Capital Allocation in Insurance: Economic Capital and the Allocation of the Default Option Value*

Michael Sherris
Faculty of Commerce and Economics,
University of New South Wales,
Sydney, NSW, Australia, 2052
e-mail: m.sherris@unsw.edu.au
and
John van der Hoek
Department of Applied Mathematics,
University of Adelaide,
Adelaide, S.A. Australia, 5005
e-mail: jvanderh@maths.adelaide.edu.au

September 7, 2004

Abstract

The determination and allocation of economic capital is important for pricing, risk management and related insurer financial decision making. This paper considers the allocation of economic capital to lines of business in insurance. We show how to derive closed form results for the complete markets, arbitrage-free allocation of the insurer default option value, or insolvency exchange option, to lines of business for an insurer balance sheet. We assume that individual lines of business and the surplus ratio are joint log-normal although the method we adopt allows other assumptions. The allocation of the default option value is required for fair pricing in the multi-line insurer. We discuss and illustrate other methods of capital allocation, including Myers-Read, and give numerical examples for the capital allocation of the default option value based on explicit payoffs by line.

JEL Classification: G22, G13, G32

Keywords: capital allocation, insurance, default option value

*This research supported by Australian Research Council Discovery Grant DP0345036 and financial support from the UNSW Actuarial Foundation of The Institute of Actuaries of Australia. We thank Wina Wahyudi for excellent research assistance. An earlier version was presented at the 39th Actuarial Research Conference, Iowa, August 2004, and submitted to the 14th International AFIR Colloquium, Boston, November 2004.
Introduction

Venter (2004) [16] gives a comprehensive review and discussion of approaches for allocating capital to lines of business including a discussion of the Myers and Read (2001) [10] approach based on Butsic (1999) [2]. Cummins (2000) [3] provides an overview of capital allocation in insurance including the methods of allocating capital proposed by Merton and Perold (1993) [8] and Myers and Read (2001) [10]. An often stated benefit of the Myers and Read (2001) [10] approach is that all capital is allocated whereas the Merton and Perold (1993) [8] approach leaves some capital unallocated. Myers and Read (2001) [10] identify the importance of the insurer default option in determining capital allocation. They show how a marginal default option value can be used to determine the capital required to maintain a specified insurer default option value to liability ratio for small changes in lines of business. These marginal default values are then used to allocate insurer capital.

Because the amounts of capital allocated to each line of business differ substantially between the M-R and M-P methods, the two methods will not yield the same pricing and project decisions when used with a method that employs by-line capital allocations. Consequently, it is important to determine which method is correct.

Cummins (2000) [3] also states in the final sentence of his conclusion

Finally, the winning firms in the twenty-first century will be the ones that successfully implement capital allocation and other financial decision-making techniques. Such firms will make better pricing, underwriting and entry/exit decisions and create value for shareholders.

Mildenhall (2002) [9] shows that the Myers and Read (2001) [10] method will only allocate the default option value in practice so that the values "add-up" for insurance loss distributions by line of business that are homogeneous. This is important since capital allocation is often used in practice for determining the amount of capital required as lines of business are grown or exited.

Phillips, Cummins and Allen (1998) [12] argue that it is not appropriate to allocate capital to lines of business. Gründl and Schmeiser (2003) [4] make the case that there is no need to allocate capital for the purposes of pricing insurance contracts and determining surplus requirements.
Sherris (2004) [14] discusses capital allocation in a complete markets and frictionless model. He shows how economic capital of the total insurer balance sheet can be allocated by line of business. He gives results for the allocation of the default option value allowing explicitly for the share of the asset shortfall for each line of business in the event of insolvency. His approach fully allocates the total insurer default option value to lines of business regardless of the loss distribution provided arbitrage-free values can be determined. Allocation of total insurer capital requires an allocation of assets as well as the default option value. Sherris (2004) [14] shows there is no unique or optimal way to allocate the assets to lines of business without additional criteria. These allocations differ from the Myers and Read (2001) [10] allocations and we explain the reason for the differences.

The allocation of the insurer level default option value has economic significance since this determines the fair price of insurance by line. Fair prices of lines of business reflect the risk of the liability as well as the allocation of the default option value to the line of business. Thus the allocation of the default option value by line of business is critical to fair pricing in the multi-line insurer. For pricing it is necessary to allocate the default option value to lines of business in order for insurance prices to include the impact of insolvency on claims. We do this explicitly based on the insurer balance sheet and the explicit by-line payoffs allowing for insolvency.

In this paper we derive closed form expressions for the default option value by line of business under the assumption that lines of business and the ratio of assets to liabilities are joint log-normal. The approach used can be generalised to other distributions for lines of business. We review the Myers and Read (2001) [10] results and other approaches to capital allocation in insurance and explain why they differ from the explicit pay-off approach that we use. Our approach evaluates the default option value by line of business directly. Total insurer default option value is the sum of the by-line values since these values are shown to "add-up" by definition. The Myers and Read (2001) [10] approach is based on the total insurer default option value and (partial derivatives) sensitivities to small changes in lines of business are used to allocate capital. These sensitivities give the infinitesimal increases in capital required in the static insurer balance sheet for an infinitesimal increase in the liability value of a line of business in order for the default value per unit of total insurer liability to remain unchanged. They should not be used as capital allocations for the current insurer balance sheet. We also derive expressions for these partial derivatives for our default option values. Our total insurer balance sheet default option value and partial derivatives are similar to those of Myers and Read (2001) [10], differing only because of the different distributional assumptions we use for lines of business and the ratio of assets to liabilities.

