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Abstract

Reverse mortgages are becoming remarkably popular in the last few years in Australia, and
although they have been around a lot longer in the United States, they are receiving renewed interest
among the elderly. Increase in life expectancies and decrease in the real income at retirement due to
inflation continue to worry the those who are retired or close to retirement. Today, financial products
that help alleviate the “risk of living longer” therefore continue to be attractive among the retirees.
Reverse mortgages involve various risks from the provider’s perspective which may hinder the further
development of these financial products. This paper addresses one method of transferring and
financing the risks associated with these products through the form of securitization. Securitization
is becoming a popular and attractive alternative form of risk transfer of insurance liabilities. Here we
demonstrate how to possibly construct a securitization structure for reverse mortgages similar to the
one applied in traditional insurance products. Specifically, we investigate the merits of developing
survivor bonds and survivor swaps for reverse mortgage products. In the case of survivor bonds, for
example, we are able to compute premiums, both analytically and numerically through simulations,
and to examine how the longevity risk may be transferred to the financial investors. Our numerical
calculations provide an indication of the economic benefits derived from developing survivor bonds to
securitize the “longevity risk component” of reverse mortgage products. Moreover, some sensitivity
analysis of these economic benefits indicates that these survivor bonds provide for a promising tool
for investment diversification.
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1 Introduction

Today in many countries around the globe, life expectancy from birth is well over 80 years. While life
expectancy has increased in the last few years, the labor market participation rates among the elderly
have also dropped. According to Bateman, Kingston, and Piggott (2001), labor participation rates for
males aged 60-64, for instance, have fallen from 70-90 percent down to 20-50 percent in recent years.
Both living longer and retiring earlier contribute to the risk that the elderly may be unable to fund
their retirement in old age. This risk is popularly known as “longevity risk”.

Research has found that retired people often have plenty of equity locked in their homes but very few
liquid assets to rely on to support their daily needs. For example, in Australia alone, home equity takes
a proportion of approximately 50 percent of all household assets. See Australian Bureau of Statistics,
Australian Social Trends, 1998.1 This is a common situation among retired people in many western
countries, and we often hear the phrase “house rich and cash poor” to refer to the increasing number of
elderly who hold a substantial proportion of their assets in home equity. The financial industry is again
starting to tap into this market; today, there is renewed interest to offer reverse mortgage products.

A reverse mortgage, or RM for short, is a form of financial product that allows retirees to convert
their substantial home equities into either a lump sum or annuity income and at the same time, to
remain in their homes until until they die, sell or vacate their homes to live elsewhere. Loans made
through a reverse mortgage accrue with interest and are settled only upon the death of the borrower,
sale of the property or the vacation of its residents. There are no repayments made during the course
of the loan, and no assets other than the home may be attached to debt repayment. If at the time of
settlement, the loan accrued with interest is larger than the sale price of the property, then the provider
(or lender), usually a bank or an insurance company, recovers only up to the sale price of the property.

Reverse mortgages have been approved for selling in the United States by the Federal Home Loan
Bank Board as early as 1979; see Chinloy and Megbolugbe (1994). Its popularity is only increasing
as of late. Today, although the demand for them remains to be scant, there are early indications of
a rapid growth of demand for reverse mortgages since the beginning of the millennium. In Australia,
these products were introduced only in the early 1990’s. Although the market has not yet proven to
be as active and viable as the industry had hoped for, the product has a lot of potential as alluded by
Reed and Gibler (2003).

The reverse mortgage product involves a variety of risks from the provider’s perspective. Most of
the loan amount accrues interest at a variable rate, usually adjusted either monthly or yearly based
on an index rate, and is repaid only when the borrower dies or sells or permanently leaves the home.
The loan balance usually accumulates at a faster rate than the rate of rise of the home equity value, so
that in time, it will exceed the value of the home equity. If the outstanding loan balance exceeds the
home equity value before the loan is settled, the lender starts to incur a loss. This is often referred to
in the literature as the “crossover” risk, and is one of the crucial risk to manage in reverse mortgages.
Clearly, this crossover risk is influenced by three underlying factors: mortality, interest rates, and house
prices. Improvements in mortality will delay the settlement of the reverse mortgage loan and will
therefore increase the chances of hitting the “crossover” mark. A high interest rate will increase the
rate at which the loan balance will accrue, and will therefore possibly hit the “crossover” earlier than
expected. Finally, a depressed real estate market will worsen the value of the home. Of these three
factors, mortality is believed to be the single most important consideration in the pricing and risk
management of reverse mortgages. See Chinloy and Megbolugbe (1994) for further discussion of the
“crossover” risk.

A traditional method for dealing with the risks associated with reverse mortgages is insurance. The
Home Equity Conversion Mortgages (HECM) program in the United States is a clear example of such
a scheme. Lenders under this program are protected, to an extent, against losses arising when the

1Available at <http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/4102.01998?OpenDocument>
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loan balance exceeds the equity value at time of settlement. In this paper, we suggest securitization
as a possible means of managing the longevity risk in reverse mortgages, as mortality securitization is
regarded as a flexible approach to transfer the unwanted mortality risk from the insurers to the capital
market, allowing the risks to be more efficiently distributed.

Securitization is a financial innovation that emerged in the 1970’s in the US financial market.
According to Cummins (2004), securitization “involves the isolation of a pool of assets or rights to a set
of cash flows and the repackaging of the assets or cash flows into securities that are traded in capital
markets”. Reinsurance, which has long been a traditional form of insurance risk transfer, is indeed an
example of trading insurance risks. However, securitization introduced the bundling of insurance risks
into commodities that become available in the larger capital market, allowing therefore investors to tap
into the insurance market and to diversify their investment portfolios. Since its introduction, packaging
financial instruments through securitization has shown its incredibly fast growth and has expanded its
popularity to the insurance industry. An economic justification of securitization of insurance risk is
provided by Cox, Fairchild, and Pedersen (2000). Partly a result of increasing natural catastrophes
such as the devastation caused by the 1992 Hurricane Andrew, insurance risk-based securities such as
catastrophe bonds proved to be popular (Cox and Pedersen (2000)). Later, the idea of securitizing
mortality and/or longevity risks was introduced (see Blake and Burrows (2001) and Blake (2003)).
There was an increased interest to model these types of mortality-based securities and hence, the ideas
of mortality bonds and mortality swaps were proposed in the literature. These proposed concepts
were later effectively put into practice. To illustrate, Swiss Re and European Investment Bank issued
different types of mortality-based securities respectively in 2003 and 2004. While Swiss Re offered a
brevity risk bond to hedge the risk of adverse changes in mortality rates, European Investment Bank
issued a survivor bond to address the improvements in mortality rates. See also Creighton, Piggott,
Jin, and Valdez (2005).

Following a similar approach used by Lin and Cox (2005b), this paper proposes a securitization
method to hedge the longevity risk inherent in reverse mortgage products. Several examples are given,
including two types of survivor bonds and a survivor swap. The survivor bonds are priced and a
sensitivity analysis is applied to each bond to assess the impact of mortality improvement. Our re-
sults demonstrate that securitization can indeed provide an efficient and economical way to hedge the
longevity risk in reverse mortgages.

For the rest of the paper, we have it organized as follows. Section 2 reviews the historical devel-
opment of securitization and discuss the recent developments of mortality securitization. Section 3
examines the history of reverse mortgage loans in the U.S. and discusses the various risks involved in
the product. In the end of the section, a pricing model of reverse mortgage is provided. In section 4,
we develop a model to securitize the longevity risk in reverse mortgages. Several example schemes are
given, including two types of survivor bonds and a survivor swap. In section 5, the survivor bonds are
priced both analytically and numerically and the effect of risk hedging is examined at the end of this
section. The thesis concludes with a summary and discussion of the findings.

