

This table reports the prediction errors for interbank offered rate of different maturities in the U.K.
market. The “Avr” column reports the average of the prediction errors, whose standard deviation
is reported under “Std” column. The “MAE” and “SAE” columns report the mean and standard
deviation of the absolute errors. All values are reported asbasis points.

1-factor 2-factor 3-factor
Avr Std MAE SAE Avr Std MAE SAE Avr Std MAE SAE

1-mth -21.2 184.8 40.8 181.5 -6.2 108.5 38.0 101.8-6.7 70.1 48.7 50.7
2-mth -16.8 182.4 33.5 180.1 -4.5 105.9 31.0 101.3-4.5 70.5 47.1 52.6
3-mth -14.1 180.6 28.4 178.9 -4.4 104.7 25.8 101.5-3.9 71.0 46.0 54.1
4-mth -12.5 178.9 23.5 177.8 -5.5 103.9 20.5 102.0-4.3 70.1 44.5 54.2
5-mth -10.8 177.6 19.4 176.9 -6.4 103.6 16.2 102.5-4.4 69.4 43.6 54.2
6-mth -9.2 176.5 18.4 175.8 -7.5 103.9 14.2 103.2-4.7 68.8 42.9 54.0
7-mth -7.1 175.6 20.4 174.6 -8.1 104.1 15.0 103.3-4.4 67.2 41.9 52.8
8-mth -5.1 175.0 24.3 173.3 -8.7 104.7 18.5 103.5-4.0 66.4 41.6 51.9
9-mth -3.1 174.5 28.6 172.2 -9.4 105.6 22.2 103.7-3.5 65.5 41.5 50.7
10-mth -0.6 174.2 32.8 171.1 -9.5 106.6 25.7 103.9-2.5 64.5 41.2 49.5
11-mth 1.8 174.1 37.3 170.1 -9.8 107.9 29.5 104.2-1.5 63.8 41.3 48.5
12-mth 4.2 174.1 41.5 169.1-10.0 109.1 32.9 104.5-0.4 63.1 41.6 47.3

FIGURE 7. The instantaneous volatilities of the U.K. short rate
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the risk coming from the change in the slope of the yield curve calls for a much lower

compensation. Despite this low compensation, due to the dominant risk value, almost
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FIGURE 8. The “discount” on short rate drift to compensate for the
slope risk, 2-factor model, U.K. market
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all discount on the short rate drift to compensate investors for bearing risk is from the

slope risk factor. The time variation nature of this discount can be seen in Figure 8.

4.2.4. The Japanese market.

Similar to other markets, the 2-factor model is the model that delivers the smallest

absolute prediction errors in the Japanese market. The estimate forλ is 1.9, close to

the level in the Australian market. Both of the market prices of risk have a highdegree

of mean reversion. One unit of the level risk is priced much more heavily thana unit

of the slope risk, evidenced by the 35.9 estimate ofφ̄1 compare to the 4.5 estimate of

φ̄2.

At the end of 1995, the Japanese market moved to a period of low interest rates,

slowly declining from around 50 basis points to around 5 basis points in 2002-2004.

The instantaneous volatility of the short rate decreased accordingly, from a level of

30 basis points to nearly zero, as can be seen in Figure 9. During the low interest

rate period, the factor that contributed most to interest rate risk was the slope of the

yield curve. Figure 10 shows that the slope factor increased its influencethroughout

the declining period of 1991-1995, then became the most crucial risk factor during the

near-zero interest rate of 1995-2004. However, each unit of sloperisk claims less re-

ward than one unit of the level risk, therefore the level risk still contributes significantly

to the overall financial reward to investors, as illustrated by Figure 11.
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TABLE 9. Estimated Parameters for the Japanese market

This table reports the estimated parameter values for each model using Japanese data. The
robust asymptotic standard errors are given in square parenthesis. “xe-y” stands forx ∗ 10−y

Par. 1-factor 2-factor 3-factor Par. 1-factor 2-factor 3-factor

γ1 1.8982 1.7255 1.4308 α1 13.9753 12.4794 1.0739
[1.14e-7] [??] [0.0002] [8.34e-7] [??] [0.0032]

γ2 - 1.1972 0.1249 α2 - 11.8275 11.3946
[??] [2.43e-6] [??] [0.0033]

γ3 - - 0.0097 α3 - - 10.5193
[1.54e-6] [0.0005]

