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Abstract

We present a jump-diffusion international asset pricing model with stochastic exchange rates
and inflation rates when investors consume both traded and nontraded goods. We argue that in
general, the Adler-Duma inflation rate differential may not capture PPP deviation risks, unless
all volatilities, drift rates and jumps rates for price levels, exchange rates and asset returns are
constant, and there are no PPP deviation jumps. Our model suggests that country-specific demand
for risky assets arises from two sources: PPP-deviation risks and nontraded-good-specific inflation-
rate-differential risks. Furthermore, equilibrium asset returns can be expressed in a multi-beta
linear asset pricing model with a number of benchmark portfolios including hedge portfolios for
PPP deviation risks and nontraded-good-specific inflation rate risks. We show that all of these
hedge portfolios may be constructed by using portfolios of the reference-country nominal riskfree
bond and individual countries’ TIPS bonds. We note that in the presence of inflation risks, hedging
against exchange rate risks in isolation can actually make the investor’s real wealth riskier than no
hedging at all. We also show that global investors optimally increase their consumption in both
traded nontraded goods as the prices of traded goods of their own countries increase.

∗I thank Mark Loewenstein for many insightful comments and suggestions.



1 Introduction

We present a jump-diffusion international asset pricing model in the presence of stochastic exchange

rates and inflation rates when investors consume both traded and nontraded goods. The inflation

rates of traded consumption goods of different countries are allowed to fluctuate inconsistently with

currency exchange rates across countries, generating PPP (purchasing power parity) deviation risks.

New features of our model are threefold: (1) Unlike Adler and Dumas [1983], we explicitly model PPP

deviation risks in the presence of inflation rate risks; (2) dynamics of all risky asset returns are driven by

jump-diffusion processes where their jumps are resulted from jumps in PPP deviations; and (3) unlike

authors in the “home bias” literature, we introduce price risks, as opposed to output risks, of nontraded

goods. The economic significance of these features are discussed in turn.

It is well known that exchange rate risks arise because of PPP (purchasing power parity) deviations.

Without PPP deviations, exchange rates are nothing more than a translation mechanism from one

currency to another, and therefore the international asset pricing model should not be different from

the domestic CAPM except that the global market portfolio replaces the domestic market portfolio. In

the international asset pricing literature, although the relevance of PPP deviation risks is repeatedly

and extensively discussed, existing models fail to isolate the role of PPP deviation risks in the presence

of inflation rate risks.1 In their seminal paper, Adler and Dumas (AD) [1983, footnote 54] state “....

There is no implication that PPP deviations are some kind of separate risk against which any one

investor would want to hedge. ....”

We argue that there exists separate demand for PPP deviation hedge portfolios and that in some

cases the PPP deviation risks can be hedged by using portfolios of domestic and foreign TIPS (Treasury

Inflation Protection Securities) bonds. The separate demand is identified as a consequence of our explicit

modelling of PPP deviations. We follow a widely used convention to model the PPP deviation of each

country as the logarithm of the real exchange rate, where the real exchange rate is the ratio of the

actual to the PPP-theoretical exchange rates. We assume PPP deviations are driven by jump-diffusion

processes in the presence of both inflation and exchange rates risks. Jumps in PPP deviations can be

expected particularly for countries adopting controlled exchange rate regimes.

Our PPP deviations are in contrast with AD’s inflation rate differentials between two countries.

Although AD interpret their differentials as PPP deviations, we argue that their interpretation may

not be justified in general unless all volatilities and drift rates for price levels and exchange rates are

constant and there are no PPP deviation jumps. For instance, even when they do not jump, if PPP

deviations exhibit a mean-reverting behavior, AD’s differentials may no longer serve as a good measure

of PPP deviation risks.
1Solnik [1974]/Sercu [1980] started the international asset pricing literature with exchange rate risks but without

inflation risks. In the absence of inflation risks, exchange rate risks are the same as PPP deviation risks.
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We also allow asset returns to jump as PPP deviations jump. It is empirically well known that

international asset returns exhibit jump behaviors. Bates [1996] uses a jump-diffusion exchange rate

model to price currency options contracts. Das and Uppal [2004] introduce systematic and perfectly

correlated jumps to capture excess kurtosis and skewness in international asset return data, in order to

examine effects of jumps on the effectiveness of international diversification.2 In Das and Uppal, there

are no exchange rate/PPP deviation risks. In spite of the well-known recognition of the importance

of jump behaviors in international asset returns, there doesn’t seem to exist an international asset

pricing model allowing for jumps in asset returns. As a result of our jump-diffusion model, we identify

demand for jump-hedge portfolios which can be used as a metric in assessing the effect of jumps on the

international diversification/asset allocation in the presence of PPP deviation risks.

In addition to jumps in both PPP deviations and asset returns, our investors are allowed to consume

traded and nontraded goods, and consequently our model nests models with a common traded good.

This feature is important since it has been recognized that investors’ portfolio decisions may be impacted

by nontraded goods.3 In the “home biases” literature, authors argue that in order to hedge against

output risks of nontraded goods (produced by domestic assets) in exchange economies, investors may

want to hold more domestic assets than they do when there are no nontraded goods. See Stockman

and Dellas [1989], Tesar [1993] and Baxter, Jermann and King [1998]. Unlike these authors, we focus

on price risks, as opposed to output risks, of nontraded goods and on investors’ portfolio decisions in

the capital market in order to investigate the role of price levels of nontraded goods in international

asset pricing.

As a byproduct of modelling price risks of traded and nontraded goods, we show that holding other

things constant, international investors increase their consumption of both traded and nontraded goods

as prices of traded goods in their own currencies increase. The intuition of this striking result is that

when the country-l price of the traded good increases, the exchange rate decreases, i.e. the value

of country-l currency decreases. Since the country-l investor manages his wealth in global financial

markets, his real wealth in his own currency increases as country-l currency weakens, and thus he

increases his real consumption of both traded and nontraded goods. Note that these increases in

consumption would not occur without either of the following two fundamental reasons: the existence of

nontraded goods and global financial markets. Without nontraded goods, an increase in the price of the

traded good does not affect the traded good consumption, because the increase of his nominal wealth

in his country currency can be exactly offset by the increase in the price. Without global financial

markets, the country-l investor only invests in domestic assets, and his nominal wealth in his country
2Ang and Bekart [2002] use a regime shift model to support the usefulness of international diversification in spite of high

correlations of international equity market returns. Their regime shift model may also be interpreted as a jump-diffusion
model in effect.

3The importance of nontraded goods in international asset pricing is noted by Stulz [1981]. However, in his article, it
is not discussed how exactly the existence of nontraded goods affect asset prices.
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currency remains unaffected.

Our jump-diffusion financial markets with traded and nontraded goods are formulated as an incom-

plete market problem where investors may not be able to fully hedge for all sources of uncertainties

affecting asset returns. We use the martingale approach to characterize investors’ asset allocation prob-

lems. In a simplified case of our general model, we obtain five fund separation: Each investor holds a

portfolio of three global funds and two country-specific funds. The three global funds are the global

‘log’ risky fund, a hedge fund for the reference-country inflation risks, and the reference country’s nom-

inal riskfree asset. The country-specific funds consist of two funds: one fund to hedge PPP deviations

between the investor’s and reference countries, and another to hedge nontraded-good specific inflation

rates.

Country-specific demands for risky assets have been intensively studied in the empirical literature

on home biases. In this paper, the country-specific demands for assets depend on two sources: (1)

the differences between individual countries’ PPP deviations and the world weighted average PPP

deviation and (2) the differences between individual countries’ nontraded good-specific inflation rates

and the world weighted average nontraded good-specific inflation rates.4 It can be shown that under

some conditions, the first source is similar to AD’s inflation rate differential risks between individual

countries and and the world.

In global incomplete market equilibrium, our five fund separation suggests that the excess return

on each risky asset can be expressed as a multi-beta linear function of the rate of return on bench-

mark portfolios which are the global market portfolio, and individual countries’ common-good inflation

hedge portfolios, PPP deviation-hedge portfolios, and nontraded-good inflation hedge portfolios. Con-

sequently, we have an asset pricing model with 3(L + 1) betas, where L + 1 is the total number of

countries. If our financial market were to be complete, then there would be an extra set of L bench-

mark portfolios hedging PPP-deviation jumps, in addition to the 3(L + 1) portfolios. We further show

that under certain conditions, TIPS bonds of all countries can be used to construct the hedge portfolios.

For example, when there are no jumps, a country-l PPP deviation hedge portfolio can simply be

formed by a long position in reference-country TIPS bonds indexed on the reference-country common

good price, and a short position in country-l TIPS bonds indexed on country-l price of the same good.

The intuitive reason for the usefulness of international TIPS bonds in hedging PPP deviation risks is

as follows: TIPS bond prices in general fluctuate with inflation rates. However, a position in a foreign

TIPS bond brings about not only foreign inflation rate risks, but exchange rate risks. In this case, one

can show that the net risks of the foreign TIPS bond consists of the reference-country inflation rate

and PPP deviation risks. Thus, the foreign TIPS bond position, combined with a short position in

the reference country TIPS bond, can have the reference-country inflation rate risks completely filtered
4Since the they are country-specific, two sources may be related to the “home-bias” literature. However, we leave it

for a future empirical investigation.
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out, and the net position will be left with PPP deviation risks only. When there are jumps in PPP

deviations, the PPP deviation hedge portfolio can take a more complex form, but the basic intuition is

similar to the case of no jumps.

The rest of this paper is organized as follows: In the next section, we model PPP deviations. Section

3 presents the formulation of individual investors’ portfolio choice problems. We analyze the problems

using the martingale approach in section 4. In this section optimal consumption/investment decisions

are discussed in terms of five funds consisting of three global funds and two country-specific funds. In

section 5, we aggregate individual investors’ optimal portfolios to produce our version of the IAPM in a

familiar multi-beta form with global and country-specific benchmark portfolios. We discuss how one can

use TIPS bonds to construct some country-specific benchmark portfolios, and also discuss forward-rate

premium/discount with a note that the premium/discount is equal to market risk premia for exchange

rate jump-diffusion risks minus expected exchange rate. Section 6 recovers existing IAPMs as special

cases. Finally, a brief summary of the paper is presented in section 7.

2 PPP Deviations

The probability space (Ω,F , P ) is given. Let z(t) = (z1(t), ..., zN (t))> be an N -dimensional (column)

vector of standard independent Wiener processes, and Ñ(t) = (Ñ1(t), ..., ÑL(t))> be an L-dimensional

column vector of independent point processes with an L-dimensional intensity λ(t) = (λ1(t), ..., λL(t))>.

Throughout the paper, we use superscript > to denote the transpose. The “usual” filtration {Ft} is

generated by {z(t)} and {Ñ(t)}.
There are L + 1 countries. Country L + 1 is the reference country. There is a common good

globally traded at a price of P l
c(> 0, a.s.) in country-l currency. The price evolves as follows. For

l = 1, ...., L, L + 1, and for ω ∈ Ω,

dP l
c(t) = P l

c(t)[µpl
c
(t, ω)dt + σ>pl

c
(t, ω)dz(t)], (1)

where µpl
c

and σpl
c

are Ft-adapted, and they are a scalar and an N -dimensional process, respectively.

We set PL+1
c ≡ P ∗c .

Country l, l = 1, ...., L, L + 1, also has one nontraded good whose price is denoted by P l
n(> 0, a.s.)

and evolves as follows.

dP l
n(t) = P l

n(t)[µpl
n
(t, ω)dt + σ>pl

n
(t, ω)dz(t)], (2)

where µpl
n

and σpl
n

are Ft-adapted, and they are a scalar and an N -dimensional process, respectively.

We also set PL+1
n ≡ P ∗n . The arguments (t, ω) will be suppressed for the remainder of the paper unless

needed for clarity.

