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Abstract

This paper introduces the notion of elliptical transformations for possible
applications in constructing insurance premium principles. It is a common notion
in actuarial science to transform or sometimes said, to distort the real probability
measure of a risk X and then calculate premiums based on the expectation of
the transformed distribution. Elliptical transformations are a way to distort
the probability distribution of a risk and it is based on the relative ratio of a
density generator of a member of the class of elliptical distributions to the density
generator of the Normal distribution which is also well-known to belong to the
class of elliptical distributions. The class of elliptical distribution models consists
of distributions considered symmetric and provides a generalization of the class
of Normal loss distribution models. We examine the premium principle implied
by this elliptical transformation. We find that the elliptical transforms lead us
to, as special cases, the Wang premium principle, the Wang Student-t distortion
principle, as well as the Esscher premium principle. In several cases, the resulting
premium principle has a replicating feature of the standard deviation premium
principle. A numerical example has been elaborated to illustrate the practical
implementation of this elliptical transformation.
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1 Introduction

Consider an insurance company that over some well-defined time reference, faces a
random loss of X on a well-defined probability space (Ω,F ,Pr). We can sometimes
appropriately call X the risk faced by the insurer. For this random loss X, assume
that its distribution function is denoted by FX (x) and its corresponding tail proba-
bility by FX (x) = 1 − FX(x). Assuming X is a continuous random variable, as is
often the case, then the density function of X is given by

fX(x) =
dFX(x)

dx
= −dFX(x)

dx
.

The task of the insurer is to assign a price tag on this risk X leading us to examine
premium principles. As pointed out by Young (2004), that “loosely speaking, a pre-
mium principle is a rule for assigning a premium to an insurance risk”. The insurance
premium is usually coined “risk-adjusted” to refer to the fact that it already incor-
porates model risks as well as parameter uncertainties. As advocated in this paper,
these model and parameter risks are often handled by distorting the real probability
measure. This paper introduces yet another method to transform distributions.

A premium principle π is a mapping from a set Γ of real-valued random variables
defined on (Ω,F) to the set R of real numbers. Effectively, we have

π : Γ −→ R

so that for every X belonging to Γ, π[X] ∈ R, is the assigned premium. To no
surprise, premium principles are well-studied in the actuarial literature. See for
example, Goovaerts, DeVijlder and Haezendonck (1984), Kaas, van Heerwaarden and
Goovaerts (1994), and more recently Young (2004). A chapter on insurance premium
principles is devoted in Kaas, Goovaerts, Dhaene and Denuit (2001).

Risk-adjusted premiums are often computed based on the expectation with re-
spect to a transformed probability measure, say Q, such that

π[X] = EQ[X] = E [ΨX] (1)

where Ψ is a positive random variable which technically is also the Radon-Nikodym
derivative of the Q-measure with respect to the real probability measure, sometimes
denoted by P . See Gerber and Pafumi (1998). This is also sometimes called, in the
Finance literature, the pricing density. In several premium principles, the Ψ follows
the general form defined by a relation

Ψ =
h(X;λ)

E [h(X;λ)]
(2)

for some function h of the random variable X and a parameter λ often describing
some level of risk-aversion to the insurer. This relation in (2) can also be justified in a
decision theoretic framework as discussed in Heilman (1985) and Hürlimann (2004).
Following Hürlimann (2004), for example, consider a loss function L : R2 −→ R which
describes the loss incurred L(x, x∗) for a realized outcome X = x when the action
taken by the decision maker has been x∗. Decisions on premiums are determined
on the basis of minimizing the expectation of this loss function. Consider the loss
function defined by

L(x, x∗) = h(x;λ)× (x− x∗)2 . (3)
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It is straightforward to show then that the resulting premium principle follows the
general form

π[X] = E
∙

h(X;λ)

E [h(X;λ)]
·X
¸
.

Many familiar premium principles lead to this form. For example, the net pre-
mium principle can be derived with h(X;λ) = 1 and the variance premium principle
can be derived with h(X;λ) = 1 + λX. The celebrated Esscher premium princi-
ple can be derived by choosing h(X;λ) = exp(λX), and the Karlsruhe premium
principle discussed in Hürlimann (2004) can be derived by choosing h(X;λ) = X.
Even the conditional tail expectation used as a risk measure can be derived with
h(X;λ) = I

¡
X > F−1X (q)

¢
where I(·) is an indicator function and F−1X (q) is the

quantile of the distribution of X at a pre-determined probability level q.
In the univariate case, we have X belonging to the class of elliptical distributions

if its density can be expressed as

fX(x) =
C

σ
g

"µ
x− µ

σ

¶2#
(4)

for some so-called density generator g (which is a function of non-negative variables),
and where C is a normalizing constant. Later in the paper, the definition of elliptical
distributions is expressed in terms of its characteristic function because this function
always exist for a distribution. For the familiar Normal distribution N