2 The securitization of longevity risk

The first securitized financial transactions can be traced back to 1970 in the United States when
the Government National Mortgage Association (“Ginnie Mae”) began to sell guaranteed mortgage
pass-through certificates. See Hill (1996). In the late 1970s, private securitized residential mortgage
transactions began to emerge, in respond to a funding shortfall in the US home mortgage market. At
that time, demand of homeowners and potential homeowners for mortgage loans exceeded the lenders
capital ability to supply, leading the financial markets to find a more efficient way to transfer funds
from investors in the capital markets to the mortgage demanders; Cummins and Lewis (2003).

Since then, the general financial markets have seen securitization grow whip and spur resulting in
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the creation of a number of new securities. Two factors have contributed to the blossoming of the
securitization market over the last twenty years. The first was changes to the tax code. In 1986, new
legislation was introduced in the United States to simplify tax structuring of some complex mortgage-
backed securitization; see Hill (1996). The second factor was the rapid development of technology
and computing power, since the proper pricing of certain securities required complex and extensive
computations (Gorvett (1999)). Since the introduction of mortgage-backed securities in the United
States in the 1970s, the volume of securitized transactions has increased dramatically. By year 2002, the
volume of newly-issued mortgage-backed securities (MBS) and asset-backed securities (ABS) reached
$1.5 trillion and $450 billion, respectively; see Cummins and Lewis (2003). By the second quarter of
2003, a total of $6.6 trillion worth of securities had been issued. Following these explosive developments
in the financial securitization market, insurance-based securitization began to be explored.

Mortality-based securities are a very recent subject in the insurance literature. Cummins (2004)
analyzed various securitization models and discussed the emerging securitization classes in the insurance
industry. He deemed that mortality risk is one of the drivers of demand for insurance securitizations.
In a mortality-based securitization, the insurer is protected against possible adverse mortality (or
longevity) risks arising from issuing life insurance and annuity products. To illustrate for example, the
insurer could issue so-called mortality risk bonds which will provide coverage for losses arising from
unfavorable mortality experience, in the case of life insurance, or unfavorable longevity experience,
in the case of annuity products. Unfavorable experience would be triggered by a linked mortality
experience index. These bonds, which are linked to long duration insurance products, are also usually
of long duration and of high capacity. The first known mortality risk bond is believed to be issued
in December 2003 by Swiss Re; see Cummins (2004). There are other possible forms of securitization
of insurance liabilities many of which are also detailed in Cummins (2004). For securitizing annuity
products, the most notable developments are survivor bonds and survivor swaps.

2.1 Survivor bonds

One may think of survivor bonds as the annuity-analogue of mortality risk bonds issued to securitize the
mortality risk component of life insurance products. In a survivor bond, the future coupon payments
are linked to the proportion of the cohort at issue who remain to be alive. Clearly because we are
hedging the risk that more clients survive than normally expected, we would expect coupon payments
made when there is a larger proportion of the cohort surviving.

Blake and Burrows (2001), together with the discussion of Blake (2003), provide for the early papers
that tackle the issues associated with the topic of mortality-based securities. The concept of survivor
bonds was introduced in the Blake and Burrows (2001) paper. The idea behind the survivor bonds is
to make the coupon payments linked to the actual number of survivors within the same cohort at issue.
Following the same illustration used by Blake and Burrows (2001), the coupon payments to be made 20
years later from issue of survivor bonds linked to a portfolio of annuities issued to 65-year-olds would be
proportional to the number of 85-year-old survivors at that time. Furthermore, the annuity bond with
coupon payments may be tied to a survivor index published periodically by certain authorities. Blake
and Burrows (2001) suggested that survivor bonds have considerable potential as mortality-hedging
instruments for insurance companies.

Lin and Cox (2005b) provide for the details of the actuarial computations involved to price a survivor
bond to securitize the longevity risk component of annuity products. In particular, to determine the
associated risk premium, Lin and Cox (2005b) used the Wang transformation (Wang (1996)) in order
to adjust the estimated survivorship probabilities as follows:

q∗ (x, t) = Φ
[
Φ−1 (q (x, t))− λ

]
, (1)

where Φ (·) denotes the distribution function of a standard Normal, q and q∗ are, respectively, the
unadjusted and adjusted rates of mortality for a given age and a given cohort. The thresholds of the

4



securitization of longevity risks in reverse mortgages

survivorship in each period are projected using Renshaw’s mortality model based on the Generalized
Linear Model (GLM) framework and based on the US mortality experience (1963, 1973, 1983 and 1996
US individual annuity mortality tables). See Renshaw, Haberman, and Hatzopoulos (1996). However
in their model, the investors are exposed to “basis risk” or “cohort risk” which refers to the risk that
the mortality experience of the linked annuity pool could deteriorate significantly more than that of the
mortality tables. On a similar token, the work of Brouhns, Denuit, and Vermunt (2002) on projecting
the future mortality rates using the Lee-Carter model can also be applied.

2.2 Survivor swaps

Dowd, Blake, Cairns, and Dawson (2006) recommend another form of mortality-based security: survivor
swaps. The authors define a survivor swap as “an agreement to exchange cash flows in the future based
on the outcome of at least one survivor index”. The authors also discussed several advantages that
survivor swaps have over survivor bonds, which include cost effectiveness and flexibility.

Survivor swaps were then discussed briefly by Blake (2003) and Dowd (2003), and in more detail
by Dawson (2002) and Lin and Cox (2005b) and Lin and Cox (2005a). In Lin and Cox (2005a), the
authors designed a specific mortality swap scheme between a life insurer and an annuity insurer, which
they called “natural hedging”. The authors show that the mortality swap can avoid basis risk problem
since there is no need to project the future mortality thresholds. Dowd, Blake, Cairns, and Dawson
(2006) gives two recent examples illustrating how mortality-based securities are applied to hedge adverse
mortality risk and longevity risk.

Example 1 Swiss Re brevity risk bond

In December 2003, Swiss Re issued a bond linking principal payment to adverse mortality risk
scenarios. The bond is designed to hedge the brevity risk in its life book of business, i.e. (the dramatic
impact that premature death has on mortality rates) the excessive mortality changes of premature
death. To facilitate this transaction, Swiss Re set up a special purpose vehicle (SPV), which raised
$400 million from investors. This issue was the first floating rate bond which links the return of
principal solely to a “mortality index”. The maturity of the bond is 4 years, and investors receive a
floating coupon rate of US LIBOR plus 135 basis points. This coupon rate is higher than other straight
bonds, however the principal payment is at risk if “the weighted average of general population mortality
across five reference countries (US, UK, France, Italy and Switzerland) exceeds 130% of the 2002 level”.
Since mortality is generally improving over time, the probability of such high mortality are very low.
so investors obtain a high coupon rate in return by tolerating the risk.

Example 2 EIB survivor bond

In November 2004, the European Investment Bank (EIB) issued a longevity bond. This bond
involves “time t coupon payments that are tied to an initial annuity payment of £50 million indexed
to the time t survivor rates of English and Welsh males aged 65 in 2003”. Unlike the Swiss Re brevity
risk bond dealing with the extreme short-term adverse mortality risk, the EIB bond can be used to
hedge against the long-term longevity risk since coupon payments are tied to a survivor index. It was
reported that the total value of the issue was $540 million, and was primarily intended for purchase by
UK pension funds.

