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Abstract 
In this paper we develop a model of an insurer incorporating frictional costs of capital 
and assess and illustrate an optimal capital management strategy. Frictional costs of 
capital are the additional taxation on profits of shareholders from an insurer’s business 
over and above those from direct equity investment in financial assets, transaction 
costs in raising equity capital, moral hazard and adverse selection costs from 
underwriting insurance risks, agency costs such as management perquisites, as well as 
the costs of financial distress and insolvency including legal costs and loss of new 
business opportunities. These costs are deadweight losses to equity investors in an 
insurer and need to be minimised in order to maximise shareholder returns. Frictional 
costs of capital do not include the expected return to shareholders, normally regarded 
as the nominal cost of capital. Fair pricing taking into account risk and optimal capital 
provides a fair expected rate of return to shareholders. A trade-off exists between the 
frictional costs of the solvent insurer and the contingent financial distress costs of the 
insolvent insurer. Higher levels of capital will lower expected financial distress costs 
but increase other frictional costs such as additional taxation, agency, moral hazard 
and adverse selection costs. By minimising total expected frictional costs, the model 
determines the optimal trade-off and the optimal level of insurer capital. The model 
includes adjustment costs of raising and shedding capital. The paper has implications 
for the long run sustainability of insurers. The efficient management of the frictional 
costs of capital should be a focus of the risk management strategy of an insurer and is 
essential for the long run survival of an insurer. 

                                                 
1 Support from APRA and the financial support of Australian Research Council Discovery 
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Australia is gratefully acknowledged. 
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Introduction 

The capital management strategy of an insurer is critical to the long run financial 
sustainability of its business. In competitive markets for insurance premiums and 
investment returns, capital expects to earn a fair rate of return but the amount of 
capital held determines the level of solvency of the insurer. The amount of capital 
held has economic consequences because of frictional costs.  
 
Holding capital in an insurer is costly because of additional taxation costs associated 
with profits to shareholders of an insurance company, transaction costs arising from 
equity financing, and agency costs arising from the informational asymmetries which 
exist between the shareholders and management of an insurance company. On the 
other hand, financial distress costs, another type of frictional cost, are reduced by an 
insurer holding higher amounts of equity capital. Financial distress costs include 
administration costs arising in the event of liquidation and loss of new business 
opportunities from the diversion of management resources from managing the 
business. Frictional costs are deadweight losses for an insurer’s shareholders and in 
order to maximise shareholders’ expected returns, risk management and capital 
management strategies should ensure they are a minimum. 
 
We consider a model proposed in the banking literature in Estrella (2004) and develop 
a similar model of an insurer with frictional costs in order to derive an optimal capital 
management strategy. The objective is to minimise the expected value of the frictional 
costs by determining the level of capital the insurer should raise or shed. The model 
produces a trade-off between the frictional costs of capital and the costs of financial 
distress. Higher levels of capital will lower expected financial distress costs and 
increase the frictional costs of capital associated with equity financing. 
 
The optimal capital management strategy is considered in both a single period and a 
multi-period model. In the single period model, the amount of capital an insurer 
should hold to minimise the frictional costs of capital and financial distress is 
determined by a Value at Risk (VaR) criterion based on the frictional costs. The 
model can be used to quantify the financial cost of regulatory capital requirements 
where the probability-of-ruin solvency measure for regulatory capital differs from the 
optimal level of capital.  
 
The multi-period model incorporates a further cost of capital associated with external 
flows of capital, referred to as adjustment costs. These costs arise from the direct 
raising and shedding of external capital as opposed to the frictional costs of holding 
capital. The multi-period model incorporating adjustment costs demonstrates how the 
long run capital objective of the insurer is determined by the relative size of the 
frictional and adjustment costs and the current value of future insurer operating 
results. 
 
The significance of capital and financial distress costs, as well as capital management 
strategies in both the banking and insurance industry is discussed. The single period 
model for an insurer is then developed and results discussed. The multi-period model 
is developed and analysed. The optimal capital management strategies are derived for 
the single period model and the infinite horizon model. Numerical results for the 
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optimal capital strategy using a range of reasonable values for frictional costs in both 
models are used to illustrate the models. 
 
Although the model is not new, the application to an insurer and the demonstration of 
the implications of the model for capital management of an insurer is interesting. 
 
Frictional Costs of Capital 

Capital is the lifeblood of a financial intermediary such as an insurer or bank. Without 
sufficient capital these intermediaries are not able to operate. Optimal capital structure 
is a cornerstone of modern financial theory. The financial services industry places 
great emphasis on capital due to the integral part that banks, insurers and other 
financial institutions play in the stability of an economy. In most economies, the 
financial sector is heavily regulated either through the imposition of risk management 
processes or capital requirements to ensure a low probability of insolvency. These 
requirements have increased in recent years following major losses in banks and 
insurer insolvencies. Never before has there been more focus on capital and risk 
management strategies. 
 
Capital requirements are a dominant issue for the long run sustainability of the 
insurance industry. Costs related to capital impact on pricing, profitability and 
solvency. Capital management strategies must be developed in order to efficiently 
manage the costs of capital and ultimately ensure the long run viability of the 
institution. The companies that will survive and provide the expected returns to 
shareholders will be those with the optimal capital and risk management strategies. 
 
Capital issues in the Australian insurance industry have emerged in recent years. A 
good example is the medical indemnity insurance business in Australia. A report by 
the Australian Competition and Consumer Commission (ACCC) in December 2003 
indicated that 36 percent of the premiums charged by the industry were used for 
capital accumulation purposes. Figure 1 shows the break-up of the major factors in 
pricing in medical indemnity insurance. The proportion of premiums used to 
accumulate capital is significant. 

Figure 1: Components of premium pool - Medical Indemnity 
Source: ACCC Medical indemnity report, December 2003

36%

32%

17%

15%

Capital Accumulation

Net Claims Cost

Reinsurance expenses
Underwriting and general expenses

 



 4

Holding capital involves costs. Costs arise when too little capital is held by an insurer. 
These costs are the costs of financial distress and insolvency. In the medical 
indemnity insurance case, the significant collapse and provisional liquidation of 
United Medical Protection (UMP) in May 2002 highlighted the consequences of 
inadequate capital. UMP suffered from a severe case of under-reserving, with the 
level of claims being paid out exceeding liability valuations, resulting in financial 
distress costs. It is clear that the management of these costs should be a main focus of 
a risk and capital management strategy. Shareholder returns and payments to 
policyholders will be maximised if these capital and financial distress costs are 
minimised. 
 
Capital costs 

The cost of capital has traditionally been defined as the expected return to investors 
arising from the profits of the company. Increasingly the focus of capital management 
has turned to frictional costs. However, estimating frictional costs of capital is 
difficult especially for some costs such as agency costs. The cost of capital is usually 
estimated as a weighted average of the costs associated with different forms of capital 
used to finance the assets of the company. The cost of debt capital is usually available 
from traded markets or can be estimated using traded debt market data. The cost of 
equity capital is a more contentious issue which has lead to the development of 
diffeent techniques such as the Discounted Cash Flow (DCF) model (Brealey and 
Myers, (2003)), the Capital Asset Pricing Model (CAPM) (Sharpe, (1964)), and other 
factor models such as the Fama-French Three-Factor (FF3F) model (Fama and 
French, (1992)). 
 
The cost of capital or WACC is used as a discount rate in determining the net present 
value of investments in real assets of a business. Often the investment is not actively 
traded and it is necessary to evaluate the net present value of the real asset. An 
investment will usually be made if the net present value is positive. The insurance 
business is different in that most investments by the insurer are in traded financial 
assets. Policyholders are the equivalent of debt providers for other firms. The 
insurance company’s primary business is to pool and underwrite risks of loss for 
property and casualty risks. Capital is held as additional collateral against unexpected 
increases in the pool costs of meeting claim liabilities in order to ensure the insurer 
meets its promises to policyholders. 
 
Kielholz (2000), in a recent study estimating the cost of capital in the insurance 
industry, estimates the cost of capital using the DCF and CAPM techniques for five 
major insurance markets (United States, United Kingdom, France, Germany and 
Switzerland) over the past twenty years. 
 