¡
µ, σ2

¢
with

mean µ and variance σ2, it is straightforward to show that its density generator for
which we shall denote by gN in this paper has the form

gN(u) = exp(−u/2) . (5)

In this paper, we define elliptical transformations by considering the functional h(x;λ)
to have the following form:

h(x;λ) =
g
h¡
Φ−1

¡
FX(x)

¢
+ λ

¢2i
gN

h¡
Φ−1

¡
FX(x)

¢¢2i (6)

where g is the density generator of some member of the class of elliptical distribu-
tions. The family of elliptical distributions consists of symmetric distributions for
which the Student-t, the Uniform, Logistic, and Exponential Power distributions are
other familiar examples. This is a rich family of distributions that allow for a greater
flexibility in modelling risks that exhibit tails heavier than that of a Normal dis-
tribution. This can be especially useful for capturing insurance losses for extreme
events.

As we shall observe in our discussion in the paper, the probability transform
defined using the ratio of density generators in (6) effectively distort the distribution
by putting heavier weights on both tails of the distribution. In insurance premium
calculations, what this translates to is giving more penalty on large losses but at
the same time, placing some emphasis on small or zero losses thereby encouraging
small claims. The result is therefore a trade-off between small and large claims re-
distributing the claims distribution so that it leads to a more sensible and equitable
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premium calculation. This trade-off is best parameterized by the parameter λ which
also effectively introduces a shift or translation of the distribution.

The rest of the paper has been organized as follows. In Section 2, we briefly discuss
the rich class of elliptical distributions in the univariate dimension, together with
some important properties. Section 3 describes the notion of elliptical transformation.
Several examples follow. In Section 4, we discuss the special case where the risk has a
distribution that is location-scale. Elliptical distributions are special cases of location-
scale families. In Section 5, using some claims experience data, we demonstrate
practical implementation of introducing premium loadings using the ideas developed
in the paper. Finally, in section 6, we provide some concluding remarks together with
some remarks about possible direction for further work.

2 The Family of Elliptical Distributions

The class of elliptical loss distribution models provides a generalization of the class
of normal loss models. In the following, we will describe this class of models first
in the univariate dimension, and briefly extending it to the multivariate dimension.
The class of elliptical distributions has been introduced in the statistical literature by
Kelker (1970) and widely discussed in Fang, Kotz and Ng (1990). See also Landsman
and Valdez (2003), Valdez and Dhaene (2003), and Valdez and Chernih (2003) for
applications in insurance and actuarial science. Embrechts, et al. (2001) also pro-
vides a fair amount of discussion of this important class as a tool for modelling risk
dependencies.

2.1 Definition of Elliptical Distributions

It is widely known that a random variable X with a normal distribution has the
characteristic function expressed as

E[exp(itX)] = exp(itµ) · exp
¡
−12t

2σ2
¢
, (7)

where µ and σ2 are respectively, the mean and variance of the distribution. We shall
use the notation X ∼ N

¡
µ, σ2

¢
. The class of elliptical distributions is a natural

extension to the class of normal distributions.

Definition 1 The random variable X is said to have an elliptical distribution with
parameters µ and σ2 if its characteristic function can be expressed as

E [exp(itX)] = exp(itµ) · ψ
¡
t2σ2

¢
(8)

for some scalar function ψ.

If X has the elliptical distribution as defined above, we shall conveniently write
X ∼ E

¡
µ, σ2, ψ

¢
and say that X is elliptical. The function ψ is called the charac-

teristic generator of X and therefore, for the normal distribution, the characteristic
generator is clearly given by ψ(u) = exp(−u/2).

It is well-known that the characteristic function of a random variable always ex-
ists and that there is a one-to-one correspondence between distribution functions and
characteristic functions. Note however that not every function ψ can be used to con-
struct a characteristic function of an elliptical distribution. Obviously, this function
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ψ should fulfill the requirement that ψ(0) = 1. A necessary and sufficient condition
for the function ψ to be a characteristic generator of an ellipticial distribution can be
seen in Theorem 2.2 of Fang, Kotz and Ng (1990).

It is also interesting to note that the class of elliptical distributions consists mainly
of the class of symmetric distributions which include well-known distributions like
normal and Student-t. The moments of X ∼ E

¡
µ, σ2, ψ

¢
do not necessarily exist.