3 A quick overview of reverse mortgages

In a nutshell, a reverse mortgage provides the elderly to acquire a loan against the value of their property
allowing them to receive income for immediate consumption. The loan may be received in the form of
either a lump sum, an annuity, a line of credit, or any combination of these. Reverse mortgages differ
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from a conventional loan in several respects. First, there are no repayments of principal or interest,
but the outstanding balance accrues with interest and possibly administrative fees. Repayment of
the outstanding balance is made when the mortgagor dies, or voluntarily leaves the property, and
the repayment comes from the proceeds of the sale of the property. Second, although some reverse
mortgages may have fixed term at which time loan repayment must be made, the more popular ones
contain a tenure guarantee allowing the mortgagor to live in the property until death or voluntary
departure. Third, the loan is considered “non-recourse” which means that the lender cannot recover
principal or interest from other assets of the borrower. Fourth, unlike conventional loans that can
be issued to borrowers of any age, the loan is primarily issued to individuals during their retirement
years providing them a source of retirement income. Fifth, reverse mortgages are underwritten on the
sole basis of the value of the property, oftentimes, the maximum amount of loan is expressed on a
loan-to-value, a ratio that depends on the current value of the property. This is in contrast with a
conventional loan where underwriting accounts beyond the property value, for example, the borrower’s
current income. Other details about reverse mortgages may be found in Szymanoski (1994).

The first reverse mortgage loan can be traced back to the one issued by Nelson Haynes of Deering
Savings & Loan (Portland, Maine) in the United States in 1961. In 1989, after the Federal Housing
Administration (FHA) introduction of the Home Equity Conversion Mortgages (HECM) program,
reverse mortgages covered by public insurance became widely available in the United States. And after
a decade of slow development, the reverse mortgage market started to boom in the twenty-first century
as a result of tight budgets from a record number of older Americans. According to the National Reverse
Mortgages Lenders Association, nearly 40, 000 new HECM loans originated in the years between 2000
to 2003. During 2004, a total number of 37, 829 of HECM loans were approved, representing a 109%
jump over the previous year, and nearly 500% growth since 2001. The growth continued in 2005 with
a total number of 43, 131 HECM reverse mortgages, which increased 14% from the previous year. In
response, there was also an increase in the supply side. The number of RM lenders has tripled to 191.
As HECMs accounts for about 90% of all reverse mortgages in the United States today, the above
statistics well represents the condition of the reverse mortgage market.2

3.1 Merits and risks of reverse mortgages

The most notable merit of a reverse mortgage is clearly that the borrower is not required to repay
the loan until he or she dies or leaves the property. In comparison with traditional asset-backed loans,
reverse mortgage loans provide the elderly with a means of hedging longevity risks by helping to
maintain a sustainable level of retirement income. Furthermore, another favorable feature of a reverse
mortgage is the “non recourse” clause discussed in the early part of this section. When the loan is
terminated, the borrower only needs to repay the loan amount or proceeds from the sale of the house
price: whichever is the lesser sum.

While reverse mortgage loans provide many attractive benefits to the borrower, they also involve
many risks for the perspective of the lender or loan provider. As earlier alluded, one of the most crucial
risk in reverse mortgage loans is usually the “crossover risk”. In the case that the loan value exceeds
the collateral house value, the lender is limited to recover only the proceeds of sale the house when
a reverse mortgage loan is terminated. Any excess is therefore considered a loss to the lender. Since
the interest rate is usually higher than the house price appreciation rate, the loan value will certainly
exceed the house value at some future point. On the other hand, however, if the loan is terminated
before the crossover, any excess of the proceeds from the sale will revert back to the borrower (or his
or her heir), rather than becoming the lender’s gain. This feature of reverse mortgages makes it very
similar to options contracts.

2See US Department of Housing and Urban Development, FHA Outlook: 2003-2006, available at <http://www.hud.

gov/offices/hsg/comp/rpts/ooe/olmenu.cfm>.
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Figure 1: Illustration of the crossover risk

To illustrate these effects on the loss to the lender, a simple example is provided below. In this
scenario, it is assumed that the interest rate is at a flat percentage of 6% annually, and the house
value appreciation rate is at the constant rate of 3% per year. The loan-to-value ratio is assumed to be
50%, allowing a 62-year-old male to borrow a lump sum amount of $200, 000 against his house which is
currently valued at $400, 000. Figure 1 illustrates the crossover risk. If the loan is repaid prior to the
crossover point, there is no loss to the lender. However, if the loan is repaid after this crossover point,
the difference between the balance of the loan and the house value is a loss to the lender if settlement
has to be made at that point.

Assuming the lender finances the capital at an interest rate of 4% per annum, Figure 2 illustrates
the net cash flow to the lender in each year. After the crossover point, the net cash flow in each year
typically becomes negative.

The crossover risk is a combination of three major underlying risks — the occupancy risk, interest
risk and house price risk.

• Occupancy risk and longevity risk The occupancy risk is the risk that the borrower could
live in the house too long so that the loan value accumulates to a point where it exceeds the house
value. The overall repayment rate is a combination of mortality and mobility rate. Although the
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Figure 2: Cash flow analysis for a reverse mortgage lender
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decision to move and repay the loan may be affected by the condition of the real estate market
and the interest rate, the real attractiveness of the reverse mortgage loan is that the product
allows the borrower, who is usually elderly low-income and doesn’t want to move, to stay in their
home until they die. Thus the duration of the loan is mainly determined by the mortality rate.
Due to the dramatic improvement in the mortality rate since the 1970’s, the longevity risk has
become the most crucial risk in reverse mortgage product.

• Interest rate and house price risk Since the loan repayment is capped by the house price, a
high interest rate environment and a depressed real estate market can obviously exacerbate the
cross-over risk. The difference between the two risk is that the interest risk can not be diversified,
while the house price risk can be partially diversified by holding a large portfolio of loans across
areas.

• Other risks In addition to the three major risks, other important risks include maintenance risk
and expenses risk. Maintenance risk is also called “moral hazard”, and arises when the reverse
mortgage borrowers fail to make the necessary repairs to maintain the value of their homes
because they know that the lender bears the risk of the declining home resale value. Discussions
on maintenance risk can be found in Miceli and Sirmans (1994) and Shiller and Weiss (1998).

3.2 Pricing lump sum reverse mortgages

This section starts the discussion of how to price for a lump sum reverse mortgage. We also introduce
the notation to be used throughout the paper. Consider a retired individual who takes out a reverse
mortgage loan for a value of Q0 dollars, against his house currently valued at H0 dollars. If at time t
the loan amount is Qt, the house price is Ht, and the cost of the capital is Mt, then by definition, the
value of the reverse mortgage loan is

Vt = min (Qt,Ht) ,

and the loss to the lender Lt is

Lt = Mt − Vt = Mt −min (Qt,Ht) .

If the loan amount Qt accumulates at a risk free interest rate of rt plus a risk premium λ, the house
price Ht appreciates at a rate of δt and the cost of the capital Mt accumulates at a interest rate of η,
then the loan value process can be described as

Qt = Q0 exp
(∫ t

0
(rs + λ) ds

)
,

the house price process is

Ht = H0 exp
(∫ t

0
δsds

)
,

and the process for the cost of capital is

Mt = Q0 exp
(∫ t

0
ηsds

)
.

Since the value of the loan repayment Vt is the smaller of the house price and the accumulated loan
amount, we have

Vt = min
[
Q0 exp

(∫ t

0
(rs + λ) ds

)
,H0 exp

(∫ t

0
δsds

)]
.
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The loss to the lender Lt then at time t becomes

Lt = Q0 exp
(∫ t

0
ηsds

)
−min

[
Q0 exp

(∫ t

0
(rs + λ) ds

)
,H0 exp

(∫ t

0
δsds

)]
.

Now, suppose the future life span of the reverse mortgage loan is a random variable T (which could
technically be the future remaining lifetime of the borrower), then when the loan is settled, the loss LT

to the lender can be expressed as the random variable

LT = Q0 exp
(∫ T

0
ηsds

)
−min

[
Q0 exp

(∫ T

0
(rs + λ) ds

)
,H0 exp

(∫ T

0
δsds

)]
. (2)

Applying the actuarial equivalence principle, we have the present value of total expected gain to be
equal to the present value of total expected loss so that

E
(
e−rT LT

)
= 0. (3)

Substituting (2) into (3), the pricing equation for the reverse mortgage is therefore as follows:

E
[
Q0 exp

(∫ T

0
ηsds

)]
= E

[
min

[
Q0 exp

(∫ T

0
(rs + λ) ds

)
,H0 exp

(∫ T

0
δsds

)]]
(4)

Using the pricing equation in (4), given a certain level of risk premium λ assessed by the lender, the
maximal safe loan amount Q0 can be determined. On the other hand, given a specific level of initial
loan amount Q0, the actuarially fair risk premium λ that the lender should assess can be determined.