Table 1 reports the average cost of equity capital for different countries and different 
businesses (i.e. life insurance versus non-life) over the period from 1991 to 1998. 
Kielholz (2000) finds that the cost of equity capital for non-life insurers in the five 
markets averaged 10.5% in 1998. The cost of equity capital has reduced significantly 
throughout the 1990s. In his analysis, Kielholz (2000) notes that one of the main 
factors that lead to the decline in the cost of equity capital has been the relatively low 
levels of nominal interest rates that have been prevalent which in turn track closely to 
the cost of equity capital in the insurance industry. Other factors such as the upturn in 
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investment markets and better underwriting performances have also been factors 
determining the rate of return shareholders obtain in insurance markets. 
 

Table 1: Insurance industry average cost of equity capital estimates 
               
 U.S.  U.K.  Switzerland  France  Germany 

  Life 
Non-
life   Life 

Non-
life  Life 

Non-
life  Life 

Non-
life   Life 

Non-
life 

1991 n/a 16.20%  20.31%20.25%  n/a 13.56% 16.09%15.93%  14.44% 14.78%
1992 14.19% 15.70%  17.38%17.52%  n/a 13.00% 16.41%16.11%  15.14% 14.85%
1993 14.31% 14.06%  13.91%14.48%  n/a 11.66% 17.29%16.76%  14.32% 13.96%
1994 14.79% 13.90%  12.37%13.09%  8.20% 9.49%  12.32%11.50%  11.40% 10.93%
1995 15.31% 13.81%  13.51%14.60%  7.44% 9.10%  12.31%11.66%  10.88% 10.05%
1996 14.82% 13.33%  13.29%14.73%  4.81% 6.49%  11.14%10.60%  9.29% 8.39% 
1997 15.49% 12.75%  13.13%14.19%  4.96% 6.69%  8.51% 8.69%  8.28% 7.92% 
1998 14.00% 13.18%   13.74%15.23%  6.06% 6.85%  8.54% 8.43%   7.81% 8.81% 
Average 14.70% 14.12%  14.71%15.51%  6.29% 9.61%  12.83%12.46%  11.45% 11.21%

 
Cummins and Phillips (2003) estimate insurer costs of capital and find that models 
with capital structure factors included produce higher expected costs of capital. An 
interpretation of these results is that frictional costs related to capital structure impact 
on costs of capital and that these costs are significant. 
 
Costs of financial distress have been examined in Altman (1984). Bankruptcy costs 
can broadly be defined as either direct bankruptcy costs or indirect bankruptcy costs. 
Direct bankruptcy costs are “… those explicit costs paid by the debtor in the 
reorganization/liquidation process.” These direct bankruptcy costs included legal, 
accounting, filing and other administrative costs related to the liquidation of the firm’s 
assets. Indirect bankruptcy costs are defined by Altman (1984) as “the opportunity 
costs of lost managerial energies [which could lead to] … lost sales, lost profits, the 
higher cost of credit, or possibly the inability of the enterprise to obtain credit or issue 
securities to finance new opportunities”. Included as part of his definition of indirect 
costs of bankruptcy are, “… lost profits that a firm can be expected to suffer due to 
significant bankruptcy potential” so that a company in financial distress, and not 
necessarily insolvent, will experience these costs. 
 
Altman (1984) estimates these indirect costs by explicitly measuring sample data of 
failed firms in the U.S. In estimating direct and indirect bankruptcy costs, he uses 
empirical data of eighteen corporate failures in the industrial and retail industries in 
the U.S. Direct costs are calculated by using the explicit costs recorded and 
documented in bankruptcy records of the sampled failed corporations.  
 
A summary of Altman’s results for direct bankruptcy costs is shown in Table 2. For 
the eighteen firms he sampled the average amount of direct bankruptcy costs relative 
to the value of the firm just prior to bankruptcy was 6.4%. They ranged from 23% 
down to 0.6%. This study confirms that direct bankruptcy costs can be substantial. 
Altman (1984) also estimated indirect bankruptcy costs.  
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Table 2: Altman (1984) analysis of direct bankruptcy costs

Bankrupt Company
Direct Bankruptcy 

Costs 
 (Year) ($000) t -3 t † t -3 t †

Abercrombie and 
Fitch (1976) 471 10.7 10.5 4.40% 4.49%

Ancorp National 
Service (1975) 523 104.2 49.8 0.50% 1.05%

Reck Industries 
(1970) 650 47.7 108.4 1.36% 0.60%

Fishman, M. H. 
(1974) 703 41.2 8.6 1.71% 8.17%

Food Fair (1978) n/a 376.2 416.9 n/a n/a

Grant, W. T. (1975) 2000 1393.0 917.0 0.14% 0.22%

Interstate Stores 
(1974) 1664 269.1 98.2 0.62% 1.69%

Kenton (1974) 950 47.0 29.7 2.02% 3.20%

Mangel Stores (1974) 9019 47.5 38.6 18.99% 23.37%

National Bellas Hess 
(1972) 255 42.7 40.0 0.60% 0.64%

Neisner Bros. (1977) 1630 86.9 91.0 1.88% 1.79%

United Merchants & 
Manufacturing 
(1977) 9513 407.6 203.6 2.33% 4.67%

Bowmar Instruments 
(1975) 1950 35.7 11.3 5.46% 17.26%

Drew National 
(1975) 2278 32.5 11.1 7.01% 20.52%

Frier Industries 
(1978) 297 6.3 6.9 4.71% 4.30%

Precision Polymers 
(1976) 468 13.9 3.6 3.37% 13.00%

Universal Container 
(1978) 500 11.7 16.0 4.27% 3.13%

Valley Fair (1977) 541 8.4 17.7 6.44% 3.06%

Winston Mills (1978) 335 9.1 8.2 3.68% 4.09%

Average 3.86% 6.40%

Firm Value ($000,000)
% of Direct Bankruptcy Costs 

to Firm Value

 
† t represents the year of bankruptcy 
 
Estimating indirect bankruptcy costs is more difficult due to the ‘opportunity cost’ 
nature of these costs. As a proxy for indirect bankruptcy costs, Altman (1984) 
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employed two approaches using forgone sales and profits. He determined the amount 
of indirect bankruptcy costs a company experienced as the difference between the 
level of profits the corporation would achieve with no financial distress, and the level 
of profits the corporation experiences because of financial distress. 
 
The first approach to measure this difference utilises a linear regression of each of the 
sampled failed firms on the sales of each sampled corporation for the ten-year period 
thirteen years prior to bankruptcy. From the linear regression, the expected sales 
figures for the three years prior to bankruptcy are extrapolated and assumed to be the 
expected amount of sales the corporation would achieve with no financial distress. By 
multiplying the expected sales figures by the average profit margin of the industry of 
the corporation, the expected profits of the corporation were calculated. The 
difference between the expected profits calculated and the actual profits which 
eventuated from the company in distress then became Altman’s proxy for indirect 
bankruptcy costs. These results are summarised in Table 3. 
 
Altman’s analysis shows that the indirect costs of bankruptcy are approximately 11% 
of the value of the firm just prior to bankruptcy. In one case they were as a high as 
62%. This is significantly higher than the direct bankruptcy costs estimated by 
Altman (1984) and indicates their relevance for capital management.  
 
The second approach Altman (1984) used to estimate indirect bankruptcy costs was 
through the use of ‘expert opinion’ of securities analysts to determine the expected 
profits under no financial distress on a sample of failed companies. Subtracting the 
actual profits gave a proxy for indirect bankruptcy costs. The resulting indirect 
bankruptcy costs were higher than the results in Table 3. Compared to the average 
indirect bankruptcy cost of 11% just prior to bankruptcy in the regression technique, 
Altman’s second technique resulted in 17.7% average indirect bankruptcy costs.  
 
Altman argues that a possible reason for this large difference in results may be due to 
the differing sample of firms used in each analysis. The conclusion however, remains 
the same in that the size of these indirect bankruptcy costs is large even though 
methods to calculate these costs are imprecise. 
 
Indirect bankruptcy costs are an important cost to be considered in capital 
management. In the insurance context, Smith et al (2003) discuss the effects that the 
costs of financial impairment and financial distress have on the pricing of insurance 
contracts. They discuss the heightened cost of financial impairment in the insurance 
industry because of the high credit sensitivity of insurance policyholders. As the 
financial soundness of an insurer deteriorates, policyholders may withdraw or not 
renew their contracts and the loss of sales and profits an insurer experiences can be 
significant. An insurer’s future sales and growth opportunities is referred to as 
‘franchise value’ by Smith et al (2003) and the loss of this franchise value can be seen 
as an example of indirect bankruptcy costs in insurance.  
 