A major difference between our approach and other approaches is that we explicitly determine the value of the default option by line of business based on the payoffs to line of business in insolvency. We also recognise that there is no unique allocation of assets to line of business without additional criteria and hence no unique capital allocation in a model with complete markets and no
market frictions. We illustrate the results with numerical examples.

1 Allocation of Economic Capital and the Insurer Balance Sheet

This section is based on Sherris (2004) [14]. More details including numerical examples are provided in his paper. The model is a single period model and we will denote the terminal date by T. The balance sheet of the insurer consists of the assets, $V(t)$, the liabilities, consisting of $L_i(t)$ for line of business i and the default option value, $D(t)$. Surplus is defined as

$$S(t) = V(t) - L(t)$$

At time zero we also have

$$s = \frac{S(0)}{L(0)}$$

where s is the initial known solvency ratio for the insurer.

The insurer economic (or fair value) balance sheet is as follows:

<table>
<thead>
<tr>
<th>Balance Sheet</th>
<th>Initial Value</th>
<th>End of Period Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>V</td>
<td>$V(T)$</td>
</tr>
<tr>
<td>Liabilities</td>
<td>$L - D$</td>
<td>$L(T) - (L(T) - V(T))^+$</td>
</tr>
<tr>
<td>Equity</td>
<td>$S + D$</td>
<td>$[V(T) - L(T) + (L(T) - V(T))^+]$</td>
</tr>
</tbody>
</table>

Table 1: Total Insurer Economic Balance Sheet

where $V = V(0)$, $L = L(0)$, $D = D(0)$ and $S = V - L$. The total economic capital of the insurer is $S(t) + D(t)$ and the market, or economic, value of the liabilities allowing for the insolvency of the insurer is $L(t) - D(t)$.

We will later derive expressions for $D_i = D_i(0)$, the default option value allocated to line of business i, based on payoffs allowing for insolvency and equal priority, given by $L_i(T) \left (1 - \frac{V(T)}{L_i(T)} \right)^+$, as noted by Sherris (2004) [14]. The allocated values add up to the total insurer default option value because the payoffs add up.

The other component of the insurer economic capital is the surplus $S(0)$. Since this equals the initial value of the assets minus the initial value of the liabilities, we need to allocate assets to lines of business in order to allocate initial surplus. There is no unique way to allocate the assets to line of business without additional criteria such as requiring constant expected return to line of business based on allocated capital as noted in Sherris (2004) [14]. If an indirect approach to pricing is to be used by considering cashflows to equity holders and the cost of capital then it is important to allocate capital consistently with the allocation of assets to lines of business.
We can determine the solvency ratio for each line of business based on an arbitrary allocation of assets to line of business. This will be denoted by

$$\tilde{s}_i = \frac{S_i}{L_i} = \frac{V_i - L_i}{L_i}$$

where V_i is the value of the assets allocated to line of business i at time 0 and we use \tilde{s}_i to differentiate this from the s_i in Myers and Read (2001) [10] which is defined as a partial derivative. The difference between these two definitions will be covered in more detail later in this paper.

The values of the payoff to each line of business in the event of insolvency determines the internal balance sheet for line of business i:

<table>
<thead>
<tr>
<th>Balance Sheet</th>
<th>Initial Value</th>
<th>End of Period Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>V_i</td>
<td>$V_i(T)$</td>
</tr>
<tr>
<td>Liabilities</td>
<td>$L_i - D_i$</td>
<td>$L_i(T) - L_i(T) \left(1 - \frac{V(T)}{L(T)} \right)^+$</td>
</tr>
<tr>
<td>Equity</td>
<td>$S_i + D_i$</td>
<td>$V_i(T) - L_i(T) + L_i(T) \left(1 - \frac{V(T)}{L(T)} \right)^+$</td>
</tr>
</tbody>
</table>

Table 2: Internal Balance Sheet for Line of Business i

The by-line allocation of the default option value is not arbitrary and should equal the value of the loss in the claims payable to the line of business in the event of insolvency. The total surplus is allocated to lines of business so that $S = \sum_{i=1}^{M} S_i$ with

$$S = \sum_{i=1}^{M} \tilde{s}_i L_i$$

so that if $x_i \triangleq \frac{L_i}{L}$ then

$$\tilde{s} = \sum_{i=1}^{M} x_i \tilde{s}_i$$

where $\sum_{i=1}^{M} x_i = 1$. The allocation of S_i is arbitrary unless other criteria are specified. For instance, if allocated capital is to be used for pricing purposes, then it needs to be allocated consistent with the assumption made about expected cost of capital by line and the allocation of assets to line of business.

To differentiate our allocations of the default option value from the sensitivities in Myers and Read (2001) [10] we define

$$\tilde{d}_i = \frac{D_i}{L_i}$$

so that

$$D = \sum_{i=1}^{M} \tilde{d}_i L_i$$
The allocation of the default option value and the surplus is such that the line of business allocations add to the total economic capital with

\[S + D = \sum_{i=1}^{M} \left(\tilde{s}_i + \tilde{d}_i \right) L_i \]

The allocation of capital to lines of business is an internal allocation that has no direct economic implications for the solvency of the insurer. It is the total insurer level of capital that determines the future likelihood of insolvency of the insurer - how it is allocated to lines of business has no direct bearing on the solvency of the insurer. The economic impact of insolvency is determined by the insurer default option value. The allocation of the insurer default option value to line of business is important since it is included in the fair price of insurance by line of business. This by-line price is an entity specific price since it adjusts the market price of an insurance risk, assuming no default by the insurer, for the default cost of the insurance entity.