4 Proposed structure of the securitization

Cox, Fairchild, and Pedersen (2000) pointed out that a common structure for asset and liability securi-
tization involves four entities: retail customers, a retail contract issuer, a special purpose company, and
investors. These authors then illustrate the process using the examples of several recent catastrophe
bonds including the USAA hurricane bonds, Winterthur Windstorm Bonds, and Swiss Re California
Earthquake Bonds. In this section, the general structure is applied to a lump sum case of a reverse
mortgage product. Here, the process should involve at least five components:

• Borrower (Homeowner)

• Loan originator (Retailer)

• Special Purpose Company (or Special Purpose Vehicle)

• Lender (Investment bank)

• Investors (Capital markets)

Figure 3 illustrates the general structure of reverse mortgage securitization and all the cash flows
involved in the process.

The transaction starts from the reverse mortgage retailer. This retailer is the front office that makes
contact with the reverse mortgage loan borrower and negotiates the loan. After the retailer initiates
the loan, it collects the lump sum from the reverse mortgages lender and then pays the amount to
the borrower. To protect itself from the risk of not being able to fully recover the accumulated loan
amount, the lender enters into an insurance contract with the Special Purpose Company (SPC). The
insurance contract sets up a schedule of fixed trigger levels such that if the loss amount exceeds the
pre-specified triggers, the SPC will pay the lender a certain amount of benefit up to an upper limit.
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Figure 3: Structure of the reverse mortgage securitization
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In exchange, the SPC collects a premium from the lender up front. The SPC issues a survivor bond
in the market. The bond is then sold at a price lower than the normal market price, because in the
event that the loss of the lender exceeds the trigger, part or all of the coupon could be defaulted to the
bondholders and transferred to the insured — the lender.

Readers should notice that the above model only provides a very basic structure for the securitization
process. In the real world, the process usually involves many other components which could serve various
other purposes. For example, to protect the bond investors from the default risk from the SPC, the
process may involve some form of credit enhancements from institutional rating agencies.

4.1 Cash flow analysis for each component

• For the retailer As an independent servicing institution, the retailer provides service to the
customers, monitors their repayments of the loans, and maintains the integrity of the cash flows
and payment process. In each period after the loan starts, the retailer collects the repaid loan
amount from the borrowers and then transfers the amount to the lenders. From the perspective
of the retailer, the cash inflows from the borrowers are exactly the same as the cash outflows to
the lenders and therefore there is no risk of loss at all.

• For the lender The lender predicts the number of survivors of the loans and the loss amount
in each period by analyzing past mortality improvement, interest rate fluctuation, and the real
estate market conditions before the loans start. In each period after the loans commence, the
lender’s cash inflows are the loan repayments collected from the retailer and the cash outflows
are the accumulated cost of capital. If the net of the two is less than the scheduled triggers, no
insurance benefit is claimed from the SPC. Otherwise, the lender can collect a benefit from the
SPC to cover the loss.

• For the SPC The SPC is a passive entity that only exists to securitize the mortality risk and
sells the security in the capital market. For this purpose, it collects premiums from the lender
and issues a survivor bond. The premium and the capital from selling the bond are assumed to
be invested at a risk-free interest rate. In each period after the loans commence, the SPC’s only
cash inflow is the risk-free investment proceeds. The SPC’s cash outflows are the claims from the
retailer with high priority and the coupons paid to the bond holders. At the end of the term of
the bond, the SPC repays the principal to the investors. The net cash flow should be always zero
for the SPC.

• For the investors The survivor bond investors purchase the survivor bond at a lower price than
a straight bond, but bear the risk of losing some of the future coupons. In each period after the
loans commence, the cash inflows for the bond holders are the random coupon payments from the
SPC. At the end of the term, the investor collects the full principal. To illustrate the securitization
process, several examples of securitization schemes are provided, including two types of mortality
bonds and one mortality swap.

4.2 Example 1 - reverse mortgage survivor bond type 1

In this case, to illustrate the effect of longevity securitization, the interest rate and house appreciation
rate are both assumed to be constant. Suppose the lender holds a portfolio of l0 loans. At time 0, all
the borrowers are of the same age, say aged 62, and each borrow a lump sum of Q0 against their home
property currently valued at H0. To hedge the longevity risk, the lender purchases insurance from the
SPC at a lump sum premium of P . Under the contract, in each period after the crossover, the SPC will
pay the lender a benefit of At

(
lt − l̂t

)
, up to a ceiling amount of C, if the number of survived loans lt

exceeds the predetermined trigger l̂t. In period t the loss amount for each loan i is Li,t, and since the
interest rate and house appreciation rate are constant, Li,t = Lt for all i and all t. The amount At is

12
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Figure 4: Single loss Lt in each period

determined as the one-period discounted difference between the expected loss between time periods t
and t + 1 so that

At =
Lt+1

1 + r
− Lt.

If the risk-free interest rate is r, the house appreciation rate is c, the risk premium the lender charges
is λ1 and the premium that the lender is charged for capital finance is λ2, then

Lt = Q0 (1 + r + λ2)
t −min

[
Q0 (1 + r + λ1)

t ,H0 (1 + c)t] .

For example, if r = 6.5%, c = 3%, λ1 = 3%, λ2 = 1.5%, Q0 = 50, 000 and H0 = 100, 000, then Lt and
At in each period are calculated and graphically displayed in Figures 4 and 5.

In Figure 4, Lt is always increasing with t after the crossover point. This means that after the
crossover, the loss amount increases over time. In Figure 5, At is always positive and increasing with
t after the crossover point. This means the one-period discounted loss Lt+1 is larger than the current
period loss Lt. This finding implies that after the crossover point, the lender is always better off
incurring loss at the current time than incurring loss later on. The actual and expected number of
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Figure 5: Appreciation At of each loss in each period
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terminated loans in each period t are, respectively, denoted as dt and d̂t, and the first period that the
lender claims benefit is j. It is straightforward to show

T∑
t=j

(
lt − l̂t

)
=

T∑
t=j

(
dt − d̂t

)
. (5)

Equation (5) indicates that less loss incurred in the current period means more loss will be incurred
in the future, because the excessive survived loans ultimately will need to be repaid at some time in
the future. When these excessive loans are repaid later, the present value of these losses will be greater
than if they had been incurred in the present time. The difference between any two losses Lj and Lk,
for (j ≤ k, k ≤ T ), in two different periods after the crossover can be expressed as

Lk − Lj =
k∑

t=j

Ats t−j
, (6)

where s
t−j

denotes the actuarial notation for the accumulation of 1 from time t to j at the risk-free
rate r.

Protected by the securitization contract after the crossover, the lender can claim payments from
the SPC to construct a reserve to cover the unexpected future loss in the event that lt > l̂t. The
benefit payments Bt of each period are determined in (7). After collection, the benefits are invested at
a risk-free interest rate r and accumulate until the excessive survived loans are repaid, and so we have

Bt =


0 if lt ≤ l̂t

At

(
lt − l̂t

)
if l̂t < lt < C

At

C if lt > C
At

(7)

Now, let the first period that the lender claims benefit Bt be j, then the reserve Rk the lender
accumulates continually with Bt during the loan process to period k is

Rk =
k∑

t=j

Bts t−j
.

Denote the actual and expected aggregate loss in each period t as Lt and L̂t. By definition, the actual
aggregate loss is

L̂t = d̂tLt,

and the expected aggregate loss is

Lt = dtLt.