The PPP exchange rate for the common good is

Sl
c(t) =

P ∗c (t)
P l

c(t)
.
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Throughout the paper, we express all exchange rates in terms of common good prices across coun-

tries. However, we require no PPP relationships for nontraded goods, because the PPP can only be

meaningfully applied to traded goods. Then by Itô’s formula,

dSl
c(t)

Sl
c(t)

=
(
µp∗c − µpl

c
+ σ>p∗c σp∗c − σ>pl

c
σp∗c

)
dt +

(
σ>p∗c − σ>pl

c

)
dz(t).

Let the actual exchange rate denoted by Sl
A(t), and define the PPP deviation Dl(t) as follows:

Dl(t) := ln
(

Sl
A(t)

Sl
c(t)

)
. (3)

We assume that for l = 1, 2, ...., L,5

dDl(t) = µDl(t, ω)dt + σ>Dl(t, ω)dz(t) + φDl(t−, ω)dÑ l(t), (4)

where µDl(t), σDl(t) and φDl(t) are all Ft-adapted, and µDl(t) and φDl(t) are scalers, and σDl(t) is an

N -dimensional column vector. We set DL+1(t) = D∗(t) = 0 by convention. The existence of nonzero

Dl(t) implies that commodity markets for the common good are imperfect or partially segmented.

The case of perfect commodity markets is a special case with Dl(t) ≡ 0 for all l. On the other

hand, commodity markets for nontraded goods are completely segmented, in the sense that no PPP

relationships affect prices of nontraded goods across countries.

Eq.’s (3) and (4) imply

φDl(t−) = ln Sl
A(t)− ln Sl

A(t−),

and by Itô’s formula,

dSl
A(t) = Sl

A(t−)
[
µSl

A
dt +

(
σ>p∗c − σ>pl

c
+ σ>Dl

)
dz(t) + (eφ

Dl − 1)dÑ l(t)
]
, (5)

where

µSl
A

:= µp∗c − µpl
c
+ σ>pl

c
σpl

c
− σ>pl

c
σp∗c + µDl +

1
2

(
σ>DlσDl + 2σ>p∗c σDl − 2σ>pl

c
σDl

)
.

Note that our exchange rates directly depend on jump risks and common good price risks, but not

directly on nontraded goods price risks. Eq.(5) implies that the actual exchange rate risk can be

decomposed into two components: PPP exchange rate risk (σ>p∗c −σ>pl
c
)dz(t), and PPP-deviation-related

risk σ>Ddz(t) + (eφ
Dl − 1)dÑ l(t).

In addition to P l
c , P l

n and Dl, the economy may have an m-dimensional column vector of state

variables X which evolve according to the following dynamics.

dXt = µX(t, ω)dt + σ>X(t, ω)dz(t), (6)
5See Froot and Rogoff [1995] whose empirical evidence leads them to reject the PPP. However, the mean reverting

properties of the PPP appear to be controversial: Dumas [1992] rejects whereas Taylor and Peel [2000] support the
properties.
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where µX is an Ft-adapted K-dimensional column vector and σ>X is an Ft-adapted K ×N matrix.

Before the closure of this section, a comment on AD’s inflation rate differential is in order. Recall

that AD define inflation rates in terms of the reference currency. Let ϕl
c(t) = Sl

A(t)P l
c(t) and ϕl

n(t) =

Sl
A(t)P l

n(t). Then ϕl
c(t) and ϕl

n(t) are price levels of country-l traded and nontraded goods in the

reference currency, respectively. Note that by definition we have ϕ∗c(t) = P ∗c (t) and ϕ∗n(t) = P ∗n(t)

because S∗A ≡ 1. AD interpret their inflation rate differential dϕl
c/ϕl

c − dϕ∗c/ϕ∗c as the PPP deviation

risk. This interpretation may not be justified in general.

To see this, note that

dϕl
c(t) = ϕl

c(t)µϕl
c
dt + ϕl

c(t)
(
σ>p∗c + σ>Dl

)
dz(t) + ϕl

c(t)(e
φ

Dl − 1)dÑ l(t)

where

µϕl
c

= µp∗c + µD +
1
2
σ>DσD + σ>p∗c σDl .

Therefore, we have

dϕl
c

ϕl
c

− dϕ∗c
ϕ∗c

=
(

µD +
1
2
σ>DσD + σ>p∗c σD

)
dt + σ>Dldz(t) + (eφ

Dl − 1)dÑ l(t)

=
(

1
2
σ>DσD + σ>p∗c σD

)
dt + dDl(t) + (eφ

Dl − 1− φl)dÑ l(t) (7)

Clearly, AD’s inflation rate differential dϕl
c/ϕl

c − dϕ∗c/ϕ∗c , in general, does not evolve like the PPP

deviation dDl(t). Furthermore, in order to capture the PPP deviation risk, σ>Dldz(t)+φDl(dÑ l(t)−λldt),

the AD differential should be, at least, represented in the following form: (constant)dt + σ>Dldz(t) +

φDl(dÑ l(t)− λldt). However, this form of representation can be possible only if φDl = 0 and the drift

µD + 1
2σ>DσD + σ>p∗c σD is constant. Thus, roughly speaking, empirical studies on international asset

pricing models using inflation rates or inflation differentials may not fully capture the effects of the

PPP deviation risk, unless all volatilities and drifts are truly constant and there are no PPP deviation

jumps. For instance, if the PPP deviation is mean-reverting, AD differentials may not purely capture

PPP deviation risks even without PPP deviation jumps.

3 The Individual Investor’s Problem

Assume no taxes, transactions costs and information asymmetry. There are N + 1 traded securities

which consist of N risky assets and the reference country’s nominal riskfree asset. All security prices are

measured in the reference currency. Among N risky assets included are individual countries’ nominal

riskfree assets. The gains process (capital gains plus dividends) for risky security i, is denoted by Ai,

is positive and evolves as follows: for i = 1, 2, ...., N ,

dAi(t) = Ai(t)
[
µi(t, ω)dt + σ>i (t, ω)dz(t) + φ>i (t, ω)dÑ(t)

]
.
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Let µA = (µ1, ...., µN )>, σA = (σ1, σ2, ...., σN )> and φA = (φ1, φ2, ...., φN )>. Note that µA, σA and φA

are, respectively, an N ×1 vector, an N ×N matrix, and an N ×L matrix. For security 0, the reference

country’s nominal riskfree asset,

dA0(t) = r(t, ω)A0(t)dt.

We assume that
∫ T

0
‖µA(t, ω)‖dt < ∞ a.s. and

∫ T

0
r(t, ω)dt < ∞ a.s., and that σA has full rank for all

t ∈ [0, T ].

Let Q be a probability measure such that dQ/dP = ξ(T ), where ξ is an exponential local martingale

defined as follows: ξ(t) = ξν(t)ξθ(t), where

ξν(t) := exp
{
−

∫ t

0

ν>(s)dz(s)− 1
2

∫ t

0

ν>(s)ν(s)ds

}
, (8)

ξθ(t) := exp

{
L∑

l=1

∫

(0,t]

ln
(

θl(s)
λl(s)

)
dÑ(s)−

L∑

l=1

∫ t

0

(θl(s)− λl(s))ds

}
, (9)

µA(t)− r(t)1− σA(t)ν(t) + φ>A(t)θ(t) = 0, (10)

where 1 and 0 are N -dimensional vectors of ones and zeros, respectively; and θ(t) and λ(t) are bounded

L×1 intensity vectors for Ñ(t) under probability measures Q and P , respectively. (For ξθ, see Brèmaud

[1981, 165f].) Let us assume that E[e
1
2

∫ T

0
‖ν(t)‖2dt] < ∞. Then by the Girsanov theorem,

z∗(t) = z(t) +
∫ t

0

ν(s)ds

is a martingale under probability measure Q with dQ/dP = ξ(T ), and it is independent of Ñ . Also,

let M(t) = Ñ(t) − ∫ t

0
λ(s)ds and M∗(t) = Ñ(t) − ∫ t

0
θ(s)ds. Then M(t) and M∗(t) are P - and Q-

martingales, respectively. Condition (10) ensures all assets yield riskfree rates of return r under Q.

That is, under this condition, Q becomes a risk-neutral measure to prevent arbitrage opportunities in

our global financial markets.

Note that our financial market is incomplete, because there are N risky assets with N diffusion-risk

and L jump-risk sources. That is, there are infinitely many pairs of (ν(t), θ(t)) to satisfy (10), and thus

infinitely many risk-neutral measures. Although we note later that in some special cases, the (PPP

deviation-induced) jump risk sources can be hedged with TIPS bonds and the global market can be

completed (see section 5.1.2), our general model is formulated to allow the incompleteness of the market.

We assume there is one representative investor for each country. Each investor from country l =

1, 2, ..., L + 1 maximizes his expected utility of real consumption subject to his budget constraint. The

expected utility is given by

E

[∫ T

0

U(Cl
Rc, C

l
Rn, t)dt

]

where Cl
Rc ≥ 0 and Cl

Rn ≥ 0 are real consumption in country-l’s common and nontraded goods,

respectively.

7



Let Cl
k be the nominal consumption of good k, k = c, n, in the reference currency. Then, Cl

k/Sl
A is

the investor’s nominal consumption of good k in his own currency. Thus, his real consumption is given

by Cl
Rk = Cl

k/(Sl
AP l

k), k = c, n. Equivalently, Cl
Rc = Cl

c/(eDl

P ∗c ) and Cl
Rn = Cl

n/(eDl

(P ∗c /P l
c)P

l
n).

When the absolute PPPs do not hold, one unit of reference currency may give investors of different

nationalities different levels of real purchasing power.

The nominal consumption Cl
k(≥ 0) for good k, k = c, n, in the reference currency is withdrawn from

his nominal wealth W l which is driven by the following (self-financing) dynamics.

W l(t) = W l(0) +
∫ t

0

r(s)W l(s)(1− αl
A

>
1)ds +

∫ t

0

W l(s)αl
A

>
(µAdt + σAdz(s) + φAdÑ(t))

−
∫ t

0

(Cl
c(s) + Cl

n(s))ds, (11)

where αl
A := (αl

1, ...., α
l
N )> is a set of portfolio weights of risky assets. Note that throughout the

paper, the jump integral,
∫ t

0
, should be interpreted as

∫
(0,t]

. We assume
∫ T

0
‖α(t)‖2dt < ∞ a.s. and

∫ T

0
(Cc(t) + Cn(t))dt < ∞ a.s.

Then, the country-l investor’s problem is to choose nominal consumption policies Cl
c and Cl

n, and

portfolio policy αl
i, i = 1, 2, ..., N to maximize

E

[∫ T

0

U(
Cl

c

eDlP ∗c
,

Cl
nP l

c

eDlP ∗c P l
n

, t)dt

]
(12)

subject to the following dynamic constraints: Cl
c and Cl

n are self-financed by the wealth process in (11);

P ∗c and P l
c evolve according to (1); and P l

n and Dl evolve according to (2) and (4), respectively. Note

that if Cl
n ≡ 0, for all l, then we have the AD case. If P l

c ≡ 1, and Cl
n ≡ 0, for all l, then we have the

Solnik/Sercu case.6

One may approach the above problem by using either the dynamic programming or the martingale

method developed by Cox and Huang [1989], Karatzas, Lehoczky and Shreve [1987] and Karatzas [1989]

for complete markets; and by He and Pearson [1991] and Karatzas, Lehoczky, Shreve and Xu (KLSX)

[1991] for incomplete markets. We rely on the martingale method, which enables us to characterize

optimal consumption in our incomplete market without having to solve for the value function.

KLSX [1991] and He and Pearson (1991] characterize incomplete market equilibrium conditions by

using the least favorability condition which requires the incomplete-market equilibrium pricing kernel

parameters to minimize the representative investor’s value function over pricing kernel parameters

for fictitiously completed markets. In this sense, one may view the incomplete market equilibrium

as a special case of fictitiously completed market equilibria. This implies that necessary conditions

for all fictitious market equilibria should be also necessary for our incomplete global financial market

equilibrium.
6Later on, one can see that the Solnik/Sercu result also holds with multiple goods if both P l

c and P l
n are deterministic.
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One may interpret the least favorability condition in the context of our jump-diffusion economy as

follows: for all l = 1, ..., L + 1, let V l(ν(t), θ(t), t) be the value function with a fictitiously completed

market and the pricing kernel parameter pair {(ν(t), θ(t))}. Note that the market can be fictitiously

completed by introducing L pure jump assets where pure jump asset l, l = 1, ..., L, has its price jump

when Dl jumps. Then {(ν(t), θ(t))} supports the incomplete market equilibrium if for all l = 1, ..., L+1

and t ∈ [0, T ],

(ν(t), θ(t)) ∈ arg min
(ν′,θ′)

V l(ν′, θ′, t) s.t. (ν′, θ′) satisfies Eq.(10).