In Phillips, Cummins and Allen (1998) [12] and in Sherris (2003) [13], the assumption is made that the insurer default option value can be allocated to lines of business in proportion to the liability values for pricing purposes so that

\[D_i = \frac{L_i D}{L} \text{ for all } i \]

which implies that

\[\tilde{d}_i = d \text{ for all } i \]

In order for Myers and Read (2001) [10] to use their sensitivities for capital allocation they also assume that these sensitivities must be the same for all lines of business. However, as shown in Sherris (2003) [13], such an allocation is not the fair (arbitrage-free) allocation of the insurer default option value by line of business. The Myers and Read (2001) [10] sensitivities are not capital allocations for the current balance sheet. The Myers and Read (2001) [10] sensitivities “add up”, but there is an infinite number of capital allocations by line that will also “add up”. None of these has economic significance except that based on the actual pay-offs by-line in the event of insolvency as given in this paper.

2 The Insurer Default Option Value and Allocation to Line of Business

For a given insurer balance sheet, Sherris (2004) [14] shows how the insurer default option value can be allocated to lines of business and that this can be done uniquely by line of business. The liability payoffs by line of business in the event of insolvency can be explicitly determined allowing for the ranking of different lines of business, which for an insurer is normally an equal priority of policyholders with claims outstanding at the date of insolvency. He also shows
that default option values by line of business do not depend on the surplus allocation to line of business as the results of Myers and Read (2001) [10] would suggest. He shows that, in a complete and frictionless market model, there is no unique allocation of surplus without imposing additional criteria such as requiring each line of business to have an equal expected return on capital or an equal solvency ratio.

We derive closed form expressions for the default option value and the allocation of this value by line of business. Our assumptions are different to those of Myers and Read (2001) [10] and the approach provides a more flexible and general method of determining the insurer default option value as well as its allocation to lines of business. We will formally determine the default option value and the allocation of the default option and surplus to line of business. We will then relate our results to the assumptions and results of Myers and Read (2001) [10].

Denote the value of the liabilities of line \(i = 1, \ldots, M \) at time \(t \) by \(L_i(t) \) for \(0 \leq t \leq T \) where \(T \) is the end of period. Assume that the risk-neutral dynamics of \(L_i(t) \) are

\[
dL_i(t) = \mu_i L_i(t) \, dt + \sigma_i L_i(t) \, dB_i^i(t) \quad \text{for} \quad i = 1, \ldots, M
\]

and that the amount \(L_i(T) \) is the claim amount paid at time \(T \), so that claims for each line have a log-normal distribution at time \(T \). \(B_i^i(t) \); \(i = 1, \ldots, M \), are Brownian motions under the risk-neutral dynamics. We also assume \(dB_i(t) dB_j(t) = \rho_{ij} dt \). If \(L_i \) can be replicated by traded assets and there are no claim payments made other than at the end of the period then \(\mu_i = r \), the risk free rate. The total liabilities are given by

\[
L(t) \triangleq \sum_{i=1}^{M} L_i(t)
\]

These values for the liabilities assume claims are paid in full and ignore the effect of insolvency of the insurer on claim payments. The insurance policies are contingent claims on the value of the liabilities with payoff that depends on the insurer solvency.

The value of the assets of the insurer at time \(t \) are denoted by \(V(t) \) for \(0 \leq t \leq T \). We assume that the ratio of assets to liabilities

\[
\Lambda(t) \triangleq \frac{V(t)}{L(t)}
\]

follows geometric Brownian motion with risk neutral dynamics given by

\[
d\Lambda(t) = \mu_A \Lambda(t) \, dt + \sigma_A \Lambda(t) \, dB^A(t)
\]

with

\[
\Lambda(0) = \frac{V(0)}{L(0)} = (1 + s)
\]
where s is the solvency ratio at time 0. $B^\Lambda(t)$ is a Brownian motion under the risk-neutral dynamics. Note that the initial balance sheet values of the total assets and liabilities are $V(0)$ and $L(0)$ respectively. We assume that we know the parameters μ_Λ and σ_Λ for the dynamics of the ratio of assets to liabilities and that these are not approximated from the dynamics of the individual assets and liabilities. Later in this paper, to be consistent with the Myers and Read (2001) [10] results, we will need to derive approximate expressions for these parameters in terms of the dynamics of the individual assets and liabilities.

Myers and Read (2001) [10] assume that both L and V are log-normal in order to apply the Margrabe (1978) [6] exchange option formula. In our assumptions, the ratio of assets to liabilities, $\Lambda(t)$, is assumed to be log-normal. We know that if L and V are portfolios of individual assets and lines of business respectively, each with log-normal dynamics, then the portfolio can not be log-normal unless the portfolio is dynamically rebalanced to ensure constant weights. In the Myers and Read (2001) [10] model the proportions of the lines of business are assumed fixed at the start of the period and not continuously rebalanced.

In our approach it is possible to consider a wider range of processes for the individual lines of business for which it will be reasonable to assume that the ratio of assets to liabilities, $\Lambda(t)$, is approximately log-normal. If assets are selected at the start of the period to closely match the liabilities then the ratio of assets to liabilities at the end of the period should be well approximated with a log-normal distribution. These assumptions in practice need to be assessed against empirical data.