λ 1.9782 1.8945 3.7487 φ̄1 35.3001 35.8588 27.2719
[5.21e-9] [??] [0.0009] [4.56e-9] [??] [0.0192]

κ - - 0.0852 φ̄2 - 4.5297 12.4674
[2.76e-6] [??] [0.0024]

σ2
e 1.14e-7 5.32e-7 1.13e-6 φ̄3 - - 0.5566

[5.05e-15] [??] [5.94e-10] [3.25e-5]

β1 0.0071 0.0256 1.5606
[3.40e-13] [??] [0.0013]

β2 - 0.0286 4.9166
[??] [0.0063]

2 lnL 43043.1 79896.8 29670.1 β3 - - 0.2134
[9.80e-5]



VOLATILITY STRUCTURE 22

TABLE 10. The prediction errors for the Japanese market

This table reports the prediction errors for interbank offered rate of different maturities in the Japan-
ese market. The “Avr” column reports the average of the prediction errors, whose standard deviation
is reported under “Std” column. The “MAE” and “SAE” columns report the mean and standard
deviation of the absolute errors. All values are reported asbasis points.

1-factor 2-factor 3-factor
Avr Std MAE SAE Avr Std MAE SAE Avr Std MAE SAE

1-mth 5.2 115.8 33.8 110.9-7.3 63.1 19.3 60.5 3.6 30.3 17.5 25.0
2-mth -19.3 138.4 24.6 137.6-7.0 62.3 16.4 60.5 3.7 29.0 16.8 23.9
3-mth -17.5 135.6 23.2 134.7-6.9 62.5 14.1 61.3 3.6 29.0 16.2 24.4
4-mth -15.8 132.1 21.7 131.2-6.9 62.4 12.5 61.5 3.5 29.1 15.7 24.8
5-mth -14.0 129.1 20.4 128.3-6.8 62.7 11.3 62.1 3.4 29.0 15.5 24.7
6-mth -11.6 126.6 18.6 125.7-6.1 62.9 10.6 62.3 3.8 28.1 14.7 24.2
7-mth -9.7 123.5 17.3 122.7-5.9 63.5 10.5 62.9 3.9 28.0 14.6 24.2
8-mth -7.4 121.0 17.1 120.0-5.3 63.9 11.2 63.1 4.2 27.8 14.7 23.9
9-mth -5.2 118.9 18.0 117.6-4.1 64.8 12.6 63.8 4.6 27.8 15.3 23.6
10-mth -2.8 116.4 19.2 114.8-4.1 65.3 13.5 64.0 5.0 27.4 15.6 23.1
11-mth -0.6 114.5 21.1 112.5-3.6 66.2 14.8 64.6 5.3 27.5 16.3 22.7
12-mth 1.9 112.3 23.4 109.9-2.8 66.7 15.9 64.8 5.9 27.4 27.4 22.3

FIGURE 9. The instantaneous volatilities of the Japanese short rate
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FIGURE 10. The contribution of each factor toward the overall in-
stantaneous volatility of the Japanese short rate. 2-factor model.
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FIGURE 11. The “discount” on short rate drift to compensate for risk,
2-factor model, Japanese market
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5. CONCLUSION

The HJM framework provides a very flexible tool for interest rate modelling. Even

though theoretical research has advanced quickly, the advantages ofHJM models have

not been fully realized in practical applications due to the lack of empirical work. More

research needs to be done on the challenging task of HJM model estimation in order

to obtain a better understanding of interest rate volatility that is much needed in the

process of assessing and managing risk as well as pricing derivative securities. This

paper has attempted to contribute to the empirical literature by proposing an estimation

framework that can be applied for a broad class of nonlinear HJM models.

The paper uses the local linearization filter to build up a maximum likelihood esti-

mator which is able to identify all parameters of the model, and to exploit both time

series and cross-sectional data. The local linearization scheme is basedon an It̂o-

Taylor expansion of the nonlinear drift and diffusion terms of the drivingdynamics

to better take into account the stochastic behaviour of the interest rate system, and an

optimal linear filter is subsequently applied. This filter has been chosen because of

its advantages over other filters claimed by Shoji (1998) and its better numerical and

stability properties demonstrated by Jimenez et al. (1999).