The above appears to be a very stringent condition. Given the pricing kernel satisfying the least

favorability condition, investors find no incentives to complete the market by bringing new assets into

the market. However, instead of limiting ourself to particular pairs of (ν(t), θ(t)) satisfying the above

least favorability condition, we try to characterize our incomplete market given any (ν′, θ′) satisfying

Eq.(10) and the self-financing condition. Thus our results throughout the paper can be interpreted as

necessary conditions for the incomplete market equilibrium.

We close this section with a remark on exchange rate hedging. The investor’s problem stated in (12)

implies that the investor is concerned with common- and nontraded-good-price risks arising, respectively,

from eDl

P ∗c and eDl

P ∗c (P l
n/P l

c), in addition to asset price risks from A(t). For simplicity, let us assume

no jumps in exchange rates. Then the risk of eDl

P ∗c is represented by σ>p∗c + σ>Dl which is the same as

σ>pl
c

+ σ>
Sl

A

. Also the risk of eDl

P ∗c (P l
n/P l

c) is σ>p∗c + (σ>pl
n
− σ>pl

c
) + σ>Dl ≡ σ>pl

n
+ σ>

Sl
A

. Thus, when he

tries to hedge against exchange rate risks, he has to consider interactions between exchange rates Sl
A’s

and inflation rates, P l
c and P l

n. Suppose that the country-l investor expects a foreign currency inflow

in the near future, and that the exchange rate, expressed in units of the reference currency per one

unit of country-l’s domestic currency, happens to be significantly negatively correlated with domestic

inflation rates P l
c and P l

n. (This negative correlation may happen, because as P l increases, country-l

currency value weakens and thus Sl
A decreases.) Then hedging against the exchange rate alone can

make his real wealth riskier than no hedging at all. Thus, in order to avoid this pitfall, he need to

hedge against inflation risks, together with the exchange rate risk. This simultaneous hedging can be

possible if appropriate TIPS bonds or TIPS bond forward contracts are traded in the foreign country.

For example, he may hedge a future cash inflow of one foreign currency unit by taking a short position

in a foreign TIPS bond with a face value of one foreign currency unit maturing at the same time as the

future cash inflow matures. See Section 5.1.
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4 Optimal Consumption/Investment Decisions

From now on, we suppress superscript l unless needed for clarity. Rewriting the nominal wealth process

in the reference currency, we have

W (t) = W (0) +
∫ t

0

r(s)W (s)ds +
∫ t

0

W (s)α>A(σAdz∗(s) + φAdM∗(s))−
∫ t

0

(Cc(s) + Cn(s))ds,

with the terminal condition being W (T ) = 0 because of our zero bequest. Define

Ŵ l(t) = e
−

∫ t

0
r(u)du

W l(t)

Then

Ŵ (t) = Ŵ (0) +
∫ t

0

Ŵ (s)α>A(σAdz∗(s) + φAdM∗(s))−
∫ t

0

e
−

∫ s

0
r(u)du(Cc(s) + Cn(s))ds,

where Ŵ (0) = W (0). Furthermore, under Q,

EQ

[∫ T

0

e
−

∫ t

0
r(u)du(Cc(t) + Cn(t))dt

]
= W0.

Thus, the country-l investor’s problem is restated as follows:

max
Cl

c,Cl
n

E

[∫ T

0

U(
Cl

c

eDlP ∗c
,

Cl
nP l

c

eDlP ∗c P l
n

, t)dt

]
(13)

s.t. EQ

[∫ T

0

e
−

∫ t

0
r(u)du(Cl

c(t) + Cl
n(t))dt

]
= W l

0.

The Lagrangian is

Ll = E

[∫ T

0

U(
Cl

c

eDlP ∗c
,

Cl
nP l

c

eDlP ∗c P l
n

, t)dt

]
+ ql

(
W l

0 − EQ

[∫ T

0

e
−

∫ t

0
r(u)du(Cl

c(t) + Cl
n(t))dt

])
.

Define

Ψl(t) = qlξ(t)e−
∫ t

0
r(u)du

,

which is the pricing kernel times the Lagrange multiplier ql. Assuming an interior solution, we have

the first order conditions (FOCs) as follows:

UCRc
(

Cc

eDP ∗c
,

CnPc

eDP ∗c Pn
, t) = eD(t)P ∗c (t)Ψ(t) (14)

UCRn
(

Cc

eDP ∗c
,

CnPc

eDP ∗c Pn
, t) = eD(t)P ∗c (t)Ψ(t)

Pn(t)
Pc(t)

. (15)

The FOC in Eq.(15) amounts to an implicit assumption that the supply of a nontraded good within a

country is determined to maximize the expected utility of the representative investor of that country,
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just as in the literature, the supply of the common good is determined to maximize the expected utility

of the global central planner, i.e., to maximize a weighted average of expected utilities of all investors

by equalizing marginal utilities across countries with respect to the common good. Consequently, via

FOCs, country-l nontraded good price is related to country-l common good price which is in turn related

to the reference country common good price. In other words, although nontraded goods are not traded,

their equilibrium (domestic) prices cannot be completely independent of those of traded goods. This

kind of global interaction between prices of traded and nontraded goods occurs because of the presence

of the global capital market pricing kernel e
−

∫ t

0
r(u)du

ξ(t) in Ψl.

Define

F l(t) := e

∫ t

0
r(u)du

EQ

[∫ T

t

e
−

∫ s

0
r(u)du(Cl

c + Cl
n)ds

∣∣∣∣∣ Ft

]
.

F (t) is simply the present value of future total consumption and is equal to W (t). To see this, note

that since Ŵ (T ) = 0,

Ŵ (t) = −
∫ T

t

Ŵ (s)α>A(σAdz∗(s) + φAdM∗(s)) +
∫ T

t

e
−

∫ s

0
r(u)du(Cc(s) + Cn(s))ds.

Thus

Ŵ (t) = EQ

[∫ T

t

e
−

∫ s

0
r(u)du(Cc(s) + Cn(s))ds

∣∣∣∣∣ Ft

]
= e

−
∫ t

0
r(u)du

F (t).

Therefore, F (t) = W (t). Note that (14) and (15) imply Cc(t) = Cc(Ψ, D, P ∗c , Pc, Pn, t) and Cn(t) =

Cn(Ψ, D, P ∗c , Pc, Pn, t). Note that each of (Ψ, D, P ∗c , Pc, Pn, t) can depend on X. When Ψ, D, P ∗c , Pc, Pn

and X are jointly Markov, one can write F (t) = F (Ψ, D, P ∗c , Pc, Pn, X, t). With the Markovian and

proper differentiability assumptions for F , let us introduce the following notation.

γl(t) := −Ψl(t)F l
Ψ(t)

W l(t)
, δ∗c (t) :=

FP∗c (t)P ∗c (t)
W (t)

, δDl(t) :=
F l

Dl(t)
W l(t)

.

δl
c(t) :=

F l
Pc

(t)P l
c

W l(t)
, δl

n(t) :=
F l

Pn
(t)P l

n

W l(t)
, δX(t) :=

F l
X(t)

W l(t)
.

Note that all above γ and δ’s are scalers except δX , a K-vector. It is well known that γ is a measure

of investor’s risk tolerance.

Theorem 1 Assume that Ψ, Dl, P ∗c , P l
c , P

l
n and X are jointly Markov, and that F is differentiable once

in t and twice in all state variables (Ψ, Dl, P ∗c , P l
c , P

l
n, X). Suppose that there exists an interior solution

to the problem stated in (13) and (UCRc
, UCRn

) is invertible with respect to (CRc , CRn). Then

i. the optimal portfolio policy αl
A(t) for t < T is given by

αl
A(t) = γl(t)(σAσ>A)−1(µA − r1 + φAθ) + δ∗c (t)(σ>A)−1σp∗c + δDl(t)(σ>A)−1σDl

+δl
c(t)(σ

>
A)−1σpl

c
+ δl

n(t)(σ>A)−1σpl
n

+ (σ>A)−1σXδX(t). (16)
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ii. Let Y l
c := P ∗c Ψ and Y l

n := P ∗c Ψ(Pn/Pc). If (D, Y l
c , Y l

n, X) are jointly Markov, then the optimal

portfolio policy αl
A(t) for t < T is given by

αl
A(t) = γl(t)(σAσ>A)−1(µA − r1 + φAθ) +

(
1− γl(t)

)
(σ>A)−1σp∗c

+δDl(t)(σ>A)−1σDl + δl
n(t)(σ>A)−1

(
σpl

n
− σpl

c

)
+ (σ>A)−1σXδX(t). (17)

iii. If (Ψ, Dl, P ∗c , P l
c , P

l
n) do not depend on X and have constant drifts, volatilities and jump rates

over time, then δDl = δ∗c = 1− γ, and (16) and (17) are further simplified to

αl
A(t) = γl(t)(σAσ>A)−1(µA − r1 + φAθ) +

(
1− γl(t)

)
(σ>A)−1

(
σp∗c + σDl

)

+δl
n(t)(σ>A)−1

(
σpl

n
− σpl

c

)
. (18)

The joint Markovian assumption implies that each of time-t drifts and volatilities of Ψ, D, P ∗c , Pc, Pn and

X can be a function of Ψ(t), D(t), P ∗c (t), Pc(t), Pn(t), X(t) and t. The mean-reverting property of D

has been extensively studied in the empirical literature in international finance. In the above theorem,

Parts (i) and (ii) allow D to be mean reverting, whereas Part (iii) does not. If D is mean-reverting, say

µD(t) = µ̄D − kD(t) for some µ̄D ∈ R and k > 0, then we may not have δD = δ∗c , or FD = FP∗c P ∗c .7

The first term (σAσ>A)−1(µA − r1 + φAθ) from the right hand sides of Eq.’s (16) to (18) is from the

well-known log portfolio, and (µA − r1 + φAθ) would be an N -dimensional vector of expected excess

rates of return on N risky assets if their jumps were completely hedged away. Note that this term can

be broken down into two parts as follows:

(σAσ>A)−1(µA − r1 + φAλ)− (σAσ>A)−1φA(λ− θ). (19)

The first part would be the log portfolio if the investor mistook jump-diffusion asset price processes

for diffusion asset price processes without jumps, and the second represents an additional (corrective

hedging) demand for risky assets because of jump risks. Alternatively put, the second part would be

an extra demand for risky assets if pure jump (martingale) risks are added to diffusion asset returns

without affecting the expected returns on the assets.

The effect of the second part of (19) on the investor’s portfolio allocation decision is numerically

examined by Das and Uppal [2004, Tables IV and V] in a simplified setting. Our model captures the

jump-induced demand for risky assets in general and in a closed form as above. For simplicity, suppose

there is only one risky asset that is expected to make positive jumps if any. Assume the jump risk
7When D does not exhibit the mean-reverting property, Part (iii) suggests that FD = FP∗c P ∗c , i.e., both P ∗c and

eD affect the investor’s wealth in a similar fashion. However, when D exhibits the mean-reverting property, one may
conjecture an increase in eD may yield smaller impact on the investor’s consumption decisions than the same increase
in P ∗c , because with a mean reverting property, a current increase in D is likely smoothed out with a decrease in the
future. Thus one may conjecture 0 > FD > FP∗c P ∗c = 1− γ. Given the difficulty of obtaining an explicit solution for the

investor’s value function, we are unable to provide a proof of this conjecture and leave it for future interesting research.
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premium λ − θ is positive. Then (19) implies the investor reduces his holding in the risky asset when

jump risks are added to the asset return process.