The payoff for the insurer default option at the end of the period is

$$[L(T) - V(T)]^+$$

(4)

We assume that all lines of business rank equally in the event of default, so that policyholders who have claims due and payable in line of business i will be entitled to a share $\frac{L_i(T)}{L(T)}$ of the assets of the company, where the total outstanding claim amount is $L(T) = \sum_{i=1}^{M} L_i(T)$. Sherris (2004) [14] shows that the end-of-period payoff to line of business i is well defined based on this equal priority and given by

$$\begin{align*}
&\frac{L_i(T)}{L(T)} V(T) \quad \text{if} \quad L(T) > V(T) \quad (\text{or} \quad \frac{V(T)}{L(T)} \leq 1) \\
&L_i(T) \quad \text{if} \quad L(T) \leq V(T) \quad (\text{or} \quad \frac{V(T)}{L(T)} > 1)
\end{align*}$$

(5)

This is the normal situation for policyholders of insurers. They rank equally for outstanding claim payments in the event of default of the insurer.

The value of the exchange option allocated to line of business i is denoted by $D_i(t)$. This is given by the value of the pay-off to the line of business allowing
for the payoffs in the event of insurer default. Assuming no-arbitrage, this is

\[D_i(t) = E^Q \left[e^{-r(T-t)} L_i(T) \left(1 - \frac{V(T)}{L(T)} \right)^+ | \mathcal{F}_t \right] \]

\[= E^Q \left[e^{-r(T-t)} L_i(T) \left(1 - \Lambda(T) \right)^+ | \mathcal{F}_t \right] \]

(6)

where \((\mathcal{F}_t)\) is the filtration defined by the Brownian motions \(B^A(t), B^i(t); i = 1, \ldots, M\), and \(Q\) indicates that the expectation is under the risk neutral dynamics.

The total company level insolvency exchange option for the insurer is

\[D(t) = E^Q \left[e^{-r(T-t)} |L(T) - V(T)|^+ | \mathcal{F}_t \right] \]

\[= \sum_{i=1}^{M} E^Q \left[e^{-r(T-t)} L_i(T) \left(1 - \frac{V(T)}{L(T)} \right)^+ | \mathcal{F}_t \right] \]

\[= \sum_{i=1}^{M} E^Q \left[e^{-r(T-t)} L_i(T) \left[1 - \Lambda(T) \right]^+ | \mathcal{F}_t \right] \]

The value of the insolvency exchange option allocated to each line of business “adds up” to the total insurer value since the total insurer insolvency payoff is the sum of the amounts allocated to line of business using the equal priority for outstanding claims given in (5).

Since we assume individual lines of business are log-normal and the ratio of assets to liabilities is log-normal we can derive the value of the default option value for each line of business in closed form. The value of the insurer total default option is then derived as the sum of the default option values for each line of business. This is an important feature of our approach. We derive closed form expressions for by-line values based on payoffs and, since the pay-offs sum to the total insurer pay-off, our total insurer default option value is the sum of the by-line values.

The insurer default option value for line of business \(i\) can be derived using a change of numeraire from the risk free bank account to \(L_i(t)\) and corresponding change of measure. First note that under the risk neutral measure \(Q\)

\[L_i(T) = L_i(0) e^{\mu_i T} Z_i(T) \]

where

\[Z_i(T) = \exp \left[\sigma_i B^i(T) - \frac{1}{2} \sigma_i^2 T \right] \]

Define \(Q^i\) on \(\mathcal{F}_T\) by

\[\frac{dQ^i}{dQ} | \mathcal{F}_T = Z_i(T) \]

(7)

and note that

\[E^Q [Z_i(T) | \mathcal{F}_t] = Z_i(t) \quad 0 \leq t \leq T \]
Now, by Bayes Theorem,

\[
E^Q \left[e^{-r(T-t)} (1 - \Lambda(T))^+ | \mathcal{F}_t \right] = \frac{E^Q \left[e^{-r(T-t)} Z_i(T) (1 - \Lambda(T))^+ | \mathcal{F}_t \right]}{E^Q \left[Z_i(T) | \mathcal{F}_t \right]}
\]

so that

\[
D_i(t) = E^Q \left[e^{-r(T-t)} L_i(T) (1 - \Lambda(T))^+ | \mathcal{F}_t \right] = E^Q \left[e^{-r(T-t)} L_i(T) (1 - \Lambda(T))^+ | \mathcal{F}_t \right] Z_i(t) L_i(0) e^{\mu_i T}
\]

\[
= L_i(t) e^{\mu_i(T-t)} E^Q \left[e^{-r(T-t)} (1 - \Lambda(T))^+ | \mathcal{F}_t \right] \tag{8}
\]

We can make the change of numeraire involved in the above more explicit by noting that the default option value for line of business \(i\) can be written as

\[
\frac{D_i(t)}{L_i(t) e^{\mu_i t}} = \frac{e^{rt} L_i(t) e^{(\mu - \rho_i)t}}{L_i(t) e^{(\mu - \rho_i)t}} E^Q \left[L_i(T) e^{(\mu - \rho_i)T} L_i(T) (1 - \Lambda(T))^+ | \mathcal{F}_t \right] = E^Q \left[\frac{Z_i(T) L_i(T) (1 - \Lambda(T))^+}{Z_i(t) L_i(t) e^{(\mu - \rho_i)t}} | \mathcal{F}_t \right]
\]

where \(Z_i(t) = \frac{1}{L_i(0)} \frac{L_i(t) e^{(\mu - \rho_i)t}}{e^{rt}}\). Using the Radon-Nikodym density process as before given by

\[
\frac{dQ_i}{dQ} | \mathcal{F}_T = Z_i(T)
\]

where \(Z_i(t)\) is a non-negative \(Q\)-martingale with initial value \(Z_i(0) = 1\), under the changed probability measure we have

\[
\frac{D_i(t)}{L_i(t) e^{\mu_i t}} = E^Q_i \left[\frac{L_i(T) (1 - \Lambda(T))^+}{L_i(T) e^{(\mu - \rho_i)t}} | \mathcal{F}_t \right]
\]

or

\[
D_i(t) = L_i(t) e^{\mu_i(T-t)} E^Q_i \left[e^{-r(T-t)} (1 - \Lambda(T))^+ | \mathcal{F}_t \right]
\]

as derived in Equation (8).