However, it can be shown that if the mean, E(X) , exists, then it will be given by

E(X) = µ (9)

and if the variance, V ar(X) , exists, then it will be given by

V ar(X) = −2ψ0(0)σ2, (10)

where ψ0 denotes the first derivative of the characteristic generator. A necessary
condition for the variance to exist is¯̄

ψ0(0)
¯̄
<∞, (11)

see Cambanis, Huang and Simmons (1981).
In the case where µ = 0 and σ2 = 1, we have what we call a spherical distribution

and the random variable X is replaced by a standard random variable Z. That is,
we have Z ∼ E(0, 1, ψ) and the notation S(ψ) for E(0, 1, ψ) is more typically used
and thus, we write Z ∼ S(ψ). It is clear that the characteristic function of Z has the
form

E[exp(itZ)] = ψ
¡
t2
¢

for any real number t.
Also, if we consider any random variable X satisfying

X
d
= µ+ σZ,

for some real number µ, some positive real number σ and some spherical random
variable Z ∼ S(ψ), then it can be shown that X ∼ E

¡
µ, σ2,ψ

¢
. Similarly, for any

elliptical random variable X ∼ E
¡
µ, σ2,ψ

¢
, we can always define the random variable

Z =
X − µ

σ

which is clearly spherical.

2.2 Densities of Elliptical Distributions

An elliptically distributed random variable X ∼ E
¡
µ, σ2, ψ

¢
does not necessarily

possess a density function fX (x). In the case of a normal random variable X ∼
N
¡
µ, σ2

¢
, its density is well-known to be

fX(x) =
1√
2πσ

exp

"
−1
2

µ
x− µ

σ

¶2#
. (12)
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For elliptical distributions, one can prove that if X ∼ E
¡
µ, σ2, ψ

¢
has a density, it

will have the form

fX(x) =
C

σ
g

"µ
x− µ

σ

¶2#
(13)

for some non-negative function g(·) satisfying the condition

0 <

Z ∞

0
z−1/2g(z)dz <∞ (14)

and a normalizing constant C given by

C =

∙Z ∞

0
z−1/2g(z)dz

¸−1
. (15)

Also, the opposite statement holds: Any non-negative function g(·) satisfying the
condition (14) can be used to define a one-dimensional density

C

σ
g

"µ
x− µ

σ

¶2#
of an elliptical distribution, with C given by (15). The function g(·) is called the
density generator. One sometimes writes X ∼ E

¡
µ, σ2, g

¢
for the one-dimensional

elliptical distributions generated from the function g(·). A detailed proof of these
results for the case of n-dimension, using spherical transformations of rectangular
coordinates, can be found in Landsman and Valdez (2003).

From (12), one immediately finds that the density generators and the correspond-
ing normalizing constants of the normal random variable X ∼ N

¡
µ, σ2

¢
are given by

g(z) = exp(−z/2) and C = 1√
2π
, respectively.

Table 1
Some known elliptical distributions with their density generators

Family Density generators g(u)

Bessel g(u) = (u/b)a/2Ka

h
(u/b)1/2

i
, a > −1/2, b > 0

where Ka (·) is the modified Bessel function of the 3rd kind

Cauchy g(u) = (1 + u)−1

Exponential Power g(u) = exp[−r (u)s], r, s > 0

Laplace g(u) = exp(− |u|)

Logistic g(u) =
exp(−u)

[1 + exp(−u)]2

Normal gN(u) = exp(−u/2)

Student-t g(u) =
³
1 +

u

m

´−(m+1)/2
, m > 0 an integer
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As a special case, we find that from the results concerning elliptical distributions,
if a spherical random variable Z ∼ S(ψ) possess a density fZ(z), then it will have
the form

fZ(z) = Cg
¡
z2
¢
,

where the density generator g satisfies the condition (14) and the normalizing constant
C satisfies (15). Furthermore, the opposite also holds: any non-negative function g(·)
satisfying the condition (14) can be used to define a one-dimensional density Cg

¡
z2
¢

of a spherical distribution with the normalizing constant C satisfying (15). One often
writes S(g) for the spherical distribution generated from the density generator g(·).

3 Elliptical Transforms

Suppose gZ (u) is the density generator of a univariate spherical random variable
Z ∼ E (0, 1, gZ), also written as Z ∼ S (gZ). We have subscripted the density
generator to emphasize the corresponding spherical random variable Z. Now we
define the ratio of density generators as follows.

Definition 2 Let X be a random variable with tail probability function FX (·). We
define the ratio of density generators gZ and gN to be the random variable

hgZ (X;λ) =
gZ
h¡
Φ−1

¡
FX(X)

¢
+ λ

¢2i
gN
h¡
Φ−1

¡
FX(X)

¢¢2i (16)

for some non-negative parameter λ ≥ 0 and where Φ (·) is the cumulative distribution
function of a standard Normal random variable and gN is the density generator of a
Normal distribution.