Other terms, (σ>A)−1σp∗c , (σ>A)−1σD, (σ>A)−1σpc , and (σ>A)−1σpn are N -vectors of portfolio weights

for risky assets to hedge the diffusion risks of the reference country traded good price, country-l PPP

deviation, country-l traded good price, and country-l nontraded good price; and (σ>A)−1σp∗c is a N ×K

matrix for hedging risks of K state variables. In Parts ii and iii, (σpn
− σpc

) is the diffusion risk of

non-traded-good-specific inflation rate. In Part iii, (σc∗ + σD) is the diffusion risk of the country-l

exchange rate.

With 1 − γl ≤ 0, both Parts (ii) and (iii) suggest that the country-l investor would like to take

a short position in a portfolio hedging (duplicating) risks of the reference-country inflation rates plus

the PPP deviations. However, since the sign of δn(= FPn(t)Pn(t)/W (t)) is not determined yet, it

is not completely clear whether the investor would desire to hedge against the country-l nontraded-

good-specific price risk. In order to shed light on the sign of FPn , we assume a Cobb-Douglas utility

function.

Proposition 1 Suppose that all volatilities, drifts and jump rates of (Ψ, D, P ∗c , Pc, Pn) are constant

over time, and that country-l investor’s utility is given in the following Cobb-Douglas form.

U(CRc , CRn , t) = κ (CRc)
ac (CRn)an ,

where ac, an > 0, and ac + an = a < 1. Then,

δn = − an

1− a
< 0, δc =

an

1− a
> 0, δ∗c = − a

1− a
< 0

γ =
1

1− a
> 1, and δD = − a

1− a
< 0.

Furthermore, (Pc/Pn)an(CRc)
a is lognormally distributed with jumps. Let (µv, ηv) be the pair of the drift

and jump rates of d ((Pc/Pn)an(CRc)
a). Then the optimal real consumption levels of traded nontraded

goods are

CRc = (κac)
1

1−a

(
an

ac

) an
1−a (

eDP ∗c Ψ
)− 1

1−a

(
Pc

Pn

) an
1−a

(20)

CRn = CRc

(
an

ac

)(
Pc

Pn

)
(21)

and the investor’s value function is

V (t) = κ
1

1−a a
a

1−a
c

(
an

ac

) an
1−a

gv(t)
(

Pc(t)
Pn(t)

) an
1−a (

eD(t)P ∗c (t)Ψ(t)
)− a

1−a

(22)

where

gv(t) =

{
T − t, if µv + φ>v λ = 0,
e(µv+φ>v λ)(T−t)−1

µv+φ>v λ
, otherwise.
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Since FPn
< 0 by Proposition 1, the country-l investor with the Cobb-Douglas utility function holds

a short position in the portfolio hedging the risk of nontraded-good-specific inflation rate. Moreover,

with the Cobb-Douglas utility function, both γ and δ are constant over time.

As a byproduct, the value function immediately implies ∂V/∂Pc = (V/Pc)(an/(1 − a)) > 0. It

is striking that holding other things constant, the investor’s utility increases as Pc increases. The

intuition is that when Pc increases, SA decreases, i.e. the value of country-l currency decreases. Since

the country-l investor manages his wealth in global financial markets, the country-l currency value

of his wealth increases. Thus he is better off. In fact, ∂CRc
/∂Pc = (CRc

/Pc)(an/(1 − a)) > 0 and

∂CRn
/∂Pc = (CRc

/Pn)(an/ac)((1 − ac)/(1 − a)) > 0, i.e., real consumption levels of both traded and

nontraded goods increase with Pc. Note that these increases in consumption would not occur without

either of the following two fundamental reasons: the existence of nontraded goods and global financial

markets. Without nontraded goods, an increase in Pc affects neither the value function nor the real

consumption. Without global financial markets, the country-l investor only invests in domestic assets,

and there will be no exchange rate risks.

4.1 Global Mutual Funds

In order to obtain an insight into the structure of the investor’s optimal portfolio, let us assume no

state variables X and rearrange Eq.(17) as follows:

[
αA

1− 1>αA

]
= γ

[
(σAσ>A)−1(µA − r1 + φAθ)

1− 1>(σAσ>A)−1(µA − r1 + φAθ)

]

+(1− γ)
[

(σ>A)−1σp∗c
1− 1>(σ>A)−1σp∗c

]
− (δD + δn)

[
0
1

]

+δD

[
(σ>A)−1σD

1− 1>(σ>A)−1σD

]
+ δn

[
(σ>A)−1 (σpn − σpc)

1− 1>(σ>A)−1 (σpn − σpc)

]

= γα
¯ log + (1− γ)α

¯infl∗ − (δD + δn)α
¯rf∗ + δDα

¯D + δnα
¯Hn

. (23)

The above implies that the country-l investor’s portfolio consists of five funds: three global mutual

funds and two country-specific funds. Since it is based on Eq.(17), the above five fund result should

still hold even when the PPP deviation is mean-reverting.

The five funds are as follows: (1) α
¯log, the log portfolio, the optimal risk portfolio for investors with

log utility.8; (2) α
¯infl∗ , a hedge portfolio against the inflation risks of the reference currency; (3) α

¯b, the

reference country’s nominal riskfree asset r; (4) α
¯D, a hedge portfolio against PPP deviations between

the investor’s and reference countries; and (5) α
¯Hn

, a hedge portfolio against nontraded-good-specific

inflation rates. Note that there is a separate demand for a PPP deviation hedge portfolio. Moreover, if

there is a home bias, it should depend on the two country-specific funds, α
¯D and α

¯Hn
.

Special cases of our five fund result is summarized in the following remarks.
8For a detailed interpretation of this portfolio, see Adler and Prasad [1992].
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Remark 1: No inflation risks and nontraded goods under fixed exchange rate systems imply that

α
¯infl∗ = α

¯D = α
¯Hn

= 0, and thus each investor, regardless of her nationality, holds a combination

of two global portfolios which are the global market portfolio and the reference currency riskfree

asset, i.e., γα
¯log + (1− γ)α

¯rf∗ . Also assume no jumps. Then the IAPM becomes identical to the

domestic CAPM.

Remark 2: No inflation risks and nontraded goods under floating exchange rate systems imply that

α
¯infl∗ = α

¯Hn
= 0. Then we have three fund separation with the reference-country riskfree asset

and two risky funds α
¯log and α

¯D, i.e., γα
¯ log − δDα

¯rf∗ + δDα
¯D. Further, if (Ψ, D, P ∗c , Pc, Pn) do

not depend on X and have constant drifts, and volatilities without jumps, and thus D is not

mean-reverting, then δD = 1− γ, and thus the investor’s portfolio expressed in the investor’s own

currency collapses to the two funds as seen in Sercu’s [1980] equation (2). Since without inflation

risks, PPP risks are the same as exchange rates risks, one may write α
¯SA

for α
¯D.

Remark 3: If there are no nontraded goods, then δn = 0 and by Eq.(23), the investor’s portfolio

is γα
¯ log + (1 − γ)α

¯infl∗ + δD(α
¯D − α

¯rf∗). Further, if (Ψ, D, P ∗c , Pc, Pn) do not depend on X

and have constant drifts and volatilities without jumps, then the investor’s portfolio becomes

γα
¯ log + (1 − γ)(α

¯infl∗ + α
¯D − α

¯rf∗), which is the same as AD’s two fund separation as seen in

AD’s equation (9), because σp∗c + σD is the diffusion rate of AD’s country-l inflation ϕl
c.

4.2 Country-specific demand for risky assets

In the home bias literature, country-specific demands for risky assets resulting from investors’ optimal

portfolio decisions are of particular interest. In an attempt to rationalize “home biases,” (empirical)

researchers have tried, without much success, to relate home biases to country-specific demands for risky

assets implied by international asset pricing models. The country-specific demands for risky assets under

intensive empirical investigation have been country-specific hedging demands against Solnik/Sercu’s

exchange rate risks and AD’s inflation rate differential risks.

Cooper and Kaplanis [1994] find that domestic assets do not hedge AD’s inflation rate differential

risks. Rather, since domestic inflation rates are typically positively correlated with rates of returns on

domestic assets, inflation hedging motives can deepen the home bias puzzles. (See Lewis [1999] and

Karolyi and Stulz [2001] for reviews on the home bias literature.)

Nonetheless, in this paper, when investors are allowed to consume both traded and nontraded

goods, country-specific hedging demands can arise from two sources: (1) PPP deviation rate differential

diffusion risks and (2) and nontraded-good-specific inflation-rate-differential risks. Let W l be the wealth

of country l. Also let

wl =
W l

∑L+1
k=1 W k

.
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Following Cooper and Kaplanis [1994], let us assume that γl’s are the same across all countries. We

also assume δl’s are the same as well. Then Eq.(17) implies that the portfolio weights for risky assets

in the global market portfolio are given by

αm
A = γ(σAσ>A)−1(µA − r1 + φAθ) + (1− γ) (σ>A)−1σp∗c + δD(σ>A)−1

L∑

l=1

wlσDl

+δn(σ>A)−1
L+1∑

l=1

wl
(
σpl

n
− σpl

c

)
+ (σ>A)−1σp∗c δX .

Recall that σDL+1 = σD∗ = 0. Therefore, country-specific portfolio weights (or country-specific demand)

for risky assets can be expressed by

αl
A − αm

A = δD(σ>A)−1

(
σDl −

L∑

k=1

wkσDk

)

+δn(σ>A)−1

{
(
σpl

n
− σpl

c

)−
L+1∑

k=1

wl
(
σpk

n
− σpk

c

)
}

.

The above indicates that there are two sources of risks for country-specific demand: diffusion risks of

PPP-deviation-rate differentials, and nontraded-good-specific inflation-rate-differential risks. To com-

pute the diffusion risks, let us look at PPP deviation rate differential as follows.

dDl −
L∑

k=1

wkdDk

= (µDl −
L∑

k=1

wkµDk)dt + (φDldÑ l(t)−
L∑

k=1

φDkdÑk(t)) + (σ>Dl −
L∑

k=1

wkσ>Dk)dz(t), (24)

which implies the diffusion risks can be captured only after the PPP deviation differential process is

completely de-meaned with all jump effects taken into account.9 Complete de-meaning is important

particularly when the PPP deviation exhibits mean-reverting behavior. When the PPP deviations do

not have jumps and their drifts are all constant, then the above PPP deviation differential and AD

differential agree with each other except by some constant, which is also implied by Eq.(7).10

On the other hand, nontraded-good-specific inflation-rate-differential risks can be computed from

the following nontraded-good specific inflation-rate-differential process,

(
dP l

n

P l
n

− dP l
c

P l
c

)
−

L+1∑

k=1

wl

(
dP k

n

P k
n

− dP k
c

P k
c

)
. (25)

9Note that
∑L

k=1
wkdDk is the world average PPP deviation, which is similar to the well-known real effective exchange

rate, a measure of global competitiveness of the reference country. The real effective exchange rate is a weighted average
of real exchange rates, with weights being proportions of trades done with each of the reference country’s trading partners.
Our world average PPP deviations is a weighted average of logarithms of real exchange rates with weights being sizes of
foreign economies in fractions of the world total wealth.

10Another issue in the empirical estimation of PPP deviations risks can arise in the presence of nontraded assets. PPP
deviations should be computed using common (traded) good price levels rather than a generic CPI (Consumer Price
Index). Officer [1976] points out that the use of the CPI is inadequate in computing PPP deviations, because the index
is from a mixture of traded and nontraded goods and services and the mixture may not be comparable across countries.
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provided that it is properly de-meaned. Note that the country l-specific demand for a portfolio hedging

nontraded-good-specific inflation-rate-differential risks is measured in terms of price risks of nontraded

goods {P l
n; l = 1, ...L+1} as seen in Eq.(25), whereas in the literature, the hedging demand is typically

measured in terms of (production) output risks of nontraded goods. See Stockman and Dellas [1989],

Tesar [1993] and Baxter, Jermann and King [1998].