In the case of Lt > L̂t, the lender will have an unexpected loss of

Lt − L̂t =
(
dt − d̂t

)
Lt.

This unexpected loss during the period from j to k could be partly or fully covered by the reserve Rk.
Notice that

Rk =
k∑

t=j

Bts t−j
≤

k∑
t=j

(
Lt − L̂t

)
, (8)
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which means the accumulated unexpected loss is the upper limit of the reserve Rk. This avoids the
problem of being over-insured. The accumulated unexpected loss is fully covered only if

Rk =
k∑

t=j

(
Lt − L̂t

)
,

or

Rk =
k∑

t=j

Ats t−j
,

in which case all the benefits collected from the insurer are less than the ceiling C.

The SPC issues a bond with a face value of F and survivorship-contingent coupon payments of Ct

at a price of V ≤ F . The coupon payments are deducted whenever l̂t < lt and the net coupon payments
that the bondholders receive in each period are

Ct =


C if lt ≤ l̂t

C −At

(
lt − l̂t

)
if l̂t < lt < C

At

0 if lt > C
At

. (9)

In each period, the SPC needs to pay the coupon Ct, and in the final period, the SPC needs to pay
back the principal as well. To cover the cash outflow, the SPC invests the premium P and the survivor
bond price V in a straight risk-free bond with a face value F sold at a price of W . If v = 1

1+r is the
one period discount factor, as long as

P + V ≥ W = FvT +
T∑

t=1

vtC,

the SPC can collect the amount C in each period and will be able to fulfill both his insurance and bond
contract. To avoid any arbitrage, we should have P + V = W.

4.3 Example 2 - reverse mortgage survivor bond type 2

In this case, the interest rate and house appreciation rate are no longer assumed to be deterministic,
but stochastic. Suppose the lender holds the same portfolio of l0 loans as in survivor bond type 1. At
time 0, all the borrowers are aged 62 and each borrow a lump sum of Q0 against a property currently
valued at H0. If the mortality bond type 1 is applied, there is a chance that the lender is over-insured,
that is that the reserve Rk may sometimes exceed what the lender actually needs:

Rk >
k∑

t=j

(
Lt − L̂t

)
,

where Lt and L̂t stand for the aggregate actual loss and the preset trigger amount. This is because Lt

may not be necessarily increasing all the time, and thus At may not be positive all the time. To avoid
this problem, the lender can purchase another type of insurance contract from the SPC at a lump sum
premium of P . Under this insurance contract, in each period after the crossover, the SPC will cover
the lender’s aggregate loss up to a ceiling amount C if the actual total amount of loss Lt exceeds the
trigger amount L̂t, for example 95% percentile of the distribution of Lt. Under this arrangement, the
benefit paid to the lender in period t is

Bt =


0 if Lt ≤ L̂t

Lt − L̂t if L̂t < Lt ≤ C
C if Lt > C

. (10)
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The lender’s net loss after the benefit in period t is

Lt −Bt =


Lt − 0 if Lt ≤ L̂t

Lt −
(
Lt − L̂t

)
if L̂t < Lt ≤ C

Lt − C if Lt > C

or equivalently, we have

Lt −Bt =


Lt if Lt ≤ L̂t

L̂t if L̂t < Lt ≤ C
Lt − C if Lt > C

. (11)

Similar to the above case, the survivor bond has a face value of F and random coupon payments
of Ct sold at a price of V ≤ F . However, in this case, the coupon payments are linked to the lender’s
aggregate loss, not the number of survived loans. The coupons for the bondholders in period t are

Ct =


C if Lt ≤ L̂t

C −
(
Lt − L̂t

)
if L̂t < Lt ≤ C

0 if Lt > C

. (12)

As in type 1, the SPC invests the premium P and the survivor bond price V in a straight risk-free
bond with a face value of F sold at a price of W . If v is the one period discount factor, as long as

P + V ≥ W = FvT +
T∑

t=1

vtC,

the SPC can collect amount C in each period and fulfill both his insurance and bond contract. For the
securitization to be actuarially fair, we should have P + V = W.

4.4 Example 3 - reverse mortgage survivor swap

Another possible securitization structure is a reverse mortgage swap. In a survivor swap transaction,
there is no principal payment at time T . At one side, the SPC pays the same cash flows Bt to the
insurer, t = 1, 2, ..., T . In exchange for the floating benefit Bt, the lender pays a fixed annual premium
x to the SPC instead of paying a lump sum premium P . Eventually, we have

P = xa
T

.

On the other side, the SPC pays Ct to the bondholders. The investors pay the SPC a fixed amount y
each year in order to receive the same coupons Ct, instead of paying V for the survivor bond. So we
have

ya
T

=
T∑

t=1

vtE (Ct) .

As in the reverse mortgage bond example, the SPC has cash flows of Bt to the lender and Ct to the
investors. Assuming there is no counter-party risk, in each year the SPC gets x + y, exactly enough
to finance its obligation Bt + Ct. One advantage of swaps over issuing mortality bonds is the lower
transaction costs, but the trade-off is that swaps could introduce default risk. As part of the solution,
the swap might be provided by a broker or investment banker to reduce the default risk.
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5 Pricing a reverse mortgage survivor bond

Basically to price a bond is just to discount all the expected future cash flows at the appropriate
discount rate. The general bond pricing equation is

V = FvT +
T∑

k=1

vkE (Ct) (13)

where the notation follows the examples in the previous section. The two types of survivor bonds are
priced below.

5.1 Case 1 - survivor bond type 1

In this case, we assume that the interest rate and house appreciation rate are constant. The only
difference between survivor bond type 1 and a straight bond is that the former’s coupon payments are
linked to the survivorship of the loans and is thus uncertain. Suppose a series of l̂t are determined as
the triggers, for a portfolio of l0 loans borrowed by persons aged x with the identical house value H0,
the bondholders will receive coupons in each period t

Ct =


C if lt ≤ l̂t

C −At

(
lt − l̂t

)
if l̂t < lt < C

At

0 if lt > C
At

.

This is equivalent to

Ct = C −
[
At

(
lt − l̂t

)
, 0

]
+

+
[
At

(
lt − l̂t

)
− C, 0

]
+

.

Taking the expectation on both sides,

E (Ct) = C − E
[
At

(
lt − l̂t

)
, 0

]
+

+ E
[
At

(
lt − l̂t

)
− C, 0

]
+

. (14)

The pricing equation of the survivor bond type 1 can be obtained by substituting equation (14) into
(13):

V = FvT +
T∑

k=1

vk

{
C − E

[
At

(
lt − l̂t

)
, 0

]
+

+ E
[
At

(
lt − l̂t

)
− C, 0

]
+

}
. (15)

The number of survived loans lt follows a Binomial distribution at the same termination rate q∗x+t. If
the loan number is large, for example more than 30, according to the Central Limit Theorem (CLT), lt is
approximately distributed as Normal with mean µt = lt

(
1− q∗x+t

)
and variance σ2

t = lt
(
1− q∗x+t

)
q∗x+t.

In equation (14), we can rewrite the expectations term as

E
[
At

(
lt − l̂t

)
, 0

]
+

= AtE
[
(lt − µt)−

(
l̂t − µt

)
, 0

]
+

= AtσtE

(lt − µt)
σt

−

(
l̂t − µt

)
σt

, 0


+

.

Let E (X − k)+ = Ψ(k), kt = (blt−µt)
σt

, we have

E
[
At

(
lt − l̂t

)
, 0

]
+

= AtσtΨ(kt) .
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Similarly,

E
[
At

(
lt − l̂t

)
− C, 0

]
+

= AtσtΨ
(

kt +
C

σt

)
.