Notice that in the definition we assume we have a random variable X ∈ Γ, be-
longing to the set of all risks, whose tail probability function is given by FX (·). As
we shall observe later in the examples that follow, this non-negative parameter can
be interpreted as a premium per unit of volatility (or risk). The following theorem
gives an expression for the expectation of the ratio of density generators.

Theorem 1 Let X be a random variable with tail probability function FX(·) and let
the cumulative distribution function of a standard Normal be denoted by Φ (·). The
expectation of the ratio of density generators gZ and gN can be expressed as

E [hgZ (X;λ)] =
1√
2π

Z ∞

−∞
gZ
¡
z2
¢
dz. (17)

Proof. First assuming the density of X is denoted by fX(·), then we can write
the expectation as

E[hgZ (X;λ)] =
Z ∞

−∞

gZ
h¡
Φ−1

¡
FX(x)

¢
+ λ

¢2i
gN
h¡
Φ−1

¡
FX(x)

¢¢2i fX(x) dx.

7



Using the transformation u = FX(x) so that du = −fX(x)dx, then we have

E[hgZ (X;λ)] =
Z 1

0

gZ
h¡
Φ−1(u) + λ

¢2i
gN

h
(Φ−1(u))2

i du.

With another transformation w = Φ−1(u) so that du = 1√
2π
gN
¡
w2
¢
dw, we then have

E[hgZ (X;λ)] =
Z ∞

−∞

gZ

h
(w + λ)2

i
gN(w2)

1√
2π

gN
¡
w2
¢
dw.

Applying one last transformation z = w + λ, we get the desired result.

Following the above Theorem, it is clear that for a spherical Z ∼ S (gZ) with a
normalizing constant CZ , we have the following result (which will later be useful):

CZ =

∙Z ∞

−∞
gZ
¡
z2
¢
dz

¸−1
=
E[hgZ (X;λ)]√

2π
.

We now give some examples of ratios of density generators.

Example 3.1: Normal-to-Normal Generators
If gZ is also the density generator of a Normal distribution, then we have

hgN (X;λ) =
gN
h¡
Φ−1

¡
FX(X)

¢
+ λ

¢2i
gN
h¡
Φ−1

¡
FX(X)

¢¢2i = exp
£
−λ

¡
Φ−1

¡
FX(X)

¢
+ 1

2λ
¢¤

= e−λ
2/2 exp

£
−λΦ−1

¡
FX(X)

¢¤
. (18)

It is easy to see that in this case, the expectation of (18) is equal to 1. Direct
application of Theorem 1, for example, leads us to this. ¥

Example 3.2: Student-t-to-Normal Generators
If gZ is the density generator of a Student-t distribution with m degrees of freedom,
then we have

hgZ (X;λ) =
gZ
h¡
Φ−1

¡
FX(X)

¢
+ λ

¢2i
gN

h¡
Φ−1

¡
FX(X)

¢¢2i
=

exp
h
1
2

¡
Φ−1

¡
FX(X)

¢¢2ih
1 + 1

m

¡
Φ−1

¡
FX(X)

¢
+ λ

¢2i(m+1)/2 . (19)

Applying Theorem 1 to solve for the expectation, we have

E[hgZ (X;λ)] =
1√
2π

Z ∞

−∞
gZ
¡
z2
¢
dz

=
1√
2π

Z ∞

−∞

µ
1 +

1

m
z2
¶−(m+1)/2

dz.
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Applying transformations, it can be shown that this expectation leads us to

E[hgZ (X;λ)] =

r
m

2π

Z 1

0
z(m/2)−1 (1− z)(1/2)−1 dz =

r
m

2π
B

µ
m

2
,
1

2

¶
=

r
m

2π

Γ(m/2)Γ(1/2)

Γ((m+ 1)/2)
=

r
m

2

Γ(m/2)

Γ((m+ 1)/2)
,

where B(·, ·) is the Beta function and Γ(·) is the Gamma function. Here, we also note
that we applied the fact that Γ(1/2) =

√
π. Now interestingly, the case where m = 1

leads us to the Cauchy-to-Normal generators and in which case, we would have

E[hgZ (X;λ)] =

r
1

2π

Γ(1/2)Γ(1/2)

Γ(1)
=

r
π

2
.