Table 4 summarises the total direct and indirect bankruptcy costs from the sample of 
eighteen firms used in the Altman (1984) analysis. Figure 2 (a) and Figure 2 (b) show 
the constituent break-up of the Altman (1984) analysis between direct and indirect 
bankruptcy costs respectively. 
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Table 3: Altman (1984) analysis of indirect bankruptcy costs

Bankrupt Company
Indirect 

Bankruptcy Costs 
 (Year) ($000) t -3 t † t -3 t †

Abercrombie and 
Fitch (1976) 2312 10.7 10.5 21.61% 22.02%

Ancorp National 
Service (1975) 2383 104.2 49.8 2.29% 4.79%

Reck Industries 
(1970) 0 47.7 108.4 0.00% 0.00%

Fishman, M. H. 
(1974) 1267 41.2 8.6 3.08% 14.73%

Food Fair (1978) 6058 376.2 416.9 n/a n/a

Grant, W. T. (1975) 2703 1393.0 917.0 0.19% 0.29%

Interstate Stores 
(1974) 22294 269.1 98.2 8.28% 22.70%

Kenton (1974) 7029 47.0 29.7 14.96% 23.67%

Mangel Stores (1974) 587 47.5 38.6 1.24% 1.52%

National Bellas Hess 
(1972) 2269 42.7 40.0 5.31% 5.67%

Neisner Bros. (1977) 415 86.9 91.0 0.48% 0.46%

United Merchants & 
Manufacturing 
(1977) 9652 407.6 203.6 2.37% 4.74%

Bowmar Instruments 
(1975) 0 35.7 11.3 0.00% 0.00%

Drew National 
(1975) 2018 32.5 11.1 6.21% 18.18%

Frier Industries 
(1978) 816 6.3 6.9 12.95% 11.83%

Precision Polymers 
(1976) 117 13.9 3.6 0.84% 3.25%

Universal Container 
(1978) 243 11.7 16.0 2.08% 1.52%

Valley Fair (1977) 0 8.4 17.7 0.00% 0.00%

Winston Mills (1978) 5131 9.1 8.2 56.38% 62.57%

Average 7.68% 11.00%

Firm Value ($000,000)
% of Indirect Bankruptcy 

Costs to Firm Value

 
† t represents the year of bankruptcy 
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3 0
Direct bankruptcy costs/Firm Value 3.86% 6.40%
Indirect bankruptcy costs/Firm Value 7.68% 11.00%
Total bankruptcy costs/Firm Value 11.54% 17.40%

Years prior to bankruptcy

Table 4: Altman (1984) analysis of average total bankruptcy costs

 
 

Figure 2 (a): 
Direct vs. Indirect Bankruptcy costs

3 years prior to bankruptcy

3.86%

7.68%

Direct bankruptcy costs/Firm Value
Indirect bankruptcy costs/Firm Value

Figure 2 (b): Direct vs. Indirect 
Bankruptcy costs

just prior to bankruptcy

11.00%

6.40%

 
 
Modigliani and Miller (1958) were the first to demonstrate that, without frictional 
costs, risk and capital management strategies are irrelevant. If markets operate to 
provide fair returns and prices, the capital structure and financing policy of the firm 
does not create additional value. Changing the capital structure of a firm is a way of 
shifting risk between the owners and debt providers that will be fairly compensated in 
financial markets. Managing the frictional costs of capital will be value creating. 
 
A Banking Model with Costs of Capital 

Estrella (2004) develops an optimal capital management strategy of a simplified bank 
through the minimisation of three costs – the cost of capital, the cost of financial 
distress and the cost of adjusting the level of external capital, referred to as adjustment 
costs. The traditional view of the cost of capital, as estimated in studies by Kielholz 
(2000) and Cummins and Phillips (2003), is that it is the expected return to 
shareholders arising from dividends and capital appreciation. This is actually an 
expected return to capital arising from the profits of the business. Capital is a residual 
claimant and expected returns are derived from the profitability of the underlying 
business. The costs of capital that are relevant for capital and risk management are in 
fact the frictional costs associated with financing through equity.  
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Estrella (2004) defines the costs of capital as “…  not necessarily the nominal return 
on capital, but may be the difference between the cost of capital funding and funding 
through other means such as debt”. Therefore, the cost Estrella (2004) aims to 
minimise is not the expected return demanded by equity providers, the ‘nominal 
return on capital’, but the additional costs of equity funding which include additional 
taxation on profits to shareholders, transaction costs in raising equity capital and 
agency costs involved between shareholders and management. The nominal return on 
capital is determined in financial markets by competitive supply and demand and if 
markets price fairly then this represents the fair risk adjusted expected rate of return to 
shareholders. For any given risk level, this cost is market determined whereas the 
frictional costs of capital can be optimised through a risk and capital management 
strategy. 
 
Estrella (2004) considers the cost of financial distress defined as, ‘... costs of 
bankruptcy, including loss of charter value, reputational loss, and legal costs’. Estrella 
(2004) also considers the costs from adjusting the level of capital in the bank, referred 
to as adjustment costs, which occur when a firm is raising new external capital or 
when it is shedding external capital, for example through the payment of dividends. 
Adjustment costs when raising capital occur due to monitoring costs of equity, arising 
from agency costs and informational asymmetry. Exit costs of capital may arise from 
‘round-trip’ costs of having to raise equity again in the future. These costs are 
described in Myers and Majluf (1984), Winter (1994) and McNally (1999). 
 
The Estrella (2004) model is based on a simplified balance sheet of a bank and 
models the costs of capital and of financial distress as a function of the bank’s end of 
period capital. The optimisation strategy is solved by determining the optimal level of 
capital to raise or shed at the beginning of each period that will minimise these costs.  
 
Estrella (2004) develops both a single period model and a multi-period model. In the 
single period model the bank determines the optimal level of capital to raise or shed at 
the beginning of the period in order to minimise the frictional costs of capital and 
financial distress. The second model extends the single period model to an infinite 
horizon, multi-period model which also includes the adjustment costs associated with 
raising and shedding capital. In both models, the objective is to minimise expected 
frictional costs which are expressed as functions of the bank’s end of period capital. 
 
The balance sheet model includes assets, liabilities and equity. The liabilities are the 
deposits held by the bank. The assets are broken up into two components – a risk-free 
portfolio where the return earned on these assets are fixed, for example bank loans, 
and a risky portfolio whose rate of return is stochastic, for example investments made 
by the bank. Equity is the residual of assets less liabilities. This includes current 
equity plus new capital generated, or less any capital shed, at the beginning of the 
current period. 
 
The model determines a net loss variable as the difference between the return on 
liabilities, assumed to be fixed, and the return on total assets, both risky and risk-free. 
The net loss variable, L, is a random variable because of the random nature of the 
returns on the risky portfolio of assets. Since L is a random variable, Estrella (2004) 
models the loss variable as an expected loss amount E[L], and an unexpected loss 
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amount u, where the distribution of u is not explicitly specified to maintain generality 
other than requiring E[u] = 0. 
 
The end of period capital is expressed as a function of the net loss variable L, the 
current capital and any new external capital generated at the beginning of the current 
period. That is 1t t t tK K R L−= + −  where tK  is the end of period t capital, 1tK −  is the 
current (or end of period t-1) capital, tR  is the amount of capital raised or shed at the 
beginning of time period t, and tL  is the net loss random variable during period t. The 
end of period capital is also a random variable due to the random nature of the losses. 
The amount of capital at the beginning of the period, 1tK − , is known and the amount 

tR  is the control variable in the optimisation problem. The objective function is to 
determine the optimum amount of capital, tR , in order to minimise the expected 
frictional costs of capital and the expected costs of financial distress. 
 
In the single-period model the optimal amount of capital to be raised or shed at the 
beginning of the period ( tR ) is solved using standard optimisation techniques. Estrella 
(2004) determines the solution for tR  which minimises the frictional costs of capital 
and financial distress as a function of a probability-of-ruin/VaR risk measure. He 
shows that under the assumption of no adjustment costs, the expected level of capital 
at the end of each period is constant. 
 