Thus succinctly, equation (14) can be rewritten as

E (Ct) = C −AtσtΨ(kt) + AtσtΨ
(

kt +
C

σt

)
. (16)

Substituting equation (16) in (13), we have the approximated pricing equation of the reverse mortgage
survivor bond type 1,

V = FvT +
T∑

k=1

vk

[
C −AtσtΨ(kt) + AtσtΨ

(
kt +

C

σt

)]
. (17)

From equation (17), the survivor bond price can be easily calculated. It can be shown that

Ψ (k) = E [(X − k) , 0]+ = φ (k)− k [1− Φ (k)] , (18)

where φ (·) and Φ (·) are,respectively, the pdf and cdf of a standard Normal random variable.

Following up on the previous example, let the annual interest rate r be 6.5%, annual house price
appreciation c be 3%, the risk premium the lender charges λ1 and is charged λ2 be 3% and 1.5%,
respectively, the initial loan amount Q0 be $50, 000 and the house price H0 be $100, 000,. Then, the Lt

and At in each period are calculated in Tables (1) and (2).

Table 1: Single loss in each period

Period Loss Lt Period Loss Lt Period Loss Lt

1 −588.33 14 −3590.22 27 16738.21
2 −691.29 15 −4059.30 28 18400.75
3 −807.79 16 2500.51 29 20206.01
4 −939.43 17 5935.67 30 22165.68
5 −1087.97 18 6651.23 31 24292.41
6 −1255.36 19 7431.25 32 26599.90
7 −1443.77 20 8281.12 33 29102.90
8 −1655.62 21 9206.63 34 31817.40
9 −1893.57 22 10214.08 32 34760.64
10 −2160.57 23 11310.25 36 37951.27
11 −2459.91 24 12502.48 37 41409.46
12 −2795.21 25 13798.72 38 45156.95
13 −3170.50 26 15207.54

5.1.1 Projecting the mortality rate

The repayment rate of the contract is the sum of the mortality rate qx+t and the mobility rate mx+t.
Following the illustrative example set by DiVenti and Herzog (1991), the mobility rate is assumed to
be 30% of the mortality rate. If the overall repayment rate is denoted as q∗x+t, we have

q∗x+t = qx+t + mx+t

q∗x+t = qx+t(1 + 30%)
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Table 2: Appreciation of each loss in each period

Period Appreciation At Period Appreciation At Period Appreciation At

1 −552.42 14 −2092.50 27 11173.30
2 −613.19 15 −2313.83 28 11712.80
3 −680.39 16 4093.37 29 12284.82
4 −754.69 17 7166.25 30 12891.65
5 −836.83 18 7475.87 31 13535.76
6 −927.60 19 7802.34 32 14219.77
7 −1027.90 20 8146.79 33 14946.54
8 −1138.70 21 8510.39 34 15719.13
9 −1261.07 22 8894.45 32 16540.83
10 −1396.21 23 9300.32 36 17415.19
11 −1545.42 24 9729.49 37 18346.04
12 −1710.12 25 10183.56 38 19337.48
13 −1891.91 26 10664.21

To capture the time trend of the mortality, we need to treat mortality rate as a function of both
age x and time t. Charupat and Milevsky (2002) attached a time-dependent random shock to the
widely used Gompertz mortality model in actuarial literature (Frees, Carriere, and Valdez (1996)) and
applied the model to determine optimal annuitization policies. Lee and Carter (1992) introduced a
regression model for central mortality rates m(t, x) which involves age-dependent and time-dependent
terms. Renshaw, Haberman, and Hatzopoulos (1996) also suggested a Generalized Linear Model (GLM)
for the force of mortality similar to the Lee and Carter’s approach. Cairns, Blake, and Dowd (2004)
provided an excellent review of the various mortality rate models and a theoretical framework to pricing
mortality derivatives.

In this section, we use the Generalized Linear Model (GLM) suggested by Renshaw, Haberman,
and Hatzopoulos (1996) to project the future mortality rates. According to the Renshaw model, the
force of mortality µx,t is a log-linear function of age x and time t. Based on the Australian life table
for 1881-2002, the model is calibrated as:

µx,t = exp

β0 +
3∑

j=1

βjLj (x) +
2∑

i=1

αit
i +

2∑
i=1

3∑
j=1

γi,jLj (x) ti

 .

where Lj (x) is the Legendre polynomial. In S-plus, a GLM regression model is fitted using the mortality
rates from the Australian Life Table for 1881-2002. The regression results are listed in Table 3.

Future improvements in the force of mortality are calculated on a 5-year interval basis, as the
mortality tables are mostly published every 5 years. In each 5-year interval, the mortality improvement
is assumed to be linear. The projected improvements in the force of mortality are listed in Table 4.

With the above improvement factors, the corresponding trigger l̂t for each period can be easily
obtained. The trigger values are calculated with formula (19).

l̂t =



l0 (tpx) e0.0014t for 0 < t ≤ 5
l0 (tpx) e0.007+0.00109(t−5) for 5 < t ≤ 10
l0 (tpx) e0.0125+0.0008(t−10) for 10 < t ≤ 15
l0 (tpx) e0.0164−0.00125(t−15) for 15 < t ≤ 20
l0 (tpx) e0.0102+0.00056(t−20) for 20 < t ≤ 25
l0 (tpx) e0.0130+0.01147(t−25) for 25 < t ≤ 30
l0 (tpx) e0.0703+0.026(t−30) for 30 < t ≤ 35
l0 (tpx) e0.2004+0.0189(t−35) for 35 < t ≤ 40

. (19)
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Table 3: Fitted parameters in the GLM model

Parameters Value Standard Error t value

β0 −2.08911420 0.2313983 −9.02821598
β1 1.62026486 0.4471106 3.62385658
β2 −0.06886849 0.5358593 −0.12851972
β3 −0.01089401 0.4734314 −0.02301074
α1 −0.31284970 0.2433404 −1.28564656
α2 −0.31091752 0.4554777 −0.68261856
γ1,1 0.09956416 0.4690509 0.21226730
γ1,2 −0.05981924 0.5609072 −0.10664731
γ1,3 −0.06188307 0.5008452 −0.12355728
γ2,1 −0.02977038 0.8790215 −0.03386763
γ2,2 −0.04404868 1.0510683 −0.04190849
γ2,3 −0.08197422 0.9356919 −0.08760813

Residual Deviance 0.4061248

Table 4: Projected improvement of the force of mortality

Age range GLM µ̂x,t Current table µ̂x,t Projected Improvement
(2000-02) improvement rate

62− 66 0.0096 0.016603 0.007013 0.00140
67− 71 0.0152 0.027621 0.012461 0.00109
72− 76 0.0304 0.046858 0.016447 0.00080
77− 81 0.0656 0.075844 0.010215 −0.00125
82− 86 0.1171 0.130129 0.012998 0.00056
87− 91 0.1189 0.189262 0.070341 0.01147
92− 96 0.0417 0.242077 0.200356 0.02600
97− 101 0.0027 0.297514 0.294837 0.01890

The results are listed in Table 5. The survivor bond price is calculated with a 1000-run simulation.
The details of the calculation of the mortality bond price are listed in Table 6.

Table 5: Projected trigger values in each period

Period Trigger l̂t Period Trigger l̂t Period Trigger l̂t

1 986 14 677 27 152
2 973 15 639 28 124
3 958 16 599 29 99
4 942 17 557 30 79
5 924 18 514 31 61
6 904 19 470 32 48
7 883 20 427 33 37
8 859 21 384 34 28
9 834 22 342 32 21
10 807 23 300 36 15
11 778 24 259 37 11
12 746 25 220 38 8
13 712 26 183

The results show prices for mortality bonds for a group of 1,000 loans with loan amount of $50, 000
per person and the trigger levels calculated in Table 5. The annual aggregate cash flow out of the SPC
is $6, 500, 000 and the coupon rate for both the straight bond and the survivor bond is 6.5%. The price
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Table 6: Calculation of the mortality bond price (Type 1)

Number of loans 1000
Initial house value $100, 000
Lump sum borrowed $50, 000
Face value of straight bond $100, 000, 000
Face value of survivor bond $100, 000, 000
Coupon rate for both bonds 6.5% p.a.
Annual aggregate cash flow out of SPC $6, 500, 000

Straight bond price $100, 000, 000
Survivor bond price $99, 902, 898
Premium paid to SPC $97, 102

of the survivor bond is $999.02 per $1, 000 of face value. The total premium is actually quite small
relative to the total amount of loans: only 97, 102/ (1000× 50, 000) which equals 0.2%. For as long as
38 years of protection, this price may be considered inexpensive.