Note that \(B^i_j(t), j = 1, \ldots, M\) are Brownian motions under \(Q\). We can show that \(\tilde{B}^i_A(t) = B^i_A(t) - \rho_i A \sigma_i t\) and \(\tilde{B}^j_B(t) = B^j_B(t) - \rho_j B \sigma_t t\) are Brownian motions under \(Q_i\). Details are given in Appendix A for completeness.

In order to derive a closed form for the value of the insurer default option for line of business \(i\) consider

\[
M(t) = E^Q \left[e^{-r(T-t)} (1 - \Lambda(T))^+ | \mathcal{F}_t \right]
\]
This is the value at time t of a European put option on an underlying asset paying a continuous dividend at rate $r - \mu_A$ with current price $\Lambda(t)$, exercise date T, and strike price 1. By assumption $\Lambda(T)$ has a log-normal distribution. Using the classical Black-Scholes result we have the closed form

$$M(t) = e^{-r(T-t)}N(-d_{2t}) - \Lambda(t)e^{-(r-\mu_A)(T-t)}N(-d_{1t}) \quad (9)$$

where

$$d_{1t} = \frac{\ln \Lambda(t) + (\mu_A + \frac{1}{2}\sigma_A^2)(T-t)}{\sigma_A\sqrt{T-t}} \quad (10)$$

and

$$d_{2t} = \frac{\ln \Lambda(t) + (\mu_A - \frac{1}{2}\sigma_A^2)(T-t)}{\sigma_A\sqrt{T-t}} = d_{1t} - \sigma_A\sqrt{T-t} \quad (11)$$

The default option value for line of business i is then given by

$$D_i(t) = L_i(t)e^{\mu_i(T-t)}E^{Q_i}\left[e^{-r(T-t)}(1-\Lambda(T))^+|\mathcal{F}_t\right]$$

$$= L_i(t)e^{\mu_i(T-t)}M^i(t) \quad (12)$$

where $M^i(t)$ is evaluated with the same formula as for $M(t)$ but with μ_A replaced by $\mu_A^i = \mu_A + \rho_i \Lambda \sigma_A \Lambda$, and

$$dB^i(t)dB^\Lambda(t) = \rho_i dt$$

This follows since

$$d\Lambda(t) = \mu_A \Lambda(t)dt + \sigma_A \Lambda(t)(d\tilde{B}^\Lambda(t) + \rho_i \sigma_A dt)$$

$$= (\mu_A + \rho_i \Lambda \sigma_A \Lambda)\Lambda(t)dt + \sigma_A \Lambda(t)d\tilde{B}^\Lambda(t)$$

The (instantaneous) correlation between each line of business and the asset to liability ratio is required to evaluate the default option value for line of business i. Later in this paper we will consider evaluating this default option value using our approach to compare with the results from Myers and Read (2001) [10].

The total insurer default option value is then given by

$$D(t) = E^{Q}\left[e^{-r(T-t)}[L(T) - V(T)]^+|\mathcal{F}_t\right]$$

$$= \sum_{i=1}^{M}D_i(t) = \sum_{i=1}^{M}L_i(t)e^{\mu_i(T-t)}M^i(t)$$

Note that if $L_i = L_i(0)$, $D_i = D_i(0)$ and $D = D(0)$ then

$$M^i(0) = e^{-rT}N(-d_{2i}) - \Lambda(0)e^{-(r-\mu_A^i + \rho_i \Lambda \sigma_A \Lambda)T}N(-d_{1i}) \quad (13)$$

where

$$d_{1i} = \frac{\ln \Lambda(0) + (\mu_A^i + \rho_i \Lambda \sigma_A \Lambda + \frac{1}{2}\sigma_A^2)T}{\sigma_A\sqrt{T}} \quad (14)$$
and
\[d_{2i} = \frac{\ln \Lambda (0) + \left(\mu_\Lambda + \rho_\Lambda \sigma_\Lambda - \frac{1}{2} \sigma_\Lambda^2 \right) T}{\sigma_\Lambda \sqrt{T}} = d_{1i} - \sigma_\Lambda \sqrt{T} \]

(15)

We then have
\[
\frac{\partial D}{\partial L_i} = \frac{\partial}{\partial L_i} \left(\sum_{i=1}^M D_i \right) = \frac{\partial}{\partial L_i} \left(\sum_{i=1}^M L_i e^{\mu_i T} M^i (0) \right) = \frac{D_i}{L_i} + \sum_{j=1}^M L_j e^{\mu_j T} \frac{\partial M^j (0)}{\partial L_i} = \tilde{d}_i + \sum_{j=1}^M L_j \frac{\partial \tilde{d}_j}{\partial L_i}
\]

In Myers and Read (2001) [10] \(d_i \) is defined as a sensitivity \(\frac{\partial D}{\partial L_i} \). We have defined our \(\tilde{d}_i \) based on the the explicit payoffs for each line of business. As we will show later in a numerical example these results differ. However our \(\frac{\partial D}{\partial L_i} \) is equivalent to the Myers and Read (2001) [10] \(d_i \) and this is not the allocation of the default option value by line of business. A derivation of an expression for \(\frac{\partial D}{\partial L_i} \) for the assumptions we have used for the arbitrage-free, complete markets default option value by line is given in Appendix B.