A similar technique is used by Estrella (2004) when adjustment costs are taken into 
account in the infinite horizon, multi-period model. The objective of the multi-period 
model is to determine the optimal path of capital required to be raised or shed at the 
beginning of each period in order to minimise all three costs – adjustment costs, the 
cost of financial distress and the frictional costs of capital. 
 
To solve for a closed-form solution in the multi-period model, a functional form for 
the expected frictional costs of capital and financial distress defined in the single 
period model is used. Adjustment costs are modelled proportional to the square of the 
amount of external capital raised or shed so that adjustment costs are expressed as 

2
a tc R , where ac  is a constant. The solution for the multi-period model with 

adjustment costs indicates how the optimal amount of capital is dependent on the 
present value of the bank’s future losses, and in general, is not the same as in the 
single period model with no adjustment costs. 
 
An Insurance Company Model 

Based on Estrella (2004), an insurance company model will be developed for the 
purposes of estimating the optimal capital management strategy for an insurer 
allowing for frictional costs of capital and financial distress. The aim of the model is 
to understand the factors determining optimal capital decisions made by insurers over 
time in both a single period and multi-period setting. We aim to illustrate the impact 
of these costs on capital management strategies in both the single period and multi-
period models. 
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The marginal tax costs associated with the capital investments made by an insurer 
represents a frictional cost of capital. Myers and Cohn (1987) discuss how, due to the 
taxation of income derived from the capital investments made by an insurer, 
shareholders are often subject to double taxation when placing funds into corporate 
investments. This additional taxation cost would not arise if funds were directly 
invested in other financial assets. 
 
Additional transaction costs occur from equity financing in the capital markets. These 
additional transaction costs arise from factors such as brokerage fees or the 
requirement to produce disclosure statements or a prospectus. The marginal 
transaction costs borne by the shareholders of the insurer are deadweight losses and 
another form of frictional cost. 
 
Agency costs are the costs that arise from the separation of ownership and control 
between management and shareholders. Jensen and Meckling (1976) and Jensen 
(1986) discuss agency costs. The value of the insurer falls due to management making 
decisions that are inconsistent with the maximisation of shareholders’ wealth. For 
higher levels of capital, the probability of these agency costs arising increases because 
of the higher informational asymmetries that exist in equity funding. These costs are 
another example of a frictional cost of capital. 
 
Both moral hazard and adverse selection costs arising from underwriting of insurance 
risks are borne by the shareholders of the insurer since these are not covered by the 
premiums charged to policyholders. The marginal costs borne by the shareholders of 
the insurance company will be a form of frictional cost associated with the use of 
capital for an insurer. 
 
In the model of an insurer balance sheet we will develop subscripts to denote a point 
in time or a period of time. In general, a term with a subscript only will denote the 
value at the beginning of a time period. For example, tA  denotes the total premium 
income, included in the insurer’s assets, at the beginning of time period t.  A term 
with a time subscript and a superscript + symbol will be at the end of a time period. 
For example, the amount of capital at the end of time period t will be denoted by tK + . 
The “~”symbol on K indicates it is a random variable. Finally, a term with two 
subscripts separated by a comma will denote a time period. For example, the term 

, 1
A

t tr +  will denote the return on assets earned during the period t where the superscript 
A  illustrates that it is the return received on tA . Diagram 1 summarises the model 
structure for the insurer.  
 
Diagram 1: Timing of cash flows for the insurer in period t 
 
 
 
 

 
   t                     t+1       t+2  
 
 Initial capital tK  

rolled over from
External capital tR  is 
raised/shed at 
beginning of period t 

Assets earn a rate of return 
, 1
A

t tr +  during period t 

Random liability 
payoff tL+  paid at the 
end of period t 

End of period t capital 
( ), 11 A

t t t t t t tK K R A r L+ +
+= + + + −  

which becomes the initial 
capital for period t + 1 
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The liabilities comprise the outstanding claims provision, the unearned premiums 
liability and the equity capital. It is assumed that the insurer is financed by equity. We 
ignore the unearned premiums liability and consider only the random claims liability 
payoff. We assume that the insurer has only a single line of business – a short-term, 
single period renewable contract where all claims from previous time periods have 
been settled at the end of the coverage period. This line of business is equivalent to a 
short-tail general insurance product, where the claim payoffs are settled in a relatively 
short period of time. 
 
The payment of claims on the liabilities of this line of business, denoted by tL+ , is a 
random variable. To obtain a numerical solution to the optimisation problem a 
parametric distribution for tL+  is not required. To illustrate the properties of the 
solution to the model we will assume that tL+  has a lognormal distribution. 
 
The insurance company’s assets include the premiums received from policyholders 
and the shareholder capital from equity owners of the insurer. The assets are invested 
into a portfolio of financial investments. In the model, at the start of time period t, the 
insurance company will hold existing capital from the prior period comprising 
retained profits and existing shareholder capital. This becomes a part of the initial 
capital for the current period t. The value of initial capital at the start of period t is 
denoted by tK . 
 
The insurer receives premium income from existing policyholder renewals and the 
acquisition of new business at the start of period t. Each policy acquired or renewed 
by the insurer will attract a fixed premium tP  paid by the policyholder at the start of 
the period. tQ  is the total number of policies sold and renewed at the beginning of 
period t. Combining the price and demand of the insurer’s business, the total premium 
revenue the insurer will generate at the beginning of period t will be t tPQ . In the single 
period model, the total amount of premium revenue is t t tA PQ= . A more sophisticated 
version of the model would allow price and quantity to depend on the insurer’s 
capital. We do not address this issue. 
 
The assets are invested in a portfolio of financial instruments. To highlight the role of 
liability uncertainty it is assumed that the assets earn a deterministic rate of interest 
denoted by , 1

A
t tr +  during period t. We can easily allow the return on assets to be 

stochastic in order to produce a model with dependence between the return on assets 
and the distribution of liability claim payouts. This does not alter the intuition of the 
results. 
 
The insurer has, at the beginning of time period t, current equity plus premiums 
received from existing and new business. The management of the insurance company 
must decide if this amount of initial capital is optimal. By increasing capital, the 
insurer’s frictional costs of capital will increase as factors such as the agency costs 
associated with management perquisites increase. By decreasing capital, the insurance 
company will increase the expected financial distress costs. There is a trade-off that 
determines the optimal amount of capital to hold at the beginning of each period. The 
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insurance company will need to decide either to raise more capital, in the case where 
too little capital is being held, or shed some capital, in the case where too much 
capital is being held. Capital can be raised through new shares and capital can be shed 
either through the payment of dividends or the repurchase of shares at the start of each 
period.  
 
The amount of capital generated or shed at the beginning of the period in order to 
obtain the optimal level of capital is denoted by tR . If 0tR > , then this represents the 
additional capital raised at the start of period t. If 0tR < , then this represents the 
dividends paid or shares repurchased at the start of period t. After the adjustment of 
capital by tR , the level of capital at the beginning of the period t will be t t tK R A+ +  
which is the sum of the initial shareholder capital rolled over from the prior period 
and the total premium income received at the beginning of the current period t, 
allowing for capital adjustments tR .  
 
The premium income generated at the beginning of the current period is assumed to 
be invested in a portfolio of financial instruments earning a rate of return equal to , 1

A
t tr +  

over the period. The end of period capital is the initial assets plus the investment 
return, less the random claims liability payoff paid at the end of the period.  
 
Denoting the amount of capital at the end of period t by tK + , we have: 

 ( ), 11 A
t t t t t t tK K R A r L+ +

+= + + + −  
 
In the single period model we assume that there are no costs associated with adjusting 
to the optimal level of capital and consider only the frictional costs of capital and the 
cost of financial distress. The model includes frictional costs of capital as a fixed and 
constant proportion, denoted by cc , of the end of period capital amount tK +  provided 
the insurer is solvent. If we denote cC  as the frictional costs of capital, then 

max( ,0)c c tC c K +=  and if the insurer is insolvent the frictional costs of capital are 
assumed to be zero. Because tK +  is a random variable, the frictional costs of capital 
are random. To minimise this cost we minimise the expected costs. The expected 
value of the frictional costs of capital can be expressed as: 

( ) ( ) ( )
, 1(1 )

, 1
0

(1 )
A

t t t t t

t

K R A r
A

t c c t t t t t t tE C c K R A r L f L dL
++ + +

+ + +
+= + + + −∫  

where ( )tf L+ is the probability density function of tL+  and ( ).tE  is the expectation 
operator conditioned on the beginning of period t. 
 