5.1.2 Sensitivity testing

To examine how sensitive the value of a survivor bond is to the mortality change, a random shock is
attached to the projected force of mortality µ̂x,t. Suppose the distribution of mortality shocks εt at time
t is a Beta distribution with parameters a and b. The mortality improvement shock εt is expressed as a
percentage of the force of mortality µ̂x,t, so it ranges from 0 to 1, that is, 0 < εt < 1 with probability 1.

Without the shock, the projected survival probability p̂x,t = e(−bµx,t). With the shock, the new survival
probability can be expressed as:

p̂′x,t = exp
(
−µ̂x,t

)1−εt = (p̂x,t)
1−εt .

It is clear that the following holds

p̂′x,t ≤ (p̂x,t)
1−εt .

After 10, 000 simulation trials, the impact of various mortality shocks is summarized in Table 7.
The table lists how many survivors will remain in the portfolio after 20 years, and how much of the
total value of the coupons and principal the investors will lose after the shocks. For example, when
a = 1.38, b = 26.30, E[εt] = 0.05, on average the investors will lose only 0.11% of the total value of the
coupons and principal. The maximal loss is 0.13%.

The results show that the impact of mortality shocks is very limited in terms of the entire investment.
Even in a scenario of a 50% mortality surprise, the investors lose 99, 902, 898−99, 663, 909 which equals
$238, 989 on average, which is less than 3.7% of the total value of expected coupons and 1% of the
total value of expected coupons and principal. Therefore, this shows that there is very little chance of
investors losing large amounts of coupons.

5.2 Case 2 - survivor bond type 2

In this case, the future coupon payments of the survivor bond are a function of the lender’s aggregate
loss amount in each period, which is affected by both the number of survivors and the single loss amount
of each repaid loan. In this example, the values of trigger L̂t are set to be the 95% percentile of the
aggregate loss distribution in each period. To take account of the randomness of mortality improvement,
a 1% shock εt is attached to the projected force of mortality µ̂x,t. Following the example in the last
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Table 7: Results of sensitivity testing (Type 1)

Shock εt Statistic l20 PV of coupons Percentage
and principal change

1% Min 429 99, 790, 111 −0.11%
5% percentile 430 99, 793, 980 −0.11%
95% percentile 432 99, 795, 946 −0.11%
Max 435 99, 796, 337 −0.11%
Mean 431 99, 795, 199 −0.11%
Stdev 1 635

5% Min 435 99, 768, 435 −0.13%
5% percentile 440 99, 785, 248 −0.12%
95% percentile 453 99, 795, 809 −0.11%
Max 465 99, 797, 493 −0.11%
Mean 446 99, 791, 922 −0.11%
Stdev 4 3, 369

10% Min 444 99, 744, 368 −0.16%
5% percentile 453 99, 773, 260 −0.13%
95% percentile 481 99, 798, 092 −0.11%
Max 504 99, 786, 999 −0.10%
Mean 465 99, 786, 940 −0.12%
Stdev 8 6, 946

25% Min 465 99, 663, 820 −0.24%
5% percentile 491 99, 714, 999 −0.19%
95% percentile 569 99, 783, 484 −0.12%
Max 641 99, 793, 361 −0.11%
Mean 528 99, 758, 254 −0.14%
Stdev 24 21, 573

50% Min 411 99, 482, 588 −0.42%
5% percentile 483 99, 557, 089 −0.35%
95% percentile 699 99, 751, 549 −0.15%
Max 825 99, 774, 291 −0.13%
Mean 584 99, 663, 909 −0.24%
Stdev 65 69, 833

section of a portfolio of l0 loans borrowed by persons aged x with the identical house value H0, in each
period t, the bondholder will receive coupon

Ct =


C if Lt ≤ L̂t

C −
(
Lt − L̂t

)
if L̂t < Lt ≤ C

0 if Lt > C

.

This is equivalent to

Ct = C −
[(

Lt − L̂t

)
, 0

]
+

+
[(

Lt − L̂t

)
− C, 0

]
+

.

Taking the expectation on both sides,

E (Ct) = C − E
[(

Lt − L̂t

)
, 0

]
+

+ E
[(

Lt − L̂t

)
− C, 0

]
+

. (20)

Substituting Equation (20) into (13), the pricing equation of the survivor bond type 2 is

V = FvT +
T∑

k=1

vk

{
C − E

[(
Lt − L̂t

)
, 0

]
+

+ E
[(

Lt − L̂t

)
− C, 0

]
+

}
(21)
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Since it is impossible to implicitly express the distribution of Lt, numerical simulation techniques have
to be used to price the bond. To illustrate, a numerical example follows.

5.2.1 A numerical example

Projecting interest rates and house prices Interest rate modeling is extensively covered in the
finance and economics literature. In this example, the well-known one-factor stochastic Vasicek model
is adopted to project the interest rate. The key feature of Vasicek interest model is mean reversion
(Vasicek (1977)). Also in the Vasicek model, interest rate may actually become negative. The Vasicek
model describes the short rate’s Q dynamics by the following stochastic differential equation (SDE):

drt = α (β − rt−1) dt + σrdZt, (22)

where Zt is a standard Brownian motion. A discrete approximation can be expressed as

rt − rt−∆t = α (β − rt−∆t) ∆t + σrεr,t,

where εr,t =
(
Zr,t − Zr,t−∆t

)
, is Normally distributed with mean 0 and variance ∆t. After fitting the

model, the future interest rate can be projected as

rtk = ∆tα̂β̂ + (1−∆tα̂) rtk−∆t + σ̂rεr,t,

where α̂, β̂, and σ̂r are fitted parameters.

For the house price model, to distinguish between the diversifiable idiosyncratic price risk and
the non-diversifiable systematic price risk, a specific and a general house price appreciation rate are
introduced. The basic structure of the house price model is a geometric Brownian motion:

d ln (Ht) = µHdt + σHdZH .

where µH is the drift and σH is the volatility parameter. Using Ito’s lemma, this SDE can be solved as

Ht = Ht−1 exp (µH + σHZH) ,

where ZH ∼ N (0, 1) . A discrete time approximation is

Ht = Ht−∆t exp
(
µH∆t + σHεH,t

√
∆t

)
,

where εH,t are iid (identically and independently distributed) standard Normal variable N (0, 1) . With
the projected house price, the general house appreciation rate ct is calculated to represent the systematic
part of the price risk:

ct =
Ht

Ht−1
− 1.

As previously discussed in section 3, the idiosyncratic part of the house price is greatly affected by the
borrower’s maintenance behavior and regional economic fluctuation. To capture this characteristic, a
random shock is attached to the general appreciation rate to determine the specific house appreciation
rate cs

t for each house:

cs
t = ct + σsZs,

where Zs ∼ N (0, 1) . It is obvious that cs
t is a normal variable with a mean of general house appreciation

rate ct and a variance σ2
s. Finally each house has its own price process expressed as

Ht = Ht−1 (1 + cs
t ) .