The estimator is then used to estimate the interest rate volatility structure in the U.S,

the U.K, the Australian and the Japanese markets, using interbank offered-rates. In all

markets, a 2-factor model, with the factors being the level and the slope of theyield

curve, is found to be a reasonable choice. The influence of each factor on the overall

instantaneous short rate volatility varies over time and across markets. The level factor

is the dominant factor in the U.S market whereas the slope factor is the dominantone

in the U.K. market. The two factors play a more equal role in the Australian market.

In the Japanese market, the level effect has more impact on the overall volatility when

interest rates are around a few percent, but the slope effect has moreimpact when

interest rates stay at very low levels of less than 50 basis points.

Despite the different influence on the overall volatility, in all of the markets, the

level risk claims a much higher financial reward than the slope risk. A knowledge of

how each factor contributes to the overall volatility and the rewards for bearing the risk

will help investors manage the risk of interest rate portfolios.

The filter adopted here is certainly not the only nonlinear filter available to mod-

ellers. It is left for future research to explore other filters, so as to finda good trade-off

between reduction in computational requirements, increase in accuracy and better sta-

tistical reliability, all of which are crucial if financial managers are to re-assess their

models frequently.
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APPENDIX A. M ARKOVIANIZATION OF THE INTEREST RATE DYNAMICS

Assuming that the forward rater(t, x) defined in (2.1) has a volatility function

σ(t, x) that satisfies Assumption 2.1. Proposition 3.4 in Chiarella and Kwon (2003)

states that the forward rate curve can be expressed as an affine function of some state

variables, i.e.

r(t, x) = r(0, t+ x) +
I∑

i=1

Li∑

l=1

σil(t+ x)ψi
l(t)

+
I∑

i=1

Li∑

l,l∗=1
l≤l∗

[σil(t+ x)σ̄il∗(t+ x) + ǫll∗σil∗(t+ x)σ̄il(t+ x)]ϕi
ll∗(t),

(A.1)

where

σ̄il(x) =

∫ x

0
σil(s) ds,

ϕi
ll∗(t) =

∫ t

0
cil(s)cil∗(s) ds,

ψi
l(t) =

∫ t

0
cil(s) dW̃i(s) −

di∑

l∗=1

∫ t

0
cil(s)cil∗(s)σ̄il∗(s) ds,

ǫll∗ =





1, if l 6= l∗,

0, if l = l∗.

andW̃i, (i = 1, . . . , I) are standard Wiener processes under the equivalent measure

P̃.

Under this setting, the economic meaning of the state variablesϕ andψ is not clear.

The next step is to use the forward rates themselves as the state variables.

Let S = {ψi
l(t), ϕ

i
lk(t)}. DefineN = |S |, choose an ordering forS and write

χn(t) for the elements ofS so thatS = {χ1(t), . . . , χN (t)}. Then (A.1) can be

written

r(t, x) = a0(t, x) +
N∑

n=1

an(t, x)χn(t), (A.2)

for suitable deterministic functionsa0(t, x) andan(t, x).
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Corollary A.1. Suppose that the conditions of Assumption 2.1 are satisfied. If there

existτ1, τ2, . . . , τN ∈ R+ such that the matrix

A(t, τ1, . . . , τN ) =




a1(t, τ1) a2(t, τ1) · · · aN (t, τ1)

a1(t, τ2) a2(t, τ2) · · · aN (t, τ2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1(t, τN ) a2(t, τN ) · · · aN (t, τN )


 (A.3)

is invertible for allt ∈ R+, then the variablesχn(t) can be expressed in the form

χ(t) = A(t, τ1, . . . , τN )−1 [a0(t, τ1, . . . , τN ) − r(t, τ1, . . . , τN )] , (A.4)

where

χ(t) = [χ1(t), . . . , χN (t)]′,

a0(t, τ1, . . . , τN ) = [a0(t, τ1), . . . , a0(t, τN )]′,

r(t, τ1, . . . , τN ) = [r(t, τ1), . . . , r(t, τN )]′.

The whole forward curve then can be written in terms of these new economically

meaningful state variables

r(t, x) = a0(t, x) − a(t, x)′A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+ a(t, x)′A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ),
(A.5)

where

a(t, x) = [a1(t, x), . . . , aN (t, x)]′.