For the total insurer balance sheet
\[
d = \frac{D}{L} = \frac{1}{L} \sum_{i=1}^M L_i e^{\mu_i T} M^i (0) = \sum_{i=1}^M x_i \tilde{d}_i
\]

Now consider the insurer surplus. By definition
\[
S (t) = E^Q \left[e^{-r(T-t)} \left(V (T) - L (T) \right) \bigg| \mathcal{F}_t \right]
\]

Note that even if \(S (t) \leq 0 \) for \(t < T \), the insurer is not regarded as insolvent. It is only at the end of the period, \(t = T \), that solvency is assessed in this model. If we assume that a fraction \(\alpha_i \) of all of the assets is apportioned to line of
business i with $\sum_{i=1}^{M} \alpha_i = 1$, we then have

$$S(t) = \mathbb{E}^Q \left[e^{-r(T-t)} \sum_{i=1}^{M} \alpha_i V(T) - L_i(T) \right] | \mathcal{F}_t$$

$$= \mathbb{E}^Q \left[e^{-r(T-t)} \sum_{i=1}^{M} \alpha_i V(T) \right] | \mathcal{F}_t - \mathbb{E}^Q \left[e^{-r(T-t)} \sum_{i=1}^{M} L_i(T) \right] | \mathcal{F}_t$$

$$= \sum_{i=1}^{M} \left[\alpha_i e^{(\mu_i - r)(T-t)} V(t) - e^{(\mu_i - r)(T-t)} L_i(t) \right]$$

If the assets and liabilities pay no intermediate cash flows then this becomes

$$S = \sum_{i=1}^{M} (\alpha_i V - L_i) = \sum_{i=1}^{M} S_i$$

We also have

$$\tilde{\alpha}_i = \alpha_i \left(1 + s \right) \frac{L_i}{L} - 1$$

These allocations are not sensitivities and are not unique. Additional criteria are required to determine the α_i uniquely.

3 Myers and Read Revisited

Butsic (1999) [2] and Myers and Read (2001) [10] determine an allocation of the default option value by considering marginal changes to the total default insurer option value for changes in the initial value of each line of business. We will only consider the case of their log-normal assumptions although both normal and log-normal results are given in Myers and Read (2001) [10]. They give formulae for the case where the aggregate losses and the asset values are assumed joint log-normal. Similar results are given in Butsic (1999) [2].

They derive the default option value per unit of initial liability value, D_L, under the joint log-normal assumption as

$$d = f(s, \sigma) = N \{ z \} - (1 + s) N \{ z - \sigma \}$$

where

$$z = -\frac{\ln (1 + s)}{\sigma} + \frac{1}{2} \left(\frac{\sigma}{2} \right)$$

$$\sigma = \sqrt{\sigma_L^2 + \sigma_V^2 - 2 \sigma_{LV}}$$

$$x_i = \frac{L_i}{L}$$

$$\sigma_L^2 = \sum_{i=1}^{M} x_i x_j \rho_{ij} \sigma_i \sigma_j$$

13
and
\[\sigma_{LV} = \sum_{i=1}^{M} x_i \rho_{iV} \sigma_i \sigma_V \]
Correlations between log losses for lines of business \(i \) and \(j \) are denoted by \(\rho_{ij} \) and correlations between log asset values and log losses in a single line are denoted by \(\rho_{iV} \). For the Myers and Read (2001) \[10\] assumptions it is important to note that the value of the default option for the insurer depends only on the surplus ratio \(s \) and the volatility of the surplus ratio. The default value will not change if an insurer makes changes to its business mix, its assets or its capital structure as long as the surplus ratio and its volatility are maintained.

Under the joint log-normal assumptions, Myers and Read (2001) \[10\] define the marginal default value as
\[d_i = \frac{\partial D}{\partial L_i} \]
and derive the result that
\[d_i = d + \left(\frac{\partial d}{\partial s} \right) (s_i - s) + \left(\frac{\partial d}{\partial \sigma} \right) \left(\frac{1}{\sigma} \left[(\sigma_{iL} - \sigma_L^2) \right] - (\sigma_{iV} - \sigma_{LV}) \right) \] (16)
They then consider what happens when the insurer expands or contracts business in a single line. They consider two assumptions. One is that the company maintains a constant surplus to liability ratio for every line so that
\[s_i = \frac{\partial S}{\partial L_i} = s \] for all \(i \)
and obtain marginal default values of
\[d_i = d + \left(\frac{\partial d}{\partial \sigma} \right) \left(\frac{1}{\sigma} \left[(\sigma_{iL} - \sigma_L^2) \right] - (\sigma_{iV} - \sigma_{LV}) \right) \]
for this case. They state that since this implies a different allocation of default risk to each line of business, this does not make sense since if the company defaults on one policy then it defaults on all policies.