24



securitization of longevity risks in reverse mortgages

Table 8: Fitted parameters for the Vasicek model

Parameters Values

Mean 4.16%
α 0.5757
β 4.8825
σr 4.7891

Calibration of the models In calibrating the Vasicek interest rate model, we use the Australian 10-
year government bond yields for the period 1980-2005. Using Ordinary Least Squares (OLS) estimation,
the sum of the squares of the difference between the real interest rate and the modeled interest rate is
minimized and the fitted results are listed in Table 8.

The house price model is calibrated using the quarterly median house prices from eight capital cities
in Australia. Similarly using OLS estimation, the parameters for the house price model were calculated
and the results are displayed in Table 9.

Table 9: Fitted parameters for the house price model

Parameters Values

µH 0.034
σH 0.1003
σs 0.08

The risk premiums The premium for mortality risk can be calculated based on the annuity price
data and the mortality table covering the same period. Using Wang transformation (Wang (1996), the
transformed distribution of the future lifetime F ∗ (t) for aged x can be expressed as

F ∗ (t) = gλ [F (t)] = Φ
[
Φ−1 (tqx)− λ

]
, (23)

where λ is the risk premium. Given the table of mortality rates tqx (the original distribution) and annu-
ity prices, F ∗ (t) (the transformed distribution) can be solved, employing Equation (23), numerically to
lead us to the risk premium or market price of mortality risk. However, in the absence of actual annuity
price data, we simply assumed the risk premium for mortality risk is 2% in the following simulations.

Notice that the total premium for all the risks may not be equal to the sum of the premium for
each different risk. Besides, the risk premiums may change over time. For simplicity, we assumed that
the total risk premium for the lender is 7% to lend the money and 3.75% to finance the capital. The
trigger values L̂t in each year are calculated as the average of 1, 000 simulation trials. The results are
listed in Table 10.

The price of the survivor bond is calculated in Table 11. The results show the prices for mortality
bonds for a group of 1, 000 loans with loan amount of $50, 000 per person and the trigger levels calculated
above. The annual aggregate cash outflow of the SPC is $6, 500, 000 and the coupon rate for both the
straight bond and the survivor bond is 6.5% . The price of the survivor bond is $985.04 per $1, 000 of
face value. As we can see, the premium here is much larger than that of survivor bond type one, since
much greater risks are involved in this case. But the total premium is still very small relative to the
total amount of loans: 1, 495, 125/ (1000× 50, 000) which equals 2.99%.

5.2.2 Sensitivity testing

To examine the impact of mortality improvement in some extreme scenario, the value of the shock
parameter εt is increased. The results of sensitivity testing are summarized in Table 12.
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Table 10: The projected triggers with simulation

Period Trigger L̂t Period Trigger L̂t Period Trigger L̂t

1 0 14 2, 281, 434 27 17, 132, 581
2 0 15 2, 907, 624 28 17, 435, 844
3 0 16 3, 681, 598 29 17, 452, 028
4 0 17 4, 446, 271 30 17, 168, 945
5 0 18 5, 419, 246 31 15, 990, 877
6 0 19 6, 587, 557 32 15, 343, 864
7 0 20 7, 955, 241 33 13, 715, 978
8 116, 142 21 9, 333, 113 34 11, 531, 379
9 278, 462 22 11, 068, 592 32 10, 051, 137
10 446, 561 23 12, 229, 021 36 8, 538, 117
11 837, 594 24 13, 476, 656 37 6, 651, 498
12 1, 182, 790 25 15, 116, 196 38 4, 828, 433
13 1, 641, 429 26 16, 262, 309

Table 11: Calculation of the survivor bond type 2 price

Number of loans 1000
Initial house value $100, 000
Lump sum borrowed $50, 000
Face value of straight bond $100, 000, 000
Face value of survivor bond $100, 000, 000
Coupon rate for both bonds 6.5% p.a.
Annual aggregate cash flow out of SPC $6, 500, 000

Straight bond price $100, 000, 000
Survivor bond price $98, 504, 875
Premium paid to SPC $1, 495, 125

The results show that the impact of mortality shock is (again) very limited in terms of the whole
investment. Because in this case other risk variables are not controlled, it is difficult to tell exactly how
much the value changes can be attributed to simply the mortality improvement. However, the results
show no matter how severe the mortality shock is, the present value of the survivor bond does not change
much, which illustrates that the present value is not extremely sensitive to mortality improvements.

6 Concluding remarks and discussion

The reverse mortgage is a promising financial product with many possible economic benefits to both
the consumers and the suppliers. The market for reverse mortgages, as indicated in the recent past,
has matured and again, triggered by continued longevity, the product is increasingly popular in recent
years among retirees. However, due to the various risks involved in reverse mortgages, especially the
longevity risk component, the development of the product has to some extent been stunted. In this
paper, we suggest using securitization to deal with the risks to the lender, particularly the longevity
risk component.

After a brief introduction of securitization and reverse mortgage product, we discussed and proposed
a securitization model similarly used by Lin and Cox (2005b) to handle the longevity risk component in a
reverse mortgage. In our first example of survivor bond type 1, the interest rate and house appreciation
rate are assumed to be constant to emphasize the effect of longevity securitization. We find that through
the securitization transaction, the lender can achieve a long time protection with relatively inexpensive
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Table 12: Results of sensitivity testing (survivor bond type 2)

Shock εt Statistic PV of coupons Percentage
and principal change

5% Min 59, 169, 754 −39.93%
5% percentile 88, 218, 673 −10.44%
95% percentile 100, 000, 000 1.52%
Max 100, 000, 000 1.52%
Mean 98, 250, 787 −0.26%
Stdev 5, 346, 482

10% Min 59, 927, 863 −39.16%
5% percentile 86, 700, 844 −11.98%
95% percentile 100, 000, 000 1.52%
Max 100, 000, 000 1.52%
Mean 98, 196, 112 −0.31%
Stdev 1, 803, 888

25% Min 61, 486, 654 −37.58%
5% percentile 86, 745, 006 −11.94%
95% percentile 100, 000, 000 1.52%
Max 100, 000, 000 1.52%
Mean 98, 070, 043 −0.44%
Stdev 5, 708, 053

50% Min 61, 880, 827 −37.18%
5% percentile 87, 868, 901 −10.80%
95% percentile 100, 000, 000 1.52%
Max 100, 000, 000 1.52%
Mean 98, 267, 554 −0.24%
Stdev 1, 732, 446

premium. The sensitivity analysis also reveals that even a dramatic 50% mortality improvement shock
will only result in the investors losing less than 3.7% of the total value of expected coupons. Therefore
there is small likelihood that investors can lose large amounts of coupons.

The similar results occur in survivor bond type 2, in which the randomness of interest rates and
house prices are taken into account. Because additional risks are involved, the insurance premiums
become more expensive than the case of the survivor bond of type 1. However, compared to the total
loan amount of the reverse mortgage portfolio, it still only amounts to an extra 2.99%. The investor
can still expect little loss of the total expected coupons even when mortality is significantly improved.

Our results indicate that the mortality securitization is a good method to control the longevity risk
in reverse mortgages. Given the many benefits of mortality securitization, we believe that it can help
further the future development of reverse mortgage products in the capital market.

The results and the methodology employed in this paper are not without limitations. For simplicity,
the correlation between the interest rates and the house prices are ignored, although our initial empir-
ical investigation indicated possible significant linear correlation between the two variables. Mortality
pattern used was that of the general population which may be different from that of buyers of reverse
mortgages. Furthermore, in this paper, only survivor bonds are priced. Some researchers believe that
survivor swap provides for certain advantages over survivor bonds and can be applied between the
reverse mortgage lender and the life insurer. It would be interesting to see how a survivor swap is
priced in reverse mortgages. Dawson (2002), Dowd, Blake, Cairns, and Dawson (2006), and Lin and
Cox (2005b) are useful references on this topic. Finally, a copula approach could also be applied to
model the correlation between the interest rate and the house price. This would allow the researcher to
investigate the effects of the correlation on the pricing and the risk management of reverse mortgages.
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