5 International Asset Pricing Model

Note that in our incomplete market economy, one may construct hedge portfolios for various diffu-

sion risk sources by using traded securities. Let Hp∗c , HDl , H l
n and HX be hedge portfolios for

the common-good-price inflation rate risks, country-l PPP deviations risks over the common good,

country-l nontraded good-price inflation rate risks, and other state variables, respectively. Then

Hp∗c = ((σ>A)−1σp∗c , 1 − 1>(σ>A)−1σp∗c ), i.e., fractions of the investor’s wealth, (σ>A)−1σp∗c , invested

in N risky assets and the rest 1 − 1>(σ>A)−1σp∗c in the reference country’s riskfree asset. Simi-

larly, HDl = (σ>Dl(σA)−1, 1 − 1>σ>Dl(σA)−1), H l
n = (σ>pl

n
(σA)−1, 1 − 1>σpl

n
(σA)−1), and HXk

=

(σ>Xk
(σA)−1, 1 − 1>σ>Xk

(σA)−1), where σ>Xk
is the k-th row of σ>X , and HXk

is a hedge portfolio for

the k-th state variable, k = 1, ..., m.

Further, let Am be the global market portfolio index, and also Γ be the variance-covariance matrix

for diffusion risks among variables (Am, P ∗c , D1, ..., DL, P 1
c , ..., PL+1

c , P 1
n , ..., PL+1

n , X1, ..., XK), which are

the market index, the reference-country traded good price, other countries’ traded- and nontraded-good

prices, and K state variables, respectively. Then in global market equilibrium, all investors agree on

the rate of return on each asset and we have the following multi-beta linear IAPM.

Proposition 2 Suppose that country-l investor’s optimal portfolios are given by Eq.(16) for all l =

1, 2, ..., L + 1. Assume Γ is nonsingular. Then in global market equilibrium, the expected instantaneous

rate of return on asset i in the reference currency satisfies the following multi-beta linear relationship:

For i = 1, 2, ...., N ,

µi + φ>i λ = r + φ>i (λ− θ) + βim(µm − r + φ>mθ) + βiHp∗c
(µHp∗c

− r + φ>Hp∗c
θ)

+
L∑

l=1

βiH
Dl

(µH
Dl
− r + φ>Hl

D
θ) +

L∑

l=1

βiHl
c
(µHl

c
− r + φ>Hl

c
θ)

+
L+1∑

l=1

βiHl
n
(µHl

n
− r + φ>Hl

n
θ) + βiHX

(µHX
− r + φ>HX

θ), (26)

where µHp∗c
− r + φ>Hp∗c

θ = σ>p∗c (σA)−1(µA− r1+ φAθ), µH
Dl
− r + φ>Hp∗c

θ = σ>Dl(σA)−1(µA− r1+ φAθ),

µHl
c
− r + φ>Hl

c
θ = σ>pl

c
(σA)−1(µA − r1 + φAθ), and µHl

n
− r + φ>Hl

n
θ = σ>pl

n
(σA)−1(µA − r1 + φAθ).

That is, µHp∗c
, µH

Dl
, µHl

n
, and µHX are the continuous drifts of hedging portfolios, respectively, for the
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reference-country inflation risk, country-l PPP deviation risk, country-l nontraded-good inflation risk,

and other state variable risks.

Corollary 1 If we assume (Ψ, Dl, P ∗c , P l
c , P

l
n) do not depend on X and have constant drifts, volatilities

and jump rates over time, the IAPM in (26) can be greatly simplified as follows: For i = 1, 2, ...., N ,

µi + φ>i λ = r + φ>i (λ− θ) + βim(µm − r + φ>mθ) + βiHp∗c
(µHp∗c

− r + φ>p∗c θ)

+
L∑

l=1

βiH
Dl

(µH
Dl
− r + φ>Hl

D
θ) +

L+1∑

l=1

βiH̄l
n
(µH̄l

n
− r + φ>̄Hl

n
θ), (27)

where (µH̄l
n
− r + φ>̄

Hl
n
θ) = (σ>pl

n
− σ>pl

c
)(σA)−1(µA − r1 + φAθ), and H̄ l

n is a portfolio hedging country-l

nontraded-good specific inflation rate risks.

Note that Eq.(26) clearly shows how PPP deviation risks affect asset pricing. The left hand side

of the equation is the expected instantaneous rate of return on asset i. The right hand side implies

that the risk premium on a jump-diffusion asset consists of two components: a set of jump-risk premia,

φ>i (λ− θ) and another set of diffusion risk premia, i.e., the beta terms. For example, φ>il (λ
l − θl) and

βiH
Dl

(µH
Dl
− r + φ>

Hl
D

θ) are, respectively, jump risk and diffusion risk premia on asset i due to the

jump and diffusion risks of the country-l PPP deviation.

With all constant parameters, Eq.(27) implies that asset returns can be approximately/empirically

expressed by the following regression model:

∆Ai

Ai
= a +

L∑

l=1

φil∆Ñ l + βim
∆Am

Am
+ βiHp∗c

∆P ∗c
P ∗c

+
L∑

l

βiH
Dl

∆Dl

Dl
+

L+1∑

l

βiHl
n
(
∆P l

n

P l
n

− ∆P l
c

P l
c

) + ε, (28)

where ∆N l is country-l PPP jump, and ∆Am, ∆P ∗c , ∆Dl, ∆P l
c , and ∆P l

n are changes in continuous

parts of Am, P ∗c , Dl, P l
c and P l

n, respectively. Unlike the literature, the above equation allows asset

returns to be regressed directly on PPP deviation risks.

Currently, empirical literature seems to confirm the significance of inflation and exchange rates risks

in asset prices. See Dumas and Solnik [1995] for exchange rate risks and Vassalou [2000] for inflation

rate risks. Although there are numerous discussions on PPP deviations in the asset pricing literature,

they only focus on either exchange rate or inflation rate risks separately, and surprisingly it seems there

are no empirical studies relating PPP deviations directly. Furthermore, it would be also interesting to

see empirical roles of nontraded-good-specific price risks and PPP jumps in international asset pricing.

5.1 Hedge portfolios

Given the importance of PPP-deviation and nontraded-good-specific-inflation hedge portfolios in in-

ternational asset pricing, we discuss how one can construct these hedge portfolio using familiar TIPS

instruments. Let us assume that TIPS bonds are globally traded and that there are two types of TIPS
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bonds in each country, one indexed on the common good and the other indexed on the nontraded good.

Thus there are 2× (L+1) TIPS bonds globally traded. We first derive equilibrium prices and dynamics

of TIPS bonds, and then show how one can use TIPS bonds to construct the hedge portfolios.

For simplicity, assume all µ’s, σ’s and φ’s are constant over time.

5.1.1 Price dynamics of reference country TIPS bonds

Consider a TIPS bond strip (or a zero-coupon TIPS bond) with an initial face value of one reference

currency unit maturing at time T . Without loss of generality, assume P̄ ∗k (0) = 1, k = c, n. Then its

terminal value (the accrued principal at time T ) in the reference currency is P ∗k (T ). We know that

P ∗k (T ) = P ∗k (t)e
(µp∗

k
− 1

2 σ>
p∗

k
σp∗

k
)(T−t)+σ>

p∗
k
(z(T )−z(t))

.

Let the value of the TIPS bond at time t be V ∗
TP (t). Then

V ∗
TP (t) = Et

[
P ∗k (T )

ξ(T )
ξ(t)

]

= P ∗k (t)e

(
µp∗

k
−r−σ>

p∗
k

ν

)
(T−t)

.

Thus, the dynamics of the TIPS bond price are given by

dV ∗
TP (t)

V ∗
TP (t)

= (r + σ>p∗
k
ν)dt + σ>p∗

k
dz(t).

That is, the reference-country TIPS bond indeed perfectly hedges P ∗k , the reference-country good-k

inflation risks measured in the reference currency. This property of TIPS bonds implies that TIPS-

bond price changes can be used as a proxy for the inflation risks. It can be a useful property in

empirical studies requiring continuous inflation rates while actual inflation rates are not being published

continuously.

5.1.2 Price dynamics of country l TIPS bonds

Consider a TIPS bond strip (or a zero-coupon TIPS bond) with an initial face value of one country-l

currency unit maturing at time T . The accrued principal at time T is P l
k(T ), k = c, n. Without loss of

generality, assume P l
k(0) = 1, k = c, n. Then its terminal value in the reference currency is Sl

A(T )P l
k(T ).

Let µSP l
k

and σSP l
k

be the drift and volatility of Sl
A(T )P l

k(T ), respectively. Then

µSPk
= µPk

− µSA
+ σ>Pk

σSA
,

and

σSPk
=

{
σP∗c + σDl , if k = c,
σP∗c +

(
σP l

n
− σP l

c

)
+ σDl , if k = n.

19



We know that with superscript l suppressed,

SA(T )Pk(T ) = SA(t)Pk(t)e(µSP− 1
2 σ>SP σSP )(T−t)+σSP (z(T )−z(t))+φ

Dl (Ñ
l(T )−Ñ(t)).

Let V l
TP (t) be the market price at time t for the the above cashflow in the reference currency. Then

we have

V l
TPk

(t) = Et

[
SA(T )Pk(T )

ξ(T )
ξ(t)

]

= SA(t)Pk(t)e
(
µSPk

−r−σ>SPk
ν+θl(e

φ
Dl−1)

)
(T−t)

Thus,

dV l
TPk

(t)
V l

TPk
(t−)

=
(
r + σ>SPk

ν − θl(eφ
Dl − 1)

)
dt + σ>SPk

dz + (eφ
Dl − 1)dÑ l. (29)

The above TIPS-bond price dynamics imply if there are TIPS bonds available for all countries, then the

market can be completed as far as PPP deviation risks are concerned, even when those PPP deviations

are driven by jump-diffusion processes.

For the rest of this subsection, we only consider TIPS bonds indexed on the common good prices,

just for simplicity. Consider a portfolio consisting of L TIPS bonds from L countries, asset i and the

risk free asset of the reference country, as follows: for i = 1, 2, ...., N ,

(
− φi1

eφD1 − 1
, ...,− φiL

eφDL − 1
, 1,

L∑

l=1

φil

eφ
Dl − 1

)
.

Then, this portfolio completely hedges asset i against its jump risks. Let Hi be the value of the portfolio.

Then we have
dHi(t)
Hi(t−)

= µHidt + σ>Hi
dz(t), (30)

where,

µHi = µi −
L∑

l=1

φil

eφ
Dl − 1

(µTP l − r)

σ>Hi
= σ>i −

L∑

l=1

φil

eφ
Dl − 1

(σ>P∗c + σ>Dl).

Similarly one can create N diffusion-risk assets without jumps, H1, ...., HN . Let σHA := (σH1, ...., σHN )>

and assume σH is nonsingular. Also let µHA = (µH1, ..., µHN )>. Note that since HA(t)e−rt has to be

an N -dimensional vector of Q-martingales, and since z(t) +
∫ t

0
νdt is an N dimensional vector of inde-

pendent standard Wiener processes under Q measure, we must have ν = σ−1
HA

(µHA
− r1).
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Given the above set of diffusion assets, one can combine this set of portfolios with each TIPS bonds

to create pure jump assets. Consequently, the whole market becomes complete. For example, a pure

jump asset for country-l PPP deviation jumps can be constructed as a portfolio

(
−(σ>P∗c + σ>Dl)σ−1

HA
, 1, (σ>P∗c + σ>Dl)σ−1

HA
1
)

of the N diffusion-risk assets, the country-l TIPS bond, and the reference-country risk free asset,

respectively. In words, this portfolio can be achieved with $100 initial investment as follows: Short

$100 × (σ>P∗c + σ>Dl)σ−1
HA

worth of the N diffusion-risk assets, long $100 worth of the country-l TIPS

bond, and long $100(σ>P∗c + σ>Dl)σ−1
HA

1 worth of the reference-country risk free asset. The market price

of this portfolio jumps only when country-l PPP deviation jumps, without being affected by diffusion

risks at all. Furthermore, the price of this country-l pure jump-risk asset, H l
J(t) evolves as follows.

dH l
J(t)

H l
J(t)

= (r − θl(eφ
Dl − 1))dt + (eφ

Dl − 1)dN l(t). (31)

Once the above asset is constructed, one can not only use it to complete the market, but to estimate θ

from its drift.