They state that surplus should be allocated to lines of business, using \(s_i \), \(i = 1, 2, \ldots, M \), to equalize marginal default values so that
\[d_i = \frac{\partial D}{\partial L_i} = d \] for all \(i \)
and the surplus allocation is given by
\[s_i = s - \left(\frac{\partial d}{\partial s} \right)^{-1} \left(\frac{\partial d}{\partial \sigma} \right) \left(\frac{1}{\sigma} \left[(\sigma_{iL} - \sigma_L^2) \right] - (\sigma_{iV} - \sigma_{LV}) \right) \] (17)
This gives the capital allocation proposed by Myers and Read (2001) \[10\] where total capital equals surplus plus the default option value. Note that if \(d_i = d \) for all \(i \) and surplus is allocated as proposed by Myers and Read (2001) \[10\],
then $D_i = \frac{L_i}{\sum L_i}$ and the allocation of the default option value is in proportion to the value of the liabilities by line of business. The motivation for this selection of s_i is that since $\frac{\partial}{\partial L_i} \left(\frac{D_i}{L_i} \right) = \frac{1}{L_i} \left[\frac{\partial D}{\partial L_i} - \frac{D_i}{L_i} \right]$, selecting s_i so that $\frac{\partial D}{\partial L_i} = D_i$ for all i ensures $\frac{\partial}{\partial L_i} \left(\frac{D_i}{L_i} \right) = 0$. This is for (infinitesimal) incremental changes in a line of business assuming all other things equal and for a static balance sheet. A constant d_i is required to maintain the current balance sheet default value per unit of total liabilities $\frac{D}{L}$ and the Myers and Read (2001) [10] gives the incremental capital required from shareholders for small changes in a single line i, all other things equal, but these are not capital allocations for the current balance sheet.

For their log-normal case, they use the assumption that the total assets and the total liabilities are log-normal to derive a closed form for the total insurer default option value. The capital allocation to line of business i will be

$$(s_i + d_i) L_i$$

with total capital of

$$\sum_{i=1}^{M} (s_i + d_i) L_i = (s + d) L$$

The results of Sherris (2004) [14] give the allocation of the insurer default option to line of business based on payoffs in the event of insolvency. We have derived a closed form for the insurer default option values based on the assumption that each line of business is log-normal and the ratio of the assets to liabilities is log-normal. In order to compare our results with the assumptions for the log-normal case in Myers and Read (2001) [10] we need to derive approximations to the parameters for $d\Lambda(t)$.

Consider the derivation of the parameters used in Myers and Read (2001) [10] for the total liabilities. In our case we assume individual lines of business are log-normal, but not the total of the liabilities. If we consider the total liabilities then we can write

$$dL(t) = \sum_{i=1}^{M} dL_i(t)$$

$$= \sum_{i=1}^{M} \mu_i L_i(t) dt + \sigma_i L_i(t) dB^i(t)$$

$$= L(t) \left[\sum_{i=1}^{M} x_{it} \mu_i dt + x_{it} \sigma_i dB^i(t) \right]$$

where

$$x_{it} = \frac{L_i(t)}{L(t)}$$

or

$$\frac{dL}{L} = \left(\sum_{i=1}^{M} x_{it} \mu_i \right) dt + \sum_{i=1}^{M} x_{it} \sigma_i dB^i(t)$$

15
We can immediately see that unless we rebalance the proportion of each line of business in the insurer liabilities the \(x_{it} = \frac{L_i(t)}{L(t)} \) will not be constant. Thus \(\left(\sum_{i=1}^{M} x_{it} h_i \right) \) and \(\sum_{i=1}^{M} x_{it} \sigma_i \) will not be constant and will depend on \(L_i(t) \) and \(L(t) \). In order for the total liability to be log-normal these drifts and diffusions need to be deterministic.

In order to value the insurer default option, Myers and Read (2001) [10] implicitly assume that the aggregate losses have risk neutral dynamics (log-normal)

\[
\frac{dL}{L} = rt + \sigma_L dB_L(t)
\]

and the assets are also log-normal with risk neutral dynamics

\[
\frac{dV}{V} = rt + \sigma_V dB_V(t)
\]

with instantaneous correlation given by \(dB_L(t) dB_V(t) = \rho_{LV} dt \). Myers and Read (2001) [10] equate the moments of the aggregate losses to the moments of the sum of the individual losses. If we make the assumption that

\[
x_{it} = x_{i0} = \frac{L_i(0)}{L(0)}
\]

for all \(t \) then

\[
\frac{dL}{L} = \left[rt + \sum_{i=1}^{M} x_i \sigma_i dB_i(t) \right]
\]

This gives expressions for the variance of the aggregate losses in terms of the individual losses as follows

\[
\sigma^2_L = \sum_{i=1}^{M} \sum_{j=1}^{M} x_i x_j \rho_{ij} \sigma_i \sigma_j
\]

(18)

For Myers and Read (2001) [10]

\[
dA(t) = d \left(\frac{V(t)}{L(t)} \right)
\]

\[
= \frac{dV(t)}{L(t)} - \frac{V(t)}{L(t)^2} dL(t) - \frac{1}{L(t)^2} dV(t) dL(t) + \frac{V(t)}{L(t)^3} dL(t)^2
\]

\[
= \Lambda(t) \left[\frac{1}{2} \sigma^2_V + \sigma_L \sigma_V \rho_{LV} \right] dt
\]

(19)

so that

\[
\mu_A = \sigma^2_V - \sigma_L \sigma_V \rho_{LV}
\]

(20)

and

\[
\sigma^2_A = \sigma^2_V + \sigma^2_L - 2 \sigma_L \sigma_V \rho_{LV}
\]

(21)
We can evaluate ρ_{LV} using the Myers and Read (2001) [10] assumptions by noting that

$$\sigma_L dB^L (t) = \sum_{i=1}^{M} x_i \sigma_i dB^i (t)$$

so that

$$\sigma_V \sigma_L dB^L (t) dB^V (t) = \sum_{i=1}^{M} x_i \sigma_i dB^i (t) dB^V (t)$$

$$= \sum_{i=1}^{M} x_i \sigma_i \sigma_V \rho_{iV} dt$$

hence

$$\sigma_L \sigma_V \rho_{LV} = \sum_{i=1}^{M} x_i \sigma_i \sigma_V \rho_{iV} \quad (22)$$