It can also be shown that in the limiting case where m −→∞, this leads us back to
the Normal-to-Normal density generators. ¥

Example 3.3: Exponential Power-to-Normal Generators
Assuming now that gZ is the density generator of an Exponential-Power distribution
(see Table 1), then we have

hgZ (X;λ) =
gZ

h¡
Φ−1

¡
FX(X)

¢
+ λ

¢2i
gN
h¡
Φ−1

¡
FX(X)

¢¢2i
= exp

n
−
h
r
¡
Φ−1

¡
FX(X)

¢
+ λ

¢2s − 1
2

¡
Φ−1

¡
FX(X)

¢¢2io
. (20)

Applying Theorem 1 to solve for the expectation, we have

E[hgZ (X;λ)] =
1√
2π

Z ∞

−∞
gZ
¡
z2
¢
dz

=
1√
2π

Z ∞

−∞
e−rz

2s
dz

=
2√
2π

Z ∞

0
e−rz

2s
dz

where the third line follows because of symmetry. Let us derive an explicit form for
this expectation. First, consider the transformation u = z2s so that du = 2sz2s−1dz =
2su(2s−1)/2sdz. This leads us to

E[hgZ (X;λ)] =
1

s
√
2π

Z ∞

0
u(

1
2s)−1e−rudu.

Next then, consider the transformation z = ru so that dz = rdu. We have

E[hgZ (X;λ)] =
1

s
√
2π

r1−(1/2s)
Z ∞

0
z(

1
2s)−1e−zdz

=
1

s
√
2π

r1−(1/2s)Γ

µ
1

2s

¶
,

where Γ(·) is the usual Gamma function. The case where r = 1/2 and s = 1 leads us
to the Normal distribution case. ¥

9



Consider again gZ as the density generator of a univariate spherical random vari-
able Z ∼ S(gZ). Now we define what we meant by probability transformation using
these elliptical density generators. These transformations we will, for simplicity, call
elliptical transformations.

Definition 3 Let X be a random variable with tail probability function FX(·) and
whose density function exists and is equal to fX(·). We define the transformed random
variable, denoted by X∗, to be one with a (transformed) density function given by

fX∗(x) = C ×
gZ

h¡
Φ−1

¡
FX (X)

¢
+ λ

¢2i
gN

h¡
Φ−1

¡
FX (X)

¢¢2i × fX(x) (21)

for all x in the domain or range of X and where C is a normalizing constant.

By recognizing that hgZ (X;λ) =
gZ

h
(Φ−1(FX(X))+λ)

2
i

gN

h
(Φ−1(FX(X)))

2
i , the ratio of density gener-

ators, we simply note that the normalizing constant is

C =
1

E[hgZ (X;λ)]

for which can be easily evaluated from Theorem 1. We can, as a matter of fact, find
an expression for the distribution function of the (transformed) random variable X∗.
First, notice that

FX∗(x) =

Z ∞

x
fX∗(v) dv = C

Z ∞

x

gZ
h¡
Φ−1

¡
FX(v)

¢
+ λ

¢2i
gN
h¡
Φ−1

¡
FX(v)

¢¢2i × fX(v) dv.

Applying the transformation u = FX(v) so that du = −fX(v)dv, this yields

FX∗(x) = C

Z FX(x)

0

gZ

h¡
Φ−1(u) + λ

¢2i
gN

h
(Φ−1(u))2

i du

and then applying the transformation w = Φ−1(u) so that du = 1√
2π
gN
¡
w2
¢
dw, we

have

FX∗(x) =
C√
2π

Z Φ−1(FX(x))

−∞

gZ
h
(w + λ)2

i
gN(w2)

gN
¡
w2
¢
dw

=

Z Φ−1(FX(x))+λ

−∞
CZ × gZ

¡
z2
¢
dz

= FZ
£
Φ−1

¡
FX(x)

¢
+ λ

¤
(22)

where FZ(·) is the distribution function of a spherical random variable with density
generator gZ . In short, we have Z ∼ S(gZ).
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In an independent work done by Landsman (2004), he also proposed to use a
transformation of densities of elliptical random variables using a ratio of the density
generator evaluated as

g
h
((x− µ) /σ)2 − 2λx

i
g
h
((x− µ) /σ)2

i .

Landsman (2004) showed that this transformation is a generalization of the Esscher
transform for elliptical distributions. He further demonstrated that this generalizes
the variance premium principle applied again to elliptical distributions and he appro-
priately called these transformations elliptical tilting.

There are several differences between Landsman’s elliptical tilting with those pro-
posed in this paper. First, unlike Landsman (2004), we take the ratio of two different
density generators, one of which is always the Normal density generator, and the
other is an arbitrarily chosen one. In effect, we are transforming the distribution by
taking the relative weights of the densities of an arbitrarily chosen elliptical random
variable to the Normal random variable. The arbitrary selection allows the decision
maker (which in this case is the insurer) some flexibility. Landsman chooses the
density generator of the random variable being tilted which is always an elliptical
random variable. Second, while both Landsman and this paper allows translation of
the distribution by introducing a shift parameter λ, the manner in which the trans-
lation is accomplished differ in both respects. Landsman introduces the shift using
((x− µ) /σ)2− 2λx while we, in this paper, introduce the shift via Φ−1

¡
FX(x)

¢
+ λ.