5.1.3 PPP deviation hedge portfolios

PPP deviation hedge portfolios can also be constructed as follows. Let

(
1,−1,−1 +

φDl

eφ
Dl − 1

, 2− φDl

eφ
Dl − 1

)

be a portfolio of assets in (29), (30), and (31) and the reference-country riskfree asset, respectively.

Then the market price of the portfolio, H l
D evolves as follows:

dH l
D

H l
D

= µHl
D

dt + σ>Dldz(t) + φldÑ l(t).

Clearly the above dynamics duplicate those of country-l PPP deviation risks.

If there were no jumps in PPP deviations, then a country-l PPP deviation hedge portfolio can be

easily constructed by using a portfolio of the following three positions: long reference currency bonds

for an amount of $H̄Dl(t), long country-l TIPS bonds H̄Xl
c

for the same amount, and short the reference

currency TIPS bonds H̄p∗c also for the same amount. Then the current value of this portfolio is $H̄Dl(t)

and its rate-of-return dynamics are given by

dH̄Dl

H̄Dl

= (r + σ>Dlν)dt + σ>Dldz(t).

This portfolio perfectly hedges the country-l PPP deviation risk in the world of no PPP deviation

jumps.
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5.1.4 Nontraded-good-specific inflation hedge portfolios

Recall that σSPc
= σp∗c +σDl and σSPn

= σp∗c +
(
σpl

n
− σpl

c

)
+σDl , and that jump-rates of both VTPc

and

VTPn
are the same. Based on this observation, consider a portfolio of the following three positions: long

reference currency bonds for an amount of $H l
n(t), long country-l TIPS bonds indexed on nontraded

good price for $H l
n(t), and short country-l TIPS bonds indexed on common good price for $H l

n(t).

Then the current value of this portfolio is $H l
n(t) and its rate of return is given by

dH l
n(t)

H l
n(t)

=
(
r + (σpl

n
− σpl

c
)>ν

)
dt +

(
σpl

n
− σpl

c

)>
dz(t).

Then this portfolio perfectly hedges the country-l nontraded-good-specific inflation risk.

5.2 Forward exchange rate premium/discount

Let F l(t, T ) be the country-l forward exchange rate for time T determined at time t. Then the in-

terest rate parity implies that F (t, T ) = S(t)e(r−Rl)(T−t). The expected (instantaneous) interest rate

differential r −Rl is frequently referred to as the forward exchange rate premium.

The following proposition provides no-arbitrage condition for the interest rate differential relation-

ship between the forward exchange rate and the expected future exchange rate.

Proposition 3 No arbitrage implies

Rl − r = σ>SA
ν + (λl − θl)(eφ

Dl − 1)− (µSA + λl(eφ
Dl − 1)). (32)

and

F l(t, T ) = e

{
−σ>SA

ν−(λl−θl)(e
φ

Dl−1)
}

(T−t)
Et[Sl(T )]. (33)

Proof: Consider the country-l nominal riskfree bond with a face value of one country-l currency

maturing at time T . Then the time-t reference-currency price of this bond is f(t, T ) = SA(t)e−Rl(T−t),

where Rl is the country-l nominal riskfree interest rate. Note that

df l(t, T )
f l(t, T )

= (Rl + µSA)dt + (σ>p∗c − σ>pl
c
+ σ>Dl)dz(t) + (eφ

Dl − 1)dÑ l(t).

The above asset can also be duplicated with portfolio Hf ,

(
1,−σ>pl

c
σ−1

HA
, σ>pl

c
σ−1

HA
1
)

,

of country-l TIPS bond, a portfolio of N diffusion-risk assets to hedge country-l common-good price

(P l
c) risk, and the reference-country nominal risk free asset, respectively. Then, we have

dHf

Hf
=

(
r + σ>SP ν − θl(eφ

Dl − 1)− σ>pl
c
σ−1

HA
(µHA − r1)

)
dt + (σ>p∗c − σ>pl

c
+ σ>Dl)dz + (eφ

Dl − 1)dÑ l.
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However, no arbitrage implies that

Rl − r = σ>SP ν − µSA − θl(eφ
Dl − 1)− σ>pl

c
σ−1

HA
(µHA − r1).

Moreover, since ν = σ−1
HA

(µHA
− r1) as noted before, we have Eq.(32).

For the second part, by Eq.(32),

F l(t, T ) = Sl(t)e
{
−σ>SA

ν+(µSA
+λl(e

φ
Dl−1))−(λl−θl)(e

φ
Dl−1)

}
(T−t)

.

However, since Et[Sl(T )] = Sl(t)e
{

µSA
+λl(e

φ
Dl−1)

}
(T−t), we have (33). 2

Eq.(32) implies that the interest rate differential Rl− r is the exchange rate diffusion-risk premium,

σ>SA
ν plus the exchange rate jump-risk premium, (λl − θl)(eφ

Dl − 1) minus the expected rate of change

in the exchange rate, (µSA
+λl(eφ

Dl −1)). The third term of the RHS of Eq.(32), −(µSA
+λl(eφ

Dl −1)),

is simply a correction term for the exchange rate effect: The forward exchange rate premium r − Rl

increases as the foreign currency is in an increasing trend against the domestic currency. For example, if

the exchange rate risk is globally unsystematic with no jumps, then the forward premium is completely

determined by µSA
, the expected rate of change in the exchange rate.

This second result of Proposition (3) is related to the unbiased expectations hypothesis. Although

we know that the forward rate is determined simply based on the interest rate parity, the unbiased

expectation hypothesis states that the forward exchange rate is the expectation of future exchange rate.

In this paper, Eq.(33) suggests that the forward and expected future exchange rates are related just

by no-arbitrage condition, not by the expectation. In particular, it implies that assuming that the

exchange rate risk demands a positive market premium, the forward exchange rate should be smaller

than the expected future exchange rate.

6 Special Cases

Now we recover existing international and domestic asset pricing models for perfect capital markets as

special cases of our model. We assume no jumps in PPP deviations/exchange rates, and asset prices.

6.1 Adler and Dumas (AD)

There are no nontraded goods. Thus βiHl
n

= 0 for all l, and Eq.(27) implies

µi = r + βim(µm − r) + βiHp∗c
(µHp∗c

− r) +
L∑

l=1

βiH
Dl

(µH
Dl
− r) (34)

Eq.(34) is an alternative expression of AD [1983, equation (16)].
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6.2 Solnik/Sercu

All inflation rates are zero, σpl
c

= σpl
n

= 0 for all l. Then σSl
A
≡ σDl , and Eq.(27) implies that for

i = 1, 2, ...., N ,

µi = r + βim(µm − r) +
L∑

l=1

βiH
Sl

A

(µH
Sl

A

− r) (35)

where µH
Sl

A

− r = σ>
Sl

A

(σA)−1(µA − r1), which is the excess return in the reference currency on the

portfolio hedging the exchange rate risk between the reference country and country-l. Note that without

inflation rates, country-l nominal riskfree bond is an asset hedging the exchange rate risk and that Itô’s

formula implies the rate of return is Rl + µSl
A
− r, where Rl is the rate of return in country-l currency

on the country-l nominal riskfree bond. Thus, we have µH
Sl

A

− r = Rl + µSl
A
− r. Therefore, Eq.(35) is

identical to Sercu [1980, equation (11b)].

Note that Eq.(35) holds even in the presence of nontraded goods as long as all inflation rates are

zeros. One may claim that Solnik/Sercu is also a special case of AD if there is a single consumption good

in the world. However this claim may not be valid if there are multiple consumption goods, because

with multiple consumption goods, Eq.(35) can still hold whereas Eq.(34) cannot.

6.3 A single country CAPM under inflationary Risks

Assume the PPP holds, i.e., σDl ≡ 0 for all l. Also assume no nontraded goods. Then by Eq.(27), we

have, for i = 1, 2, ...., N ,

µi = r + βim(µm − r) + βiHp∗c
(µHp∗c

− r) (36)

Similar results with discrete-time models can be found in Grauer, Litzenberger and Stehle [1976], and

Friend, Landskroner and Losq [1976]. The CAPMs in their discrete time models are presented as single

beta models with the beta computed against the market portfolio properly adjusted for inflation. In

our continuous time model, Eq.(36) indicates that the CAPM is a straightforward linear model with

two betas, one for the market portfolio and the other for the inflation rate hedge portfolio.

6.4 The CAPM

Assume the PPP holds, i.e., σDl ≡ 0 for all l. Also all inflation rates are deterministic. Then, by

Eq.(27), we have, for i = 1, 2, ...., N ,

µi = r + βim(µm − r). (37)

Note this relationship holds even in the presence of multiple consumption goods. Of course, this is the

famous Sharpe-Linter-Mossin’s CAPM.
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7 Conclusion

In this paper, we have isolated PPP deviation risks in international asset pricing. We have shown

that when investors consume both traded and nontraded goods, country-l investors hold three global

funds and two country-l specific funds. The three global funds are the global market portfolio, reference-

country inflation-risk hedge portfolio, and reference-country bond portfolio. The two country-dependent

portfolios are a hedge portfolio against PPP deviation risks and another hedge portfolio against nontraded-

good-specific inflation-rate risks. Consequently, country-specific demand for risk assets arises from two

sources: PPP deviation-rate differential risks, and nontraded-good-specific inflation-rate differential

risks. The first source is well yet indirectly recognized in the literature sometimes as exchange rate risks

and sometimes as inflation risks. We believe the second source is new.

Allowing investors to consume nontraded goods not only brings about the above extra country-

specific demand but real income effects with changes in traded good prices. We have shown a striking

result that as the traded good price of country-l increases while the nontraded good price is held

constant, the real income of the globally investing country-l investor increases, thereby increasing con-

sumption of both traded and nontraded goods. In our framework, if nontraded goods do not exist,

changes in traded good prices do not cause the real income.

We have argued that PPP deviation hedge portfolios can be created by using domestic and foreign

TIPS bonds indexed on common good prices; also that nontraded-good-specific inflation hedge portfolio

can be constructed by using domestic TIPS bonds indexed on common good and nontraded good prices.

Another application of TIPS bonds suggests that unlike what the unbiased expectations hypothesis

suggests, the forward exchange rate is related to the expected exchange rate by no arbitrage, not by

the expectation.

Our model leads to the multi-beta IAPM with which existing IAPMs and domestic CAPMs are its

special cases. Our multi-beta IAPM require 2(L+1)+1 benchmark portfolios plus the reference country

nominal riskfree asset in order to price all assets. They are the global market portfolio, one portfolio

hedging against the reference-country inflation rates, L portfolios hedging against L PPP deviation

risks, and L + 1 portfolios hedging against L + 1 nontraded-good-specific inflation rate risks.