The second cost is the expected costs of financial distress. These costs include the 
administration and legal costs for a company in liquidation, as well as other indirect 
costs such as the loss of franchise value and future sales. Following Estrella (2004), 
the cost of financial distress is modelled in a similar fashion to the frictional costs of 
capital by assuming it is a fixed and constant proportion of the end of period capital. 
We denote this proportion by fc and model the cost of financial distress, denoted 

by fC as max( ,0)f f tC c K += −  with 0fc ≥ . The costs of financial distress take on non-
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zero values if tK + is negative and the insurer is insolvent at the end of the period t. The 
expected value of the cost of financial distress can be expressed as 

( ) ( ) ( )
, 1

, 1
(1 )

(1 )
t

A
t t t t t

A
t f f t t t t t t t

K R A r

E C c K R A r L f L dL
+

∞
+ + +

+

+ + +

= − + + + −∫ . 

 
Denoting the sum of the expected frictional costs over a single time period by C , we 
have ( )t c fC E C C= +  and the optimisation problem is then to solve the problem 

( )min
t

t c fR
E C C+ . The control variate in the minimisation problem is the capital 

adjustment amount tR  required at the beginning of period t to minimise the expected 
frictional costs of capital and the expected cost of financial distress. We assume that 
there are no costs associated with either obtaining or shedding this net level of 
external capital flow tR .  
 
We then have, 

( ) ( )

( ) ( )

, 1

, 1

(1 )

, 1
0

, 1
(1 )

( )

(1 )

     (1 )

A
t t t t t

A
t t t t t

t c f

K R A r
A

c t t t t t t t t

A
f t t t t t t t t

K R A r

C E C C

c K R A r L f L dL

c K R A r L f L dL

+

+

+ + +
+ + +

+

∞
+ + +

+

+ + +

= +

⎧ ⎫⎪ ⎪= + + + −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪− + + + −⎨ ⎬
⎪ ⎪⎩ ⎭

∫

∫

 

( ) ( )

( ) ( )

( ) ( )

, 1

, 1

(1 )

, 1
0

, 1
0

(1 )

, 1
0

(1 )

(1 )

     

     (1 )

A
t t t t t

A
t t t t t

K R A r
A

c t t t t t t t t

A
t t t t t t t t

f K R A r
A

t t t t t t t t

c K R A r L f L dL

K R A r L f L dL

c

K R A r L f L dL

+

+

+ + +
+ + +

+

∞
+ + +

+

+ + +
+ + +

+

⎧ ⎫⎪ ⎪= + + + −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫
+ + + −⎪ ⎪

⎪ ⎪− ⎨ ⎬
⎪ ⎪− + + + −⎪ ⎪
⎩ ⎭

∫

∫

∫

 

Differentiating with respect to tR , using Leibnitz rule, and setting the differential to 
zero gives 

( ) ( ) ( )
, 1 , 1(1 ) (1 )

0 0 0

0
A A

t t t t t t t t t tK R A r K R A r

c t t f t t t t
t

C c f L dL c f L dL f L dL
R

+ ++ + + + + +∞
+ + + + + +

⎧ ⎫ ⎧ ⎫∂ ⎪ ⎪ ⎪ ⎪= − − =⎨ ⎬ ⎨ ⎬∂ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∫ ∫ ∫  

By rearranging the first-order condition we obtain 
( ) ( )

( ) ( )

( )

, 1 , 1

, 1 , 1

, 1

1 Pr (1 ) 1 Pr (1 )

1 Pr (1 ) Pr (1 )

1 1
Pr (1 )

A A
c t t t t t t f t t t t t t

fA A
t t t t t t t t t t t t

c

f
A

ct t t t t t

c L K R A r c L K R A r

c
L K R A r L K R A r

c
c
cL K R A r

+ +
+ +

+ +
+ +

+
+

⎡ ⎤ ⎡ ⎤− > + + + = − ≤ + + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⇔ − > + + + = > + + +⎣ ⎦

⇔ − =
> + + +
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( ), 1Pr (1 )A c
t t t t t t

c f

cL K R A r
c c

+
+⇔ > + + + =

+
 

( ), 1Pr (1 ) 0A c
t t t t t t

c f

cK R A r L
c c

+
+⇔ + + + − ≤ =

+
 

The second-order condition is satisfied ensuring tR  is a minimum since: 

( ) ( )
2

, 12 (1 ) 0  A
c f t t t t t t

t

C c c f K R A r R
R +
∂

= + + + + ≥ ∀
∂

 

 
Denoting (.)

tL
F +  as the cumulative distribution function of the random liability payoff 

tL+ , the optimal tR  in the single period model, denoted by *
tR , is given by: 

* 1
, 11 (1 )

t

Ac
t t t t tL

c f

cR F K A r
c c+

−
+

⎛ ⎞
= − − − +⎜ ⎟⎜ ⎟+⎝ ⎠

 

where 1(.)
tL

F +
− is the inverse of the cumulative distribution function of the random 

liability payoff tL+ .  
 
The solution of the single period optimisation problem is both intuitive and 
interesting. The trade-off between high levels of capital and low levels of capital is 
determined by the relative size of the frictional costs of capital and the costs of 
financial distress. If we consider the case where there are no frictional costs of capital 
by taking fc  to positive and 0cc = , then because 1(1)

tL
F +

− →∞ , the optimal amount of 

external capital required at the beginning of period is infinite. The optimal capital 
strategy of the insurance company is to take on as much capital as possible to negate 
the possibility of any financial distress costs.  
 
Considering the case where there are no financial distress costs, 0fc =  but holding 
capital is costly with 0cc > , the optimal amount of external capital required to shed at 
the beginning of the period will equal , 1(1 )A

t t t tK A r ++ + . The optimal strategy of the 
insurer is to hold only enough capital to pay the expected value of the liabilities. Any 
additional capital held will incur frictional capital costs and since there are no costs 
associated with financial distress or insolvency, the optimal strategy would be to hold 
a minimum level of capital so that the frictional costs of capital are minimised. 
Because both of these costs are experienced in practice it is the trade-off between 
them that determines the optimal capital. 
 
The results also shows that the amount of capital required to minimise the expected 
frictional costs of capital and financial distress, can be expressed in terms of a Value 
at Risk (VaR) requirement. Because *

tR  is determined by 

 ( )*
, 1Pr (1 )A c

t t t t t t
c f

cL K R A r
c c

+
+> + + + =

+
,  

we see that this is a VaR requirement on the insurer loss distribution. This provides an 
economic basis for risk measures such as VaR and probability of ruin and may help 
explain why these have become important in practice. Frictional costs provide a 
motivation for considering VaR risk measures. 
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The ratio c

c f

c
c c+

 determines the VaR probability that results in an optimal level of 

capital for the insurer. It is of interest to assess the likely values of such a ratio to 
compare with regulatory requirements. Assume that a regulator requires a probability-

of-ruin α , not equal to the ratio of costs c

c f

c
c c+

. More than the optimal economic 

level of capital will be required if c

c f

c
c c

α <
+

 and less capital will be required if 

c

c f

c
c c

α >
+

. The expected cost of these regulatory requirements will be the difference 

between the frictional costs of capital and financial distress for the optimal start of 
period capital, *

tR , and the frictional costs of capital and financial distress when the 
start of period capital is that required by regulation. 
 
To illustrate the practical implications of this result we use some simplifying 
assumptions. We assume the random payoff of the claims liabilities at the end of the 
period has a Lognormal distribution with mean claim amount 20 and standard 
deviation (volatility) of 4. The initial capital tK  is taken as 1. Three different 
premium amounts are considered equal to 10, 20 and 25 corresponding to low 
premiums, expected claims and higher premiums. The interest rate is assumed to be 
12%. 
 
Table 5 summarises the balance sheet data of the insurance company in this 
illustration. 
 