Third, Landsman limited its applications to exponential tilting of elliptical random
variables while ours does not necessarily have such limitations. Lastly, in the case of
a Normal distribution, Landsman generalizes the variance premium principle while
we generalize the standard deviation premium principle. The standard deviation is
more commonly utilized as a measure of the level of riskiness of a portfolio. See, for
example, Markowitz (1952) and Merton (1990).

Definition 4 Let X be a random variable with tail probability function FX(·) and
whose density function exists and is equal to fX(·). Let X∗ be the transformed random
variable of X according to the elliptical transformation defined in (21). Then the
expectation of X∗ is defined to be the premium principle implied by the elliptical
transformation:

π[X] = E(X∗) = E
∙

hgZ (X;λ)

E[hgZ (X;λ)]
·X
¸
.

Observe that from (22), we can also derive the premium (or expectation of the
transformed distribution) using

π[X] = E(X∗) = −
Z 0

−∞
FZ
£
Φ−1

¡
FX (x)

¢
+ λ

¤
dx+

Z ∞

0
FZ

£
Φ−1

¡
FX (x)

¢
+ λ

¤
dx

which reduces to just
R∞
0 FZ

£
Φ−1

¡
FX (x)

¢
+ λ

¤
dx for random variables with non-

negative support.
We produce Figures 1 to 4 to help us visualize the transformation. All figures

in this paper are attached as appendix following the list of references. For Figures
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1 through 4, we assume the random variable X being transformed is Uniform on
the interval (0, 100). This choice has been made to help us more vividly visualize
the effects of the transformation. The straight horizontal broken line found in these
figures is the un-transformed (or original) Uniform density.

In Figure 1, we consider the case where we choose Z to be the Normal distribution
and we present the various transformation for different values of λ. Generally, we
see that using the Normal density generator, this puts more weights on the right-
tail of the distribution. So if the risk are losses as in the case of insurances, this
penalizes more heavily large amount of losses. The effect of λ introduces a shift of
the distribution to the right for larger λ putting in an even heavier penalty on the
tails.

In Figures 2, 3 and 4, we consider the case where we choose Z to be the Student-t
distribution. Figure 2 examines the effect of increasing the degrees of freedom (fixing
λ = 1) while Figure 3 examines the effect of increasing the risk aversion parameter
λ (fixing m = 5). In Figure 4, we present the case where λ = 0 when there is no
shift in the distribution. Here we observe equal penalty of both ends of the tail.
The Student-t distortion has been first introduced by Wang (2004) in the pricing of
catastrophe bonds. As pointed out in his paper, putting more weights to the tails of
the underlying distributions is a way to reflect investor behavior and preferences that
we often observe in the market. Investors generally fear large unexpected losses, but
they also like large unexpected gains.

Interestingly as special cases, we recover some of the familiar premium principles
as discussed below. This in some sense generalizes these premium principles.

Example 3.4: Wang Premium Principle
If gZ is chosen to be the density generator of a Normal distribution, then it is imme-
diate to get the Wang transformation:

FX∗(x) = Φ
£
Φ−1

¡
FX(x)

¢
+ λ

¤
.

See Wang (1996) and Wang (2000).

Example 3.5: Wang’s Student-t Distortion Premium Principle
If gZ is chosen to be the density generator of a Student-t distribution with m degrees
of freedom, then we have as defined in Wang (2004)

FX∗(x) = Q
£
Φ−1

¡
FX(x)

¢
+ λ

¤
,

where, followingWang’s notation, Q(·) denotes the distribution function of a Student-
t with m degrees of freedom. Wang actually has set λ = 0 and used FX∗(x) =
Q
£
Φ−1

¡
FX(x)

¢¤
instead.

Example 3.6: Esscher Premium Principle
Because 1−Φ(x) = Φ(−x), then in the special case where X is Normally distributed
say N

¡
µ, σ2

¢
, it is rather straightforward to see that the elliptical transformation

leads to the Esscher transform. In this case, we have

hgZ (X;λ)

E[hgZ (X;λ)]
=

e−λ
2/2 exp

£
−λΦ−1

¡
FX(X)

¢¤
E
h
e−λ

2/2 exp
£
−λΦ−1

¡
FX(X)

¢¤i = exp
¡
λ
σX
¢

E
£
exp

¡
λ
σX
¢¤ .

See Esscher (1932) and also more recent articles, for example, Gerber and Shiu (1994).
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4 Location-Scale Families

By considering the risk X to belong to families of location-scale distributions, we
can further simplify the premium principle implied by the elliptical transformation.
Members of the elliptical distributions also belong to the larger family of location-
scale distributions. As a matter of fact, in this case, we are able to recover a similar
concept to the standard deviation premium principle. We give the following theorem.