We have also noted that in the presence of inflation risks, hedging against exchange rate risks in

isolation can actually make the investor’s real wealth riskier than no hedging at all. In order to avoid

this pitfall and to protect her real wealth, the investor may need to simultaneously hedge both inflation

rate and exchange rate risks, for example, by using foreign TIPS bonds.
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Appendix

A Proof of Theorem 1

Recall ϕc = SAPc = eDP ∗c and ϕn = SAPn = eDP ∗c (Pn/Pc). Let (Gc, Gn) be the inverse of

(UCRc
, UCRn

) is invertible with respect to (CRc , CRn). Then the solution to (14) and (15) is given

by

Cc(t) = ϕc(t)Gc(ϕc(t)Ψ(t), ϕn(t)Ψ(t), t), (A.1)

Cn(t) = ϕn(t)Gn(ϕc(t)Ψ(t), ϕn(t)Ψ(t), t). (A.2)

And the optimal consumption budget is

EQ

[∫ T

0

e
−

∫ t

0
r(u)du(Cc + Cn)dt

]

=
1
q
E

[∫ T

0

qe
−

∫ t

0
r(u)du

ξ(t)(Cc + Cn)dt

]

=
1
q
E

[∫ T

0

Ψ(t) {ϕc(t)Gc + ϕn(t)Gn} dt

]

Thus, by the Bayes rule

EQ

[∫ T

t

e
−

∫ s

0
r(u)du(Cc + Cn)ds

∣∣∣∣∣ Ft

]

=
1

qξ(t)
E

[∫ T

t

qle
−

∫ s

0
r(u)du

ξ(s)(Cc + Cn)ds

∣∣∣∣∣ Ft

]

= e
−

∫ t

0
r(u)du 1

Ψ(t)
E

[∫ T

t

Ψ(s) {ϕc(s)Gc + ϕn(s)Gn} ds

∣∣∣∣∣ Ft

]

= e
−

∫ t

0
r(u)du 1

Ψ(t)
E

[∫ T

t

Ψ(s)eD(s)P ∗c (s)
{

Gc +
Pn(s)
Pc(s)

Gn

}
ds

∣∣∣∣∣ Ft

]

= e
−

∫ t

0
r(u)du

F (Ψ(t), D(t), P ∗c (t), Pc(t), Pn(t), X(t), t) = e
−

∫ t

0
r(u)du

F (t).

For the last equality/definition, we have utilized the joint Markovian assumption. Then F (0) = W (0)

and F (T ) = 0. Now we use the standard procedure slightly modified for jumps, in order to derive an

expression of optimal portfolio policy as in Eq.(A.9).

By Itô’s formula,

e
−

∫ t

0
r(u)du

F (., t) = W (0)−
∫ t

0

r(s)e−
∫ s

0
r(s)ds

F (., s)ds +
∫ t

0

e
−

∫ s

0
r(u)du

dF

However, since

dΨ(t) = −rdt− ν>dz(t) +
L∑

l=1

(
θl(t)
λl(t)

− 1
)

(dN l(t)− λl(t)dt),
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by substitution, we have

dF = µF dt + σF dz +
L∑

l=1

∆F l(t)dN l(t),

where

µF = Ft + FΨΨµΨ + FDµD + FP∗c P ∗c µp∗c + FPcPcµpc + FPnPnµpn + FXµX +
tr

2
H(F )M(F ),

σF = −FΨΨν> + FDσ>D + FP∗c P ∗c (t)σ>p∗c + FPcPc(t)σ>pc
+ FPnPn(t)σ>pn

+ FXσ>X ,

∆F l(t) = F

(
θl(t)
λl(t)

Ψ(t−), Dl(t−) + φl(t−), ..., t
)
− F (Z(t−), Dl(t−), ..., t−)

and H(F ) and M(F ) are the Hessian and mutual variation matrix processes with respect to continuous

parts of (Ψ, D, P ∗c , Pc, Pn, X) at time t. Thus

e
−

∫ t

0
r(u)du

F (., t) +
∫ t

0

e
−

∫ s

0
r(u)du(Cc + Cn)ds

= W (0)−
∫ t

0

e
−

∫ s

0
r(u)du

(
r(s)F − µF + σF ν − Cc − Cn −

L∑

l=1

∆F l(s−)θl(s)

)
ds (A.3)

+
∫ t

0

e
−

∫ s

0
r(u)du

σF dz∗ +
L∑

l=1

∫

(0,t]

e
−

∫ s

0
r(u)du∆F l(s)dM l∗(s). (A.4)

We know that e
−

∫ t

0
r(u)du

F (., t) +
∫ t

0
e
−

∫ s

0
r(s)ds(Cc + Cn)ds is a martingale under Q (because it is the

conditional expectation of
∫ T

0
e
−

∫ t

0
r(u)du(Cc + Cn)dt under Q). In fact

e
−

∫ t

0
r(u)du

F (., t) +
∫ t

0

e
−

∫ s

0
r(u)du(Cc + Cn)ds = EQ

[∫ T

0

e
−

∫ s

0
r(u)du(Cc + Cn)ds

∣∣∣∣∣ Ft

]
.

Therefore,
∫ t

0

e
−

∫ s

0
r(u)du

(
r(s)F − µF + σF ν − Cc − Cn −

L∑

l=1

∆F l(s−)θl(s)

)
ds

also has to be a martingale, which implies that for all t ∈ [0, T ] a.s.,

r(t)F − µF + σF ν − Cc − Cn −
L∑

l=1

∆F l(t−)θl(t) = 0. (A.5)

Thus by Eq.’s (A.4) and (A.5), we have

e
−

∫ t

0
r(u)du

F (., t)

= W (0)−
∫ t

0

e
−

∫ s

0
r(u)du(Cc + Cn)ds

+
∫ t

0

e
−

∫ s

0
r(u)du

[
−FΨΨν> + FDσ>D + FP∗c P ∗c (t)σ>p∗c + FPcPc(t)σ>pc

+ FPnPn(t)σ>pn
+ FXσ>X

]
dz∗(s)

+
L∑

l=1

∫ t

0

e
−

∫ s

0
r(u)du∆F l(s)dM l∗(s). (A.6)
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On the other hand, the self-financing budget constraint yields

Ŵ (t) = W (0) +
∫ t

0

Ŵ (s)α>A (σAdz∗(s) + φAdM∗(s))−
∫ t

0

e
−

∫ s

0
r(u)du(Cc(s) + Cn(s))ds. (A.7)

Recall that Ŵ (0) = W0. Since Ŵ (t) = e
−

∫ t

0
r(u)du

F (., t), by matching Eq.’s (A.7) and (A.6), we have

W (t)α>AφA = (∆F 1(t), ...., ∆FL(t))> (A.8)

W (t)α>AσA = −FΨΨν> + FDσ>D + FP∗c P ∗c (t)σ>p∗c

+FPc
Pc(t)σ>pc

+ FPn
Pn(t)σ>pn

+ FXσ>X . (A.9)

Since F > 0 by the assumption of an interior solution, Eq.(A.9) can be rewritten as in Eq.(16).

For Part (ii), note that Gc and Gn are functions of (D, Y l
c , Y l

n). Since (D, Y l
c , Y l

n, X) are jointly

Markov, one can alternatively write F as follows:

e
−

∫ t

0
r(u)du

F (., t) = e
−

∫ t

0
r(u)du 1

Ψ(t)
E

[∫ T

t

Ψ(s)eD(s)P ∗c (s)
{

Gc +
Pn(s)
Pc(s)

Gn

}
ds

∣∣∣∣∣ Ft

]

= e
−

∫ t

0
r(u)du 1

Ψ(t)
E

[∫ T

t

{
eD(s)Yc(s)Gc + eD(s)Yn(s)Gn

}
ds

∣∣∣∣∣ D(t), Yc(t), Yn(t), X(t)

]

= e
−

∫ t

0
r(u)du 1

Ψ(t)
H(D(t), Yc(t), Yn(t), X(t), t).

Thus we must have

F (Ψ(t), D(t), P ∗c (t), Pc(t), Pn(t), X(t), t) ≡ 1
Ψ

H(D(t), Yc(t), Yn(t), X(t), t).

Therefore,

FΨ = − 1
Ψ2

H +
1
Ψ

HYcP
∗
c +

1
Ψ

HYn

P ∗c Pn

Pc

FP∗c = HYc + HYn

Pn

Pc

FPc = −HYn

P ∗c Pn

P 2
c

FPn = HYn

P ∗c
Pc

.

Thus,

FΨΨ = −F + FP∗c P ∗c

and

PcFPc + PnFPn = 0.

Therefore, (A.9) becomes

W (t)α>AσA = −FΨΨν> + (F + FΨΨ)σ>p∗c + FDσ>D + FPnPn(t)(σ>pn
− σ>pc

) + FXσ>X . (A.10)
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Thus we have Eq.(17).

To prove Part (iii), let Ȳ l
c (t) := eD(t)Y l

c (t) and Ȳ l
n(t) := eD(t)Y l

n(t).When volatilities, drifts and

jump rates of traded and nontraded prices, exchange rates and asset prices are all constant over time,

(Ȳ l
c , Ȳ l

n) are Markov. Thus since Gc and Gn are functions of (Ȳ l
c , Ȳ l

n), F can be rewritten as follows:

e−rtF (Ψ(t), D(t), P ∗c (t), Pc(t), Pn(t), t)

= e−rt 1
Ψ(t)

E

[∫ T

t

{
Ȳc(s)Gc + Ȳn(s)Gn

}
ds

∣∣∣∣∣ Ȳc(t), Ȳn(t)

]

Define

H̄(Ȳ l
c (t), Ȳ l

n(t), t) := E

[∫ T

t

{
Ȳ l

c (s)Gc + Ȳ l
n(s)Gn

}
ds

∣∣∣∣∣ Ȳ l
c (t), Ȳ l

n(t)

]
.

Then we must have

F (Ψ(t), D(t), Pc(t), Pn(t), t) ≡ 1
Ψ(t)

H̄(Ȳc(t), Ȳn(t), t).

Therefore,

FΨ = − 1
Ψ2

H̄ +
1
Ψ

H̄Ȳc
eDP ∗c +

1
Ψ

H̄Ȳn

eDP ∗c Pn

Pc

FP∗c = H̄Ȳc
eD + H̄Yn

eDPn

Pc

FD = H̄Ȳc
eDP ∗c + H̄Yn

eDP ∗c Pn

Pc
= P ∗c FP∗c

FPc = −H̄Yn

eDP ∗c Pn

P 2
c

FPn = H̄Yn

eDP ∗c
Pc

.

Thus,

FΨΨ = −F + FP∗c P ∗c

0 = PcFPc + PnFPn

FD = FP∗c P ∗c ,

and (A.9) becomes

W (t)α>AσA = −FΨΨν> + (F + FΨΨ)(σ>p∗c + σ>D) + FPnPn(t)(σ>pn
− σ>pc

).

Therefore, we have Eq.(18). 2

B Proof of Proposition 1

Recall

CRc(t) =
Cc(t)

eD(t)P ∗c (t)
, and CRn(t) =

Cn(t)
eD(t)(P ∗c (t)/Pc(t))Pn(t)

.
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Let

Ȳc(t) :=
eD(t)P ∗c (t)

Z(t)
, and Ȳn(t) :=

eD(t)(P ∗c (t)/Pc(t))Pn(t)
Z(t)

.

Then the FOCs are

κac (CRc
)ac−1 (CRn

)an = Ȳc,

κan (CRc
)ac (CRn

)an−1 = Ȳn.

Thus the above two imply that

CRc
=

(
ac

an

)
CRn

Ȳn

Ȳc
.

By substituting the above back into the FOCs, we have

CRc = (κac)
1

1−a

(
an

ac

) an
1−a

Ȳ
an−1
1−a

c Ȳ
−an
1−a

n ,

CRn
= (κan)

1
1−a

(
ac

an

) ac
1−a

Ȳ
−ac
1−a

c Ȳ
ac−1
1−a

n .

Note that both CRc and CRn are lognormally distributed with jumps because P ∗c , P l
c , and P l

n are

lognormally distributed, and Z and eD are lognormally distributed with jumps.11 Define ηc(t) =

Ȳc(t)CRc(t) and ηn(t) = Ȳn(t)CRn(t). Then

ηc(t) = (κac)
1

1−a

(
an

ac

) an
1−a (

Ȳc(t)
)−ac

1−a
(
Ȳn(t)

)−an
1−a ,

ηn(t) = (κan)
1

1−a

(
ac

an

) ac
1−a (

Ȳc(t)
)−ac

1−a
(
Ȳn(t)

)−an
1−a .

Since Ȳc and Ȳn are lognormally distributed with jumps, so are ηc and ηn. Thus we can express the

dynamics of ηc(t) and ηn(t) as in the following forms:

dηc(t)
ηc(t−)

= µηcdt + σ>ηc
dz(t) + φ>ηc

dN(t)

dηn(t)
ηn(t−)

= µηndt + σ>ηn
dz(t) + φ>ηn

dN(t).