Table 5: Insurance company data   
   
Expected liability payoff at end of period [ ]t tE L+

 20 

Standard deviation of liability payoff tL
σ +  4 

Initial capital tK  1 
Premium income: scenario 1 (1)tA  10 
Premium income: scenario 2 (2)tA  20 
Premium income: scenario 3 (3)tA  25 

Return on premium income , 1
A

t tr +  12% 
 
There is very little data available for estimating the frictional costs of capital and the 
cost of financial distress, so a range of values for each cost is taken to determine the 

ratio c

c f

c
c c+

. For the case of financial distress costs, the range used in this numerical 

illustration are based on Altman’s estimates of direct and indirect bankruptcy costs 
which approximately ranged between 11% and 15%. The frictional costs of capital, 
assumed ranged from 0.5% to 5%. Table 6 shows the resulting values. These values 
are then used to determine optimal capital levels in the single period model for 
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varying premiums. These results are shown in Table 7, for the market premiums of 
10, 20 and 25. The Table displays the optimal adjustment capital amount *

tR  for 

varying ratios of c

c f

c
c c+

as well as the optimal expected end of period capital amount. 

 

Table 6: Values for c

c f

c
c c+

based on different assumed values for fc  and cc  

fc  
 11% 12.000

% 
13.000

% 
14.000

% 
15.000

% 
0.50% 0.043 0.040 0.037 0.034 0.032 
1.25% 0.102 0.094 0.088 0.082 0.077 
2.00% 0.154 0.143 0.133 0.125 0.118 
2.75% 0.200 0.186 0.175 0.164 0.155 
3.50% 0.241 0.226 0.212 0.200 0.189 
4.25% 0.279 0.262 0.246 0.233 0.221 

cc  

5.00% 0.313 0.294 0.278 0.263 0.250 
 

Table 7: Optimal Capital Adjustment and End of Period Expected Capital 
 Premium = 10 Premium = 20 Premium = 25 
c

c f

c
c c+  

*
tR  *K  *

tR  *K  *
tR  *K  

0.032 8.282 16.082 4.882 8.282 -0.718 8.282 
0.060 6.671 14.471 3.271 6.671 -2.329 6.671 
0.088 5.629 13.429 2.229 5.629 -3.371 5.629 
0.116 4.841 12.641 1.441 4.841 -4.159 4.841 
0.144 4.197 11.997 0.797 4.197 -4.803 4.197 
0.172 3.647 11.447 0.247 3.647 -5.353 3.647 
0.200 3.162 10.962 -0.238 3.162 -5.838 3.162 
0.228 2.725 10.525 -0.675 2.725 -6.275 2.725 
0.256 2.325 10.125 -1.075 2.325 -6.675 2.325 
0.284 1.953 9.753 -1.447 1.953 -7.047 1.953 
0.313 1.605 9.405 -1.795 1.605 -7.395 1.605 

 

As the ratio c

c f

c
c c+

increases, representing either an increase in the expected frictional 

costs of capital or a decrease in the expected financial distress costs, the optimal 
amount of adjustment capital required at the beginning of the period decreases. More 
capital is raised when the expected frictional costs of capital are low and more capital 
is shed when expected frictional capital costs are high. As the market premium 
increases, the capital required decreases. 
 
Figure 3 illustrates the optimal adjustment capital for the case with premiums of 20 as 
the VaR criteria changes. As the value at risk probability decreases the adjustment 
capital becomes increasingly sensitive to changes in the probability level. At levels 
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typical of regulatory requirements, small changes in the insurer’s business outcomes 
can have significant impacts on the capital requirements. 
 

Figure 3: Optimal adjustment capital under different scenarios for c

c f

c
c c+
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The cost of regulatory requirements can be assessed. Assume that the ratio c

c f

c
c c+

 is 

equal to 20% with 3.5%cc =  and 14%fc = , and the total premium income received 
by the insurance company is 20. The optimal adjustment capital for the insurer when 
no regulatory requirement is imposed is -0.238, resulting in an expected end of period 
capital equal to 3.162. When a probability-of-ruin of 5% is imposed on the insurer, 
the amount of capital that is required to be raised by the insurer will increase to 3.763, 
resulting in an expected end of period capital amount equal to 7.163. The extra 
regulatory capital generates an additional amount of expected frictional capital costs 
equal to 3.5% x (7.163 – 3.162) = 0.14. Compared to the expected amount of 
frictional costs at the optimal point *K of 3.5% x 3.162 = 0.11, the additional cost 
borne by the insurer in expected frictional costs due to regulatory capital increase by 
over 100%.  
 
A Multi-period Insurer Model 

We now extend the insurer model to a multi-period infinite horizon setting, where 
adjustment costs associated with raising and shedding external capital are explicitly 
modelled. The single-period model assumed that there were no costs associated with 
raising or shedding external capital to meet the optimal level of capital required to 
minimise the expected frictional costs of capital and financial distress. Frictional costs 

c

c f

c
c c+

 

*
tR  
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of capital also arise from the raising and shedding of capital. These costs of raising 
and shedding external capital are referred to as adjustment costs.  
 
When a firm is raising new external capital, entry costs are incurred and when it is 
shedding capital externally, exit costs are incurred. Apart from the direct transaction 
costs there are other costs involved. Entry costs can arise from asymmetric 
information between equity providers and the management of an insurance company. 
Due to the high monitoring costs of equity and the informational advantage that the 
insurance company management has over its investors about the true value of the 
equity, investors are assumed to demand a premium for providing capital as discussed 
in Myers and Majluf (1984). Winter (1994) also considers entry costs from raising 
new external capital in the property-liability insurance market. Winter (1994) suggests 
that a proposal to raise external equity from the market may signal that profits are 
expected to be lower. In the case of shedding capital, McNally (1999) contends that a 
firm may incur a premium due to the market viewing the repurchase as an indication 
of an undervaluation of a firm’s stock price. This would cause a stock price increase, 
resulting in an increase in the share buyback cost. 
 
The optimal capital is selected so that the level of adjustment capital will minimise the 
frictional costs of capital, the cost of financial distress and adjustment costs. For a 
single period, this would be to find 

{ }
min

t
aR

C C+  where C  is the sum of the expected 

frictional costs of capital and cost of financial distress and aC  is the adjustment cost 
associated with raising or shedding external capital. 
 
In order to provide an analytical solution we adopt a functional form for the cost 
function ( )t c fC E C C= +  by noting that C  is a convex function of tR , denoted 
by ( )tC R . Using a second-order Taylor series expansion around the optimal level of 
adjustment capital *

tR  we have 

( ) ( )
22* *

2
* *

1( )
2t t t t t

t tR Rt t

C CC R k R R R R
R R
∂ ∂

≈ + − + −
∂ ∂

 

where k is a constant. The constant k does not affect the optimal value of tR  and since 

at the optimum 
*

0
t Rt

C
R
∂

=
∂

 the first-order term disappears and we obtain the 

expression 

( )
22*

2
*

1( )
2t t t

t Rt

CC R R R
R
∂

≈ −
∂

 

Using the fact that 

( ) ( )
2

*
, 12

*
(1 )A

c f t t t t t
t Rt

C c c f K R A r
R +

∂
= + + + +

∂
 

we then have 

( ) ( )( )2* *
, 1

1( ) (1 )
2

A
t c f t t t t t t tC R c c f K R A r R R+≈ + + + + −  
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Expressing *
tR  in terms of the (constant) optimal expected end of period capital *K  

we obtain 

( ) ( )( ) ( )( )2
* *

, 1
1( ) (1 )
2

A
t c f t t t t t t t t tC R c c f K E L K R A r E L K+ +

+≈ + + + + + − −  

We will use this as the functional form for the expected sum of the frictional costs of 
capital and cost of financial distress in a multi-period model.  
 
Consistent with the quadratic expression for expected frictional costs, adjustment 

costs, denoted by aC , are assumed to take the form 21
2a a tC c R=  where ac is a 

constant. 
 
The aim of the multi-period problem is identical to that of the single period model 
except that the insurance company will minimise costs over an infinite horizon by 
choosing an optimal path of capital, t iR +  for i = 0, 1, 2, …, ∞ , that will be adjusted at 
the beginning of each period.  
 
The objective function is 

( ) ( )( )( )2* * 2
, 1{ } 0

1 1min (1 )
2 2t i

i A
t c f t t t i t i t i t i t i t i a t iR i

E c c f K E L K R A r L K c Rβ
+

∞
+ +

+ + + + + + + +
=

⎧ ⎫+ + + + + − − +⎨ ⎬
⎩ ⎭

∑

where 1
1 fr

β =
+

 is a time discount factor. The insurance company will determine the 

optimal level of adjustment capital for each period that will minimise the present 
value of expected frictional costs associated with holding capital, financial distress 
and capital adjustments. 
 