Therefore, the HJM models admits a N-dimensional affine realization in terms ofthe

set of discrete tenor forward ratesr(t, τ1, . . . , τN ). This set of forward rates forms a

Markov process, and under̃P each forward rater(t, x) satisfies the stochastic differ-

ential equation

dr(t, x) =

[
∂a0(t, x)

∂x
−
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ) + σ(t, t+ x)′σ̄(t, t+ x)

]
dt

+ σ(t, t+ x)′dW̃ (t).
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In terms of the real world measure, whereφ ≡ (φ1, . . . , φI) is the vector of market

prices of risk associating with the Wiener processW , the system becomes

dr(t, x) =

[
∂a0(t, x)

∂x
−
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ) + σ(t, t+ x)′σ̄(t, t+ x)

− φ′σ(t, t+ x)
]
dt+ σ(t, t+ x)′dW (t),

which is (2.4) in the main text.

The yieldy(t, x) can also be expressed as an affine function of forward rates

y(t, x) =b0(t, x) − b(t, x)′A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+ b(t, x)′A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ),

where

b0(t, x) =
1

x

∫ x

0
a0(t, u)du,

b(t, x) =
1

x

∫ x

0
a(t, u)du.

This affine yield expression is equation (2.6) in the main text.

APPENDIX B. LOCAL L INEARIZATION FILTER FOR L INEAR

CONTINUOUS-DISCRETESTATE SPACE MODELS

Jimenez and Ozaki (2002) analyzed a linear state space model defined bythe con-

tinuous state equation

dx(t) = (A(t)x(t) + a(t)) dt+
m∑

i=1

(Bi(t)x(t) + bi(t)) dWi(t), (B.1)

and the discrete observation equation10

ztj = C(tj)x(tj) + etj , for j = 0, 1, . . . , J, (B.2)

wherex(t) ∈ R
d is the state vector at the instant of timet, ztj ∈ R

r is the observation

vector at the instant of timetj , W is am-dimensional vector of independent Wiener

processes, and{etj : etj ∼ N (0,Π), j = 0, . . . , J} is a sequence of random vector

i.i.d.

10Their original specification is

ztj
= C(tj)x(tj) +

n∑

i=1

Di(tj)x(tj)ξ
i

tj
+ etj

, for j = 0, 1, . . . , J,

where{ξtj
: ξtj

∼ N (0,Λ),Λ = diag((λ1, . . . , λn)), j = 0, . . . , J} is a sequence of random vector

i.i.d., andE(ξi
tj

, etj
) = ϑi(tj). However, in most finance applications, the noise termξ is not required.
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Define x̂t|ρ = E (x(t)|Zρ) andPt|ρ = E((x(t) − x̂t|ρ)(x(t) − x̂t|ρ)
′|Zρ) for all

ρ ≤ t, whereZρ = {ztj : tj ≤ ρ}.

Suppose thatE (W(t)W′(t)) = I, x̂t0|t0 <∞ andPt0|t0 <∞.

Theorem B.1. (Jimenez and Ozaki (2002)) The optimal (minimum variance) linear

filter for the linear model (B.1)- (B.2) consists of equations of evolution for the condi-

tional meanx̂t|t and the covariance matrixPt|t. Between observations, these satisfy

the ordinary differential equation

dx̂t|t =
(
A(t)x̂t|t + a(t)

)
dt, (B.3)

dPt|t =

(
A(t)Pt|t + Pt|tA

′(t) +
m∑

i=1

Bi(t)
(
Pt|t + x̂t|tx̂

′
t|t

)
B′

i(t)

+
m∑

i=1

(
Bi(t)x̂t|tb

′
i(t) + bi(t)x̂

′
t|tB

′
i(t) + bi(t)b

′
i(t)
))

dt,

(B.4)

for all t ∈ [tj , tj+1). At an observation attj , they satisfy the difference equation

x̂tj+1|tj+1
= x̂tj+1|tj + Ktj+1

(
ztj+1

− C(tj+1)x̂tj+1|tj

)
, (B.5)

Ptj+1|tj+1
= Ptj+1|tj − Ktj+1

C(tj+1)Ptj+1|tj , (B.6)

where

Ktj+1
= Ptj+1|tjC

′(tj+1)
(
C(tj+1)Ptj+1|tjC

′(tj+1) + Π
)−1

(B.7)

is the filter gain. The prediction̂xt|ρ and Pt|ρ are accomplished, respectively, via

expressions (B.3) and (B.4) with initial conditionsx̂t0|t0 andPt0|t0 andρ < t.

The analytical solution for this system of equations can be easily found, for details

see Jimenez and Ozaki (2003). They also provide some equivalent expressions that are

easier to implement via computer programs.
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