11Notes on some basics: Suppose

dA(t)

A(t−)
= µdt + σ>dz(t) +

L∑
l=1

φldNl(t),

where µ, σ, and φ are all constant. Then, the solution is

A(t) = A(0)e

(
µ+ 1

2 σ>σ
)

t+σ>Z(t)+
∑L

l=1
ln(1+φl)Nl(t)

and

E[A(T ) |A(t) ] = A(t)e

(
µ+

∑L

l=1
λlφl

)
(T−t)

.
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where µ’s, σ’s and φ’s for ηc and ηnare all constant. In fact, since ηc(t) = (ac/an)ηn(t), the dynamics

of both ηc and ηn are identical to each other except their initial values. That is, µηc
= µηn

, σηc
= σηn

and φηc = φηn . Therefore,

Kc := Et

[∫ T

t

ηc(s)ds

]
= E

[∫ T

t

ηc(s)ds

∣∣∣∣∣ Ȳc(t), Ȳn(t)

]

= ηc(t)Et

[∫ T

t

ηc(s)
ηc(t)

ds

]

=
1

µηc
+ φ>ηc

λ
ηc(t)

(
e(µηc+φ>ηc

λ)(T−t) − 1
)

,

Kn := Et

[∫ T

t

ηn(s)ds

]
=

an

ac
Kc.

If µηc is zero, then Kc and Kn become the limits of the above quantities as µηc approaches zero.

Recall F (t, .) = Z(t)(Kc + Kn), i.e., the current level of wealth is the same as the present value

of future consumption. Since Kc and Kn are positive almost surely for t < T , we have F > 0 almost

surely. However,

(Kc)Yc =
ac

a− 1
1

µηc + φ>ηc
λ

(κac)
1

1−a

(
ac

an

) an
a−1

(Ȳc)
1−an
a−1 (Ȳn)

an
a−1 (e(µηc+φ>ηc

λ)(T−t) − 1) < 0.

Since

(Kc)Ȳc
=

ac

a− 1
Kc

Ȳc
, (Kn)Ȳc

=
an

ac
(Kc)Ȳc

,

(Kc)Ȳn
=

an

a− 1
Kc

Ȳn
, and (Kn)Ȳn

=
an

ac
(Kc)Ȳn

,

we have (Kn)Ȳc
, (Kc)Ȳn

, (Kn)Ȳn
< 0. Also since F = Z(Kc + Kn) = ZKc

a
ac

,

FPnPn

F
=

Pn

F
Z

a

ac
(Kc)Ȳn

∂Ȳn

∂Pn
= − an

1− a
< 0

FPcPc

F
=

Pc

F
Z

a

ac
(Kc)Ȳn

∂Ȳn

∂Pc
=

an

1− a
> 0

FP∗c P ∗c
F

=
P ∗c
F

Z
a

ac

(
(Kc)Ȳc

∂Ȳc

∂P ∗c
+ (Kc)Ȳn

∂Ȳn

∂P ∗c

)
= − a

1− a
< 0

γ =
ZFZ

F
=

Z

F

{
a

ac
Kc +

a

ac
Z

(
(Kc)Ȳc

∂Ȳc

∂Z
+ (Kc)Ȳn

∂Ȳn

∂Z

)}
=

1
1− a

> 1

FD

F
=

Z

F

a

ac

(
(Kc)Ȳc

∂Ȳc

∂D
+ (Kc)Ȳn

∂Ȳn

∂D

)
= − a

1− a
< 0.

Next, to find the value function, note that

U(., t) = κ

(
an

ac

)an
(

Pc(t)
Pn(t)

)an

Ca
Rc

(t).
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Thus, optimal U is lognormally distributed with jumps. Let µv and φv be the drift rate and the

L-dimensional jump rate vector for the dynamics of the optimal U(., t). Then, since µv and φv are

constant over time, the value function V is

V (t) = E

[∫ T

t

U(., s)ds

∣∣∣∣∣ U(., t)

]
=

1
µv + φ>v λ

U(., t)(e(µv+φ>v λ)(T−t) − 1).

Therefore, by substitutions, the value function is computed to be (22). The above value function is well

defined for µv + φ>v λ 6= 0. If µv + φ>v λ = 0, then the value function can be computed as the limit of

the above quantity as µv + φ>v λ approaches zero. This completes the proof. 2

C Proof of Proposition 2

Rewriting Eq.(16), we have

γl(t)(µA − r1 + φAλ) = (σAσ>A)αl
A(t) + γl(t)φA(λ− θ)− δp∗c σAσp∗c

−δDl(t)σAσDl − δpl
c
(t)σAσpl

c
− δpl

n
(t)σAσpl

n
− σAσXδl

X .

Multiply both sides by W l, sum over l, and divide both sides by
∑L+1

l W l.

γm(t)(µA − r1 + φAλ)

= (σAσ>A)
L+1∑

l

αl
AW l

∑L+1
l W l

+ γm(t)φA(λ− θ)− δm
p∗c

σAσp∗c − σAσXδm
X

−σA

L+1∑

l

W l

∑L+1
l W l

δDlσDl − σA

L+1∑

l

W l

∑L+1
l W l

δpl
c
σpl

c
− σA

L+1∑

l

W l

∑L+1
l W l

δpl
n
σpl

n
,

where δm
X = (δm

X1
, ..., δm

XK
)>, and for k = 1, ..., K,

δm
Xk

=
L+1∑

l

W lδl
Xk∑L+1

l W l
.

Note that
L+1∑

l

W lαl
A∑L+1

l W l

is the global market portfolio of risky assets. Thus

µA − r1 + φAλ =
1

γm(t)
σAm + φA(λ− θ)− δm

p∗c

γm(t)
σAσp∗c −

1
γm(t)

σAσXδm
X

−
L∑

l

δ̂Dl

γm(t)
σAσDl −

L+1∑

l

δ̂l
c

γm(t)
σAσpl

c
−

L+1∑

l

δ̂l
n

γm(t)
σAσpl

n
. (A.11)

where

δ̂Dl =
W lδDl∑L+1
l W l

, δ̂l
c =

W lδpl
c∑L+1

l W l
, δ̂l

n =
W lδpl

n∑L+1
l W l

.
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The above equation suggests that the expected instantaneous excess rate of return on the market

portfolio is

µm − r + φ>mλ =
1

γm
σmm + φ>m(λ− θ)− δm

p∗c

γm(t)
σmp∗c −

1
γm(t)

σmXδm
X

−
L∑

j

δ̂Dj

γm
σmDj −

L+1∑

j

δ̂j
c

γm
σmpj

c
−

L+1∑

j

δ̂j
n

γm
σmpj

n

where for the market portfolio Xm,

φ>m = X>
mφA.

On the other hand, note that the expected excess instantaneous rate of return on the reference-

country common-good-price hedge portfolio Hp∗c is µHp∗c
− r + φ>Hp∗c

λ = σ>p∗c (σA)−1(µA − r1 + φAλ).

However, by Eq.(A.11), we also have

σ>p∗c (σA)−1(µA − r1 + φAλ) =
1

γm
σp∗cm + φ>Hp∗c

(λ− θ)− δm
p∗c

γm(t)
σp∗cp∗c −

1
γm(t)

σp∗cXδm
X

−
L∑

l

δ̂Dl

γm
σp∗cDl −

L+1∑

l

δ̂l
c

γm
σp∗cpl

c
−

L+1∑

l

δ̂l
n

γm
σp∗cpl

n
.

Similarly, µH
Dl
− r + φ>H

Dl
λ = σ>Dl(σA)−1(µA − r1 + φAλ), and by Eq.(A.11), for l = 1, 2, ..., L + 1,

σ>Dl(σA)−1(µA − r1 + φAλ) =
1

γm
σDlm + φ>H

Dl
(λ− θ)− δm

p∗c

γm(t)
σDlp∗c −

1
γm(t)

σDlXδm
X

−
L∑

l

δ̂Dl

γm
σDlDl −

L+1∑

l

δ̂l
c

γm
σDlpl

c
−

L+1∑

l

δ̂l
n

γm
σDlpl

n
.

Also the expected instantaneous excess rates of return on hedge portfolios for country-l traded and

nontraded-good proces and all other state variables are, respectively, µHl
c
−r+φHl

c
λ = σ>pl

c
(σA)−1(µA−

r1+φAλ), µHl
n
−r+φHl

n
λ = σ>pl

n
(σA)−1(µA−r1+φAλ), and µHX−r+φHX λ = σ>X(σA)−1(µA−r1+φAλ).

Consequently, by Eq.(A.11), for l = 1, 2, ..., L + 1,

σ>pl
c
(σA)−1(µA − r1 + φAλ) =

1
γm

σpl
cm + φ>H

pl
c

(λ− θ)− δm
p∗c

γm(t)
σpl

cp∗c −
1

γm(t)
σpl

cXδm
X

−
L∑

l

δ̂Dl

γm
σpl

cDl −
L+1∑

l

δ̂l
c

γm
σpl

cpl
c
−

L+1∑

l

δ̂l
n

γm
σpl

cpl
n

σ>pl
n
(σA)−1(µA − r1 + φAλ) =

1
γm

σpl
nm + φ>H

pl
n

(λ− θ)− δm
p∗c

γm(t)
σpl

np∗c −
1

γm(t)
σpl

nXδm
X

−
L∑

l

δ̂Dl

γm
σpl

nDl −
L+1∑

l

δ̂l
c

γm
σpl

npl
c
−

L+1∑

l

δ̂l
n

γm
σpl

npl
n

σ>X(σA)−1(µA − r1 + φAλ) =
1

γm
σXm + φ>HX

(λ− θ)− δm
p∗c

γm(t)
σXp∗c −

1
γm(t)

σXXδm
X

−
L∑

l

δ̂Dl

γm
σXDl −

L+1∑

l

δ̂l
c

γm
σXpl

c
−

L+1∑

l

δ̂l
n

γm
σXpl

n
.
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Therefore we have



µm − r + φ>mθ
µHp∗c

− r + φ>p∗c θ

µH
Dl
− r + φ>

Hl
D

θ

....
µHL+1

n
− r + φ>

HL+1
n

θ

µHX − r + φ>HX
θ




= Γ×




1/γm

−δm
p∗n

/γm

−δ̂m
D1/γm

....

−δ̂pL+1
n

/γm

−(1/γm)δm
X




. (A.12)

But

µA − r1 + φAθ =
1

γm(t)
σAm − δm

p∗c

γm(t)
σAσp∗c −

L∑

l

δ̂Dl

γm(t)
σAσDl

−
L+1∑

l

δ̂l
c

γm(t)
σAσpl

c
−

L+1∑

l

δ̂l
n

γm(t)
σAσpl

n
− 1

γm(t)
σAσXδm

X

=




σ>Am

σ>p∗c σ>A
σ>Dlσ

>
A

....
σ>

pL+1
n

σ>A
σ>Xσ>A




>

×




1/γm

−δm
p∗n

/γm

−δ̂m
D1/γm

....

−δ̂pL+1
n

/γm

−(1/γm)δm
X




=




σ>Am

σ>p∗c σ>A
σ>Dlσ

>
A

....
σ>

pL+1
n

σ>A
σ>Xσ>A




>

× Γ−1 × Γ×




1/γm

−δm
p∗n

/γm

−δ̂m
D1/γm

....

−δ̂pL+1
n

/γm

−(1/γm)δm
X




=
[

βAm, βAP∗c , βAD, βAHc , βAHn , βAHX

]




µm − r + φ>mθ
µHp∗c

− r + φ>p∗c θ

µH
Dl
− r + φ>

Hl
D

θ

....
µHL+1

n
− r + φ>

HL+1
n

θ

µHX − r + φ>HX
θ




where βAm and βAP∗c are N -dimensional vectors, and βAHD , βAHc , βAHn and βAX are, respectively,

N ×L, N ×L, N × (L + 1) and N ×K matrices. Therefore, we have the multi-beta linear relationship

as stated in Eq.(26). 2
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