If we divide by the constant term ( ) ( )( )*

c f t tc c f K E L++ +  and set 

( ) ( )( )*
a

c f t t

ca
c c f K E L+

=
+ +

 then the objective becomes: 

( )2* 2
, 1{ } 0

1min (1 )
2 2t i

i A
t t i t i t i t i t i t i t iR i

aE K R A r L K Rβ
+

∞
+

+ + + + + + + +
=

⎧ ⎫+ + + − − +⎨ ⎬
⎩ ⎭

∑  

 
As the end of period capital is a function of the level of adjustment capital tR , given 

by ( ), 11 A
t t t t t t tK K R A r L+ +

+= + + + −  the objective can be written as: 

( ) ( )2 2*
, 1

{ } 0

1min (1 )
2 2t i

i A
t t i t i t i t i t i t i t i

K i

aE K K K K A r Lβ
+
+

∞
+ + +
+ + + + + + + +

=

⎧ ⎫− + − − + +⎨ ⎬
⎩ ⎭

∑  

 
Differentiating with respect to t iK +

+  for all values of i = 0, 1, 2, …, ∞  gives an infinite 
set of first-order conditions to solve for t iK +

+  for i = 0, 1, 2, …, ∞ . The first-order 
conditions are formally derived in Appendix 1. The infinite set of first-order 
conditions are a set of second-order difference equations in tK + . They can be written 
as: 
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1

*

1 , 1 1 1, 2

1

0
1 1 (1 ) (1 )

t i t i t

t
A A

t i t i t i t i t i t i t i t i

K K K
E

KL L A r A r
a

γ
β β

β β β

+ + +
+ + +

+ +
+ + + + + + + + + + + + +

⎧ ⎫− +⎪ ⎪⎪ ⎪ =⎨ ⎬
⎪ ⎪− + + + − + +
⎪ ⎪⎩ ⎭

 

for i = 1, 2, …, ∞, where 1 1
a

γ β= + +  and for i = 0, the tK +  term is replaced by tK . 

 
These first order conditions can be rearranged to obtain: 

1

*

1 , 1 1 1, 2

1

1 1 (1 ) (1 )

t t i t i t

A A
t t i t i t i t i t i t i t i t i

E K K K

KE L L A r A r
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The lag operator L is then applied to the left-hand side to obtain: 
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The characteristic polynomial for this difference equation is 2 1 0γλ λ
β β

− + =  with 

roots 1λ  and 2λ  given by  
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 we obtain 
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The lag operator on the left-hand side is expanded and the difference equation on the 
right-hand side is evaluated in the backward direction since 1 1βλ < . Note that 
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 is used to determine the transformed coefficient of *K . 

 
This then gives the optimal expected end of period capital as: 
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for i = 1, 2, …, ∞. For the initial period with i = 0, the optimal amount of expected 
end of period capital is: 
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The optimal adjustment capital at the beginning of the current period is determined 
from ( ) ( ) ( ), 11 A
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The optimal expected end of period capital in the multi-period model incorporating 
adjustment costs is a weighted average of *K  and a term involving the capital at the 
beginning of the current period and the expected present value of the future operating 

results. If adjustment costs are zero, 0ac = , then 
( ) ( )( )*

a

c f t t

ca
c c f K E L

=
+ +

 is zero 

and, using L’Hospital’s rule: 
2 2

10 0

1 (1 ) 4
lim lim 0

2a a

a a a a a

a

β β β
λ

β→ →

⎡ ⎤+ + − + + −⎣ ⎦= = .  

Thus when adjustment costs are zero, 1 0λ →  and the optimal expected end of period 
capital in the multi-period model is equal to that in the single-period model *K . As 
adjustment costs increase, the optimal end of period capital deviates away from *K as 
more weight is placed on the expected present value of the insurer’s operating results. 
 
An insurer will determine the level of capital to hold each period allowing for 
expected losses into the future, as well as the extent of costs associated with financial 
distress and capital. The relative size of frictional costs of capital, the cost of financial 
distress and adjustment costs influences the optimal solution. For example when 
adjustment costs are high compared to the frictional costs of capital financial distress, 

1 1a λ→∞⇒ = , the optimal end of period capital will be exclusively driven by the 
expected present value of the insurer’s future operating results. At the other extreme, 
when adjustment costs are zero, the optimal end of period capital of the insurer is *K , 
the level of capital which minimises the frictional costs of capital and financial 
distress.  
 
With adjustment costs, the insurer finds it costly to achieve the optimal level of 
capital *K  to minimise the expected frictional costs of capital and financial distress. 
A compromise must be made that minimises the frictional costs of capital and 
financial distress, as well as the cost of raising and shedding external capital. 
 
The optimal amount of adjustment capital allowing for adjustment costs is 

( )( ) ( )( )( )*
1 1 1 , 1

0
1 1 (1 )j j A

t t t t j t j t j t j
j

R K K E L A rλ λ β λ
∞

+
+ + + + +

=

= − − + − − +∑ , and when 

1 0λ =  the optimal solution is the same as for the single-period model *
tR . The second 

term is a long run weighted average of the present value of the insurer’s future 
operating results where the weights of ( )( )1 11 jλ λ−  sum up to one. As 1λ  increases 
from zero, adjustment costs increase, and the expected present value of future losses 
increasingly influence the optimal solution which deviates further away from *

tR . As 
adjustment costs become increasingly large and 1 1λ = , the cost of raising external 
capital becomes excessive and the second term reduces to zero. When adjustment 
costs are extremely high, the optimal amount of external capital to raise at the 
beginning of each period approaches zero.  
 
To illustrate the multi-period results we use a 5,000 period model to proxy the infinite 
horizon setting. The balance sheet assumes premium income is 20 for the multi-period 
illustration. It is assumed that the premium income of the insurer equals 20 for all 
periods. A constant return on assets of 12% per period is used along with an initial 
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capital of 1 so that tK =1 to begin. The assumptions for frictional costs of capital and 
costs of financial distress are summarised in Table 8. 
 
Table 8: Cost parameters and optimal capital with no adjustment costs  
Cost of capital cc  0.5% 

Cost of financial distress fc  11% 

Optimal level of adjustment capital 
*
tR  4.125 

Expected end of period capital *K  7.525 
 

The discount parameter used is 1
1.05

β =  and four assumptions for varying sizes of 

adjustment costs ac  are assumed for comparison. The corresponding values of a  and 

1λ  are given in Table 9. 
 
Table 9: Parameters for the multi-period setup    
Discount factor β  0.952 
Adjustment cost 1 (1)ac  0.001% 
Adjustment cost 2 (2)ac  1% 
Adjustment cost 3 (3)ac  10% 
Adjustment cost 4 (4)ac  60% 
a  under (1)ac  (1)a  0.006 
a  under (2)ac  (2)a  5.534 
a  under (3)ac  (3)a  55.343 
a  under (4)ac  (4)a  332.058 

1λ  under (1)ac  1(1)λ  0.005 
1λ  under (2)ac  1(2)λ  0.668 
1λ  under (3)ac  1(3)λ  0.892 
1λ  under (4)ac  1(4)λ  0.964 

 
The assumption that the expected liability payoffs are constant over time results in an 
optimal capital amount converging to a constant. To allow for the future expected 
liability payoffs to vary through time we assume that the liability payoff for the 
current period is log-normally distributed with mean 20 and standard deviation 4 and 
the future expected liability payoffs are random with parameters equal to the 
parameters of the lognormal distribution for the current year’s liability payoff.  
 
Figure 4 gives a comparison between the expected liability payoffs of the insurer over 
a sample period of time against the optimal adjustment capital required when 
adjustment costs are 1%. This shows the impact the multi-period model has on the 
optimal path. It shows that the optimal adjustment capital path tracks the random 
expected liability path in a similar fashion over each period, but with a one-period lag, 
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since large losses in one period, require the insurer to raise additional capital in the 
next period, to reduce the costs of financial distress.  
 
Figure 4: The optimal capital adjustment path versus the expected liability 
payoff 

 
 
Figure 5 shows the optimal level of adjustment capital for the 4 different assumptions 
for adjustment costs listed in Table 9. The lower capital adjustment costs means the 
insurer can more flexibly adjust to the level of capital that will minimise the frictional 
costs of capital and financial distress. For the case where the adjustment costs are 
close to zero, (1) 0.001%ac = , the variability in the optimal level of adjustment capital 
from period to period is extremely high. As these adjustment costs increase, the 
variability reduces because of the increased importance of the adjustment costs. 
 