Theorem 2 Let X be a random variable belonging to a location-scale family so that

FX(x) = FZ∗

µ
x− µ

σ

¶
for some Z∗ =

X − µ

σ
whose distribution is independent of

the location parameter µ and scale parameter σ. Then the premium principle implied
by the elliptical transformation can be expressed as

π[X] = µ+ EZ
h
F
−1
Z∗(Φ(Z − λ))

i
× σ.

Proof. First assuming the density of X exists and is denoted by fX(·), then we
can write the expectation as

π[X] = C

Z ∞

−∞
x
gZ
h¡
Φ−1

¡
FX(x)

¢
+ λ

¢2i
gN

h¡
Φ−1

¡
FX(x)

¢¢2i fX (x) dx.

Applying the transformation u = FX(x) so that du = −fX(x) dx, this yields to

π[X] = C

Z 1

0
F
−1
X (u)

gZ
h¡
Φ−1(u) + λ

¢2i
gN

h
(Φ−1(u))2

i du.

With another transformation w = Φ−1(u) so that du = 1√
2π
gN
¡
w2
¢
dw, we then have

π[X] = C

Z ∞

−∞
F
−1
X (Φ(w))

gZ
h
(w + λ)2

i
gN(w2)

1√
2π

gN
¡
w2
¢
dw.

Applying one last transformation z = w + λ, we get

π[X] =

Z ∞

−∞
F
−1
X (Φ(z − λ))CZgZ

¡
z2
¢
dz

where CZ =
hR∞
−∞ gZ

¡
z2
¢
dw
i−1

is the normalizing constant of the spherical random
variable Z. Thus, we see that

π[X] = EZ
h
F
−1
X (Φ(Z − λ))

i
where the expectation EZ is evaluated with respect to the spherical random variable
Z. Now, since X is location scale, we can re-write

F
−1
X (Φ(Z − λ)) = µ+ F

−1
Z∗(Φ(Z − λ))× σ

and the desired result immediately follows.

13



This result gives us a way of interpreting the parameter λ, which is actually a
risk premium per unit of risk (or volatility) as measured by the standard deviation.
In the case where X is normally distributed N

¡
µ, σ2

¢
and we choose Z to be the

standard Normal, then we get

EZ
h
F
−1
Z∗(Φ(Z − λ))

i
= EZ(λ− Z) = λ− EZ(Z) = λ,

so that the resulting premium principle leads us to the familiar form of the standard
deviation premium principle:

π[X] = µ+ λσ.

Therefore, we have λ =
π[X]− µ

σ
, a risk premium per unit of risk as measured

by σ. Furthermore, it can also be shown that by using a first-order Taylor’s series
expansion, we can have the following approximation:

EZ
h
F
−1
Z∗(Φ(Z − λ))

i
≈ F

−1
Z∗(Φ(−λ)) = F

−1
Z∗
¡
Φ(λ)

¢
,

where Φ denotes the tail probability function of a standard normal.

5 Practical Implementation

In this section, we illustrate how to practically implement the premium principles
developed in this paper using the empirical losses investigated in Frees and Valdez
(1998). The experience consisted of a random sample of 1,500 claims from a general
insurance liability portfolio provided by the Insurance Services Office, Inc. For our
purposes, we only include in this analysis the observations from claims, for which
we denote here as the risk X. Unfortunately, the experience data we consider here
consists of observations that generated claims arising from an insurance portfolio. In
an ordinary insurance portfolio, the case is usually one where there is a mass of zero
claims, some observations that never generated claims. In the pricing of insurance,
one would take into account the probability mass of zero claims. For the lack of
available insurance claims data, we resort to this experience data, however, we ask
the reader to exercise caution that normally in insurance pricing, the probability
mass of zero claims must be taken into account. This mass has been ignored in the
ensuing analysis.

Summary statistics can be found in Frees and Valdez (1998), but just to reiterate
these statistics, the average loss was 41,208, the median was 12,000 and the standard
deviation was 102,748. In fitting for the best distribution for this experience loss
data, censoring had to be considered because claims have policy limits and if the
actual loss exceeded the policy limit, only the policy limit was recorded. At any rate,
according to Frees and Valdez (1998), the best fitting loss distribution model for the
data has the Pareto form described by

FX(x) =

µ
λ

λ+ x

¶θ

, for x > 0.

Its density function therefore has the form

fX(x) = θλθ
µ

1

λ+ x

¶θ+1

.
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The maximum likelihood parameter estimates are bλ = 14, 453 and bθ = 1.135, with
respective standard errors of 1,397 and 0.066. In Figure 5, we provide a frequency
histogram of the logarithm of the observed losses (called logloss) with the fitted Pareto
density function of the logloss. This figure ignores the censored observations.