Figure 6 shows the expected end of period capital path for each of the four levels of 
adjustment costs. We assume that the insurer will not cease business if the end of 
period capital is negative at any time. The assumed strategy for the insurer at the 
beginning of the next period after insolvency is to raise enough capital to restore the 
solvency of the insurer and eliminate the cost of financial distress. This is the reason 
for the negative end of period capital figures in some of the periods in Figure 6. 
 
As capital adjustment costs increase, the end of period capital deviates further away 
from the optimal capital amount * 7.525K =  which minimises the frictional costs of 
capital and financial distress. 
 
The results correspond with intuition and demonstrate the usefulness of the model in 
understanding the tradeoffs between the various expected costs of capital. 
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Figure 5: Optimal level of adjustment capital under different levels of 
adjustment costs 
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Figure 6: Optimal expected end of period capital amounts under different levels 
of adjustment costs 
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Conclusions 

The model given in this paper considers the frictional capital costs, financial distress 
costs and capital adjustment costs and their impact on the optimal level of capital for 
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an insurer. There is a trade-off for an insurer between the expected frictional costs of 
capital when it operates in a solvent financial position, and the expected financial 
distress costs when an insurer faces insolvency. In a single period model, the optimal 
economic level of capital when adjustment costs are zero satisfies a Value at Risk 
(VaR) or probability of ruin criterion. This provides an economic justification for 
using a VaR or probability-of-ruin requirement for determining an insurer’s capital. 
 
The model can be used to estimate the financial costs of regulatory capital 
requirements based on VaR or probability-of-ruin measures where they differ from 
the economic optimal level of insurer capital. If the regulatory probability-of-ruin 
criteria is more stringent than the optimal required based on minimising expected 
frictional capital costs and financial distress costs, an insurer will hold additional 
regulatory levels of capital, thus incurring additional frictional costs. 
 
A multi-period model is used to assess the impact of adjustment costs associated with 
raising and shedding capital on optimal capital. The multi-period model shows that in 
determining the optimal level of capital required each period, the insurer will factor 
into account the expected present value of future operating results. When the 
adjustment costs are high, the optimal amount of adjustment capital each period 
remains low since costs associated with attaining the level of capital to minimise the 
frictional costs of capital and financial distress are high. The optimal level of insurer 
capital is influenced more by the expected future operating results of the insurer. 
When adjustment costs are low, the insurer will adjust its capital to the level which 
minimises frictional costs.  
 
The models used to illustrate the results use a range of premium values. In theory, 
premiums should be fairly priced and reflect the risk-adjusted present value of the 
losses and insolvency and frictional costs. It is possible to incorporate inelastic 
demand into the multi-period model following Cummins and Danzon (1997) where 
policyholders include an allowance for the financial quality of the insurer. This would 
allow the model to determine the relationship between premiums, capital and 
frictional costs more directly. 
 
The return on the assets of the insurer was assumed to be deterministic. The model 
can be made more realistic by introducing a stochastic distribution for the asset return 
to represent the risks associated in asset-liability mismatching. Despite these 
limitations, the models and the results demonstrate an approach to optimal capital 
determination for an insurer that can be calibrated to data and used to develop an 
understanding of capital management of an insurer. 
 
We have aimed to highlight the importance of frictional costs in capital and risk 
management in insurance and to provide a foundation for more sophisticated models. 
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Appendix 1: 

Derivation of the first-order conditions in the multi-period setup 

The optimisation requires the values of t iK +
+ for i= 0, 1, 2, …, ∞, that minimise the 

expression: 
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Notice that 1tK + , the initial capital at the beginning of period 1t + , is equal to the end 
of period t  capital tK +  since the end of period capital for period t is rolled over to the 
start of period t+1. In general, 1t i t iK K+

+ + +=  for i = 0, 1, 2, …, ∞. For the case i = 0, 
the first-order condition is derived by differentiating with respect to tK + and setting to 
zero to get 
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using the fact that 1t i t iK K+
+ + +=  for i = 0, 1, 2, …, ∞. Rearranging gives: 
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With 1 1
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γ β= + +  the first-order condition for i = 0 can be written as 
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The infinite system of first-order equations in the multi-period problem become: 
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for i = 0, 1, 2, …, ∞. For i = 0, tK  is replaced by tK  thus tK  denotes the amount of 
capital at the beginning of period t and is not a random variable. 
 
For i = 1, 2, …, ∞; the identity 1t i t iK K+

+ − +=  can be used to give 
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Appendix 2: 
Characteristic polynomial for the second-order difference equation 

We illustrate how to derive the result 
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since the characteristic polynomial has the sum of the roots equal to γ
β

 and the 

product of the roots equal to 1
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Finally, the identity 1
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 can be verified by rearranging to get 

( ) ( )1
1 1 21 1βλ βλ λ−− = − −L L L  

The left-hand side equals 11 βλ−  and the right-hand side is 

1 2 1 1 1 1
1

1 1βλ λ βλ βλ βλ βλ
βλ

⎛ ⎞
− = − = −⎜ ⎟

⎝ ⎠
.□ 

 



 32

References  

ACCC (2003), “Medical Indemnity Insurance: Monitoring Report, December 2003”. 
 
Altman, E. I. (1984), “A further empirical investigation of the bankruptcy cost 
question” Journal of Finance, Vol. 39 No. 4, September, 1067-1089. 
 
Brealey, R. A. & Myers, S.C. (2003), Principles of Corporate Finance, 7th ed., 
McGraw-Hill Irwin. 
 
Chandra, Victor. (2004), Optimal Capital and Frictional Costs in Insurance, Honours 
Thesis, UNSW Actuarial Studies. 
 
Cummins, J.D. & Danzon, P. M. (1997) “Price, Financial Quality, and Capital Flows 
in Insurance Markets”, Journal of Financial Intermediation, Vol. 6, 3-38. 
 
Cummins, J. D. & Phillips, R. D. (2003) “Estimating the cost of equity capital for 
Property-Liability Insurers”, Working Paper, http://rmictr.gsu.edu/Papers/WP03-
2.pdf. 
 
Estrella, A. (2004) “The cyclical behavior of optimal bank capital”, Journal of 
Banking and Finance, Vol. 28, 1469-1498. 
 
Fama, F. E. & French, K. R. (1992) “The Cross-Section of Expected Stock Returns”, 
Journal of Finance, Vol. 47 pp. 427-465. 
 
Jensen, M. & Meckling, W. (1976) “Theory of the firm: Managerial behaviour, 
agency costs and ownership structure”, Journal of Financial Economics, Vol 3(4), 
305-340. 
 
Jensen M. (1986) “Agency costs of free cash flow, corporate finance and takeovers”, 
American Economic Review, Vol. 76, 323-339. 
 
Kielholz, W. (2000) “The Cost of Capital for Insurance Companies”, The Geneva 
Papers on Risk and Insurance, Vol. 25, No. 1, January, 4-24. 
 
McNally, W. J. (1999), “Open market stock repurchase signalling”, Financial 
Management, Vol. 28,  55-67. 
 
Modigliani, F. & Miller, M. (1958), “The cost of capital, corporation finance and the 
theory of investment”, American Economic Review, June 1958 pp. 261-97. 
 
Myers, S. C. & Cohn, R. A. (1987), “A discounted cash flow approach to Property-
Liability insurance rate regulation”, in Fair Rate of Return in Property-Liability 
insurance, Kluwer-Nijhoff. 
 



 33

Myers, S. C. & Majluf, N. S. (1984), “Corporate financing and nvestment deisions 
when firms have information that investors do not have”, Journal of Financial 
Economics, Vol. 13, pp. 187-221. 
 
Sharpe, William F. (1964), “Capital asset prices: A theory of market equilibrium 
under conditions of risk”, Journal of Finance, Vol. 19 (3), pp. 425-442. 
 
Smith, A., Moran, I. & Walczak, D. (2003), “Why can financial firms charge for 
diversifiable risk?” Thomas Bowles Symposium, GSU. 
 
Winter, R. A. (1994), “The dynamics of competitive insurance markets”, Journal of 
Financial Intermediation, Vol. 3, pp. 379-415. 