For simplicity, in constructing the premium principle used to illustrate, we have
considered the choice of a Student-t density generator withm = 3 degrees of freedom.
There is no empirical basis for this choice, except the Student-t appears to be the
most sensible as it allows flexibility with the additional parameter for degrees of
freedom. Thus, from Example 3.2, we can write

hgZ (X;λ) =

exp

"
1
2

µ
Φ−1

µ³
λ

λ+X

´θ¶¶2#
"
1 + 1

3

µ
Φ−1

µ³
λ

λ+X

´θ¶
+ λ

¶2#2 .
The purpose here is therefore to develop risk-adjusted premiums. The results are

summarized in Figures 6 and 7. Figure 6 provides the risk-adjusted premiums for
varying values of λ and it is not surprising to see that the risk-adjusted premiums
increase with increasing λ. For the different risk-adjusted premiums implied by the
different λ, we computed then the probability of having losses smaller than these risk-
adjusted premiums, under the original probability measure. This level of probability
we denote here by q, and in Figure 7, we show the risk-adjusted premiums as a
function of this probability level. Again, there is higher risk-adjusted premiums
associated with larger q. Notice that the risk-adjusted premium does not always
yield a larger value than the unadjusted premium (that is, the net premium equal
to λ/ (θ − 1) in the Pareto case), but because of its increasing nature, for some level
λ and correspondingly for some level q, beyond which there will be a positive risk
premium. Numerically, these results are summarized as Table 2 for convenience.
Here, the net premium level is 107,059, and at λ = 1.57204 (or correspondingly
q = 0.9108), this premium level will equal the risk-adjusted premium. See Table 2.

Table 2
The risk-adjusted premiums and their probability levels

λ unadjusted premium E(X) risk-adjusted premium π[X] probability level q

0.0 107,059 4,540 0.2665
0.5 107,059 11,848 0.4932
1.0 107,059 31,784 0.7328
1.5 107,059 91,126 0.8953
2.0 107,059 290,017 0.9685
2.5 107,059 1,051,629 0.9924
3.0 107,059 4,462,059 0.9985

6 Final Remarks

This paper introduces the notion of elliptical transformation leading to a premium
principle which in some sense generalizes the familiar Wang transformation as well
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as the premium principle introduced by Wang (2004) using the Student-t distortion
function. We also note that in the special case of transforming random variables be-
longing to the location-scale families, the resulting premium principle is the standard
deviation premium principle. Furthermore, we observe from the figures presented
in the paper that in some sense, the transformation introduces a heavy penalty on
the extreme right tails of the distribution but also encourages small losses by placing
relatively reasonable weights on the extreme left tails of the distribution. How much
this penalty is can depend upon the choice of the density generator together with
the parameter λ which in a sense gives a measure of aversion to the level of risk of
the insurer. This parameter also introduces a shift in the distribution of the risk. In
the Normal distribution case, the same parameter leads to an interpretation of a risk
premium per unit of volatility, or risk. We are also able to show that the elliptical
transformation recovers many other familiar premium principles. The notion of el-
liptical transformation introduced in this paper can also be applied as a risk measure
to compute economic capital. It will be interesting how this risk measure may be
extended to the case where there is a need to aggregate several risks or to re-allocate
the total economic capital into various constituents. Moreover, in the future, it will
be an interesting work to examine some properties of this premium principle.
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Figure 1: Elliptical transformation using the Normal density genera-
tor. This transformation effectively results in the Wang transforma-
tion showing large penalty on the right tail.
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Figure 2: Elliptical transformation using the Student-t density gener-
ator, varying the degrees of freedom. This transformation effectively
penalizes both extremes of the distribution, but more so with right
tail.
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Figure 3: Elliptical transformation still using the Student-t density
generator, but varying the parameter λ. Here we have fixed the de-
grees of freedom to 5.
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Figure 4: Elliptical transformation using the Student-t density gen-
erator. This is the case where λ = 0 and degrees of freedom m = 5. It
shows that equal penalties are imposed at extremes of the distribution.

19



2 3 4 5 6 7 8 9 1 0 1 2 1 3 1 4 1 5
L O G L O S S

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

Pa
re

to
 F

it

Figure 5: Frequency histogram of the Logarithm of claims. The smooth
curve superimposed on the histogram is the fitted Pareto distribution.
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Figure 6: The risk-adjusted premium as a function of the distribution
shift parameter λ. The broken horizontal line gives the unadjusted
net premium, that is, the expected value of the un-transformed distri-
bution. A positive loading therefore results only when λ is chosen so
that the smooth curve is above the horizontal line.
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Figure 7: The risk-adjusted premium as a function of the level of prob-
ability q. The broken horizontal line gives the unadjusted net premium,
that is, the expected value of the un-transformed distribution.
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