We derived a closed form for the default option value for line of business i in equation (8). If we assume that $t = 0, T = 1$ and $\mu_i = r$, as in Myers and Read (2001) [10] then

$$D_i = L_i e^{r M^i (0)}$$

where $M^i (0)$ is evaluated with the same formula as for $M (t)$ in equation (9) with μ_Λ replaced by $\mu^i_\Lambda = \mu_\Lambda + \rho_\Lambda \sigma_\Lambda$ and $T = 1$ with

$$dB^i (t) dB^\Lambda (t) = \rho_{i\Lambda} dt$$

Hence

$$M^i (0) = e^{-r} N (-d_{2i}) - \Lambda (0) e^{-(r-(\mu_\Lambda + \rho_\Lambda \sigma_\Lambda))} N (-d_{1i})$$

where

$$d_{1i} = \frac{\ln \Lambda (0) + (\mu_\Lambda + \rho_\Lambda \sigma_\Lambda + \frac{1}{2} \sigma_\Lambda^2)}{\sigma_\Lambda} \quad (24)$$

and

$$d_{2i} = \frac{\ln \Lambda (0) + (\mu_\Lambda + \rho_\Lambda \sigma_\Lambda - \frac{1}{2} \sigma_\Lambda^2)}{\sigma_\Lambda} = d_{1i} - \sigma_\Lambda$$

This then gives

$$D_i = L_i N (-d_{2i}) - L_i \Lambda (0) e^{(\mu_\Lambda + \rho_\Lambda \sigma_\Lambda)} N (-d_{1i})$$

and

$$\tilde{d}_i = \frac{D_i}{L_i} = N (-d_{2i}) - \Lambda (0) e^{(\mu_\Lambda + \rho_\Lambda \sigma_\Lambda)} N (-d_{1i})$$

We can derive an expression for μ^i_Λ as follows.

$$\sigma_i \sigma_\Lambda dB^i (t) dB^\Lambda (t) = \sigma_i dB^i (t) \left[\sigma_V dB^V (t) - \sigma_L dB^L (t) \right]$$

$$= \left[\sigma_i \sigma_V \rho_{iV} - \sigma_i \sigma_L \rho_{iL} \right] dt$$
and hence

$$\mu_i = \mu_\Lambda + \rho_i \sigma_\Lambda \sigma$$

$$= \sigma_i^2 - \sigma_\Lambda \sigma V \rho_\Lambda V + \sigma_\Lambda \sigma V \rho_\Lambda V - \sigma_\Lambda \sigma L \rho_\Lambda L$$

(26)

The default option value as a function of L_1, L_2, \ldots, L_M, V is homogeneous of degree 1 so that

$$D = \sum_{i=1}^{M} \left(\frac{\partial D}{\partial L_i} \right) L_i + \left(\frac{\partial D}{\partial V} \right) V$$

and, since $L = \sum_{i=1}^{M} L_i$ we also have that

$$D = \left(\frac{\partial D}{\partial L} \right) L + \left(\frac{\partial D}{\partial V} \right) V$$

This means that

$$\left(\frac{\partial D}{\partial L} \right) L = \sum_{i=1}^{M} \left(\frac{\partial D}{\partial L_i} \right) L_i$$

Note that, as demonstrated in the numerical examples below, $d_i = \frac{\partial D}{\partial L_i} \neq \tilde{d}_i = \frac{D}{\sigma L_i}$, where D_i is the by line allocation of the default option value based on equal priority of line of business in the event of insolvency in this paper.

Under our assumptions the total value of the default option under the Myers and Read (2001) [10] log-normal assumption and our total value are similar, differing only because of our direct approach to the by-line default option values. However, as already noted, the value allocated to line of business differs. To illustrate this we compare values for line-by-line allocations based on the data in Table 2 of Myers and Read (2001) [10]. The assumptions for line of business are given in Table 3. Derived values are given in Table 4.

<table>
<thead>
<tr>
<th>Ratio to Liabilities</th>
<th>Standard Deviation</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>$100</td>
<td>33%</td>
</tr>
<tr>
<td>Line 2</td>
<td>$100</td>
<td>33%</td>
</tr>
<tr>
<td>Line 3</td>
<td>$100</td>
<td>33%</td>
</tr>
<tr>
<td>Liabilities</td>
<td>$300</td>
<td>100%</td>
</tr>
<tr>
<td>Assets</td>
<td>$450</td>
<td>150%</td>
</tr>
<tr>
<td>Surplus</td>
<td>$150</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 3: Data from Table 2 of Myers and Read

The sensitivities for the line-by-line allocations from Myers and Read (2001) [10] assuming uniform default values are given in Table 5. Also shown are the sensitivities determined using the closed form expressions derived in this paper.
Covariance with Liabilities	Covariance with Assets	μ_i
Line 1 | 100 | 0.0092 | -0.0030 | 0.0076
Line 2 | 100 | 0.0150 | -0.0045 | 0.0093
Line 3 | 100 | 0.0217 | -0.0060 | -0.0079
Liabilities | 300 | 0.0153 | -0.0045 | 0.0000
Assets | 450 | | |
Surplus | 150 | | 0.0225 |

Table 4: Parameters for Table 2 Data of Myers and Read

for comparison. The line-by-line allocations from assuming uniform default value are given in Table 6 along with the values for d_i using the closed form expressions in this paper.

Partial Derivatives Uniform Default Value	Myers-Read/Sherris-van der Hoek Comparison		
MR d_i	MR s_i	SvdH d_i	SvdH s_i
Line 1 | 0.3112 | 37.75 | 0.3119 | 37.53 |
Line 2 | 0.3112 | 49.55 | 0.3119 | 49.50 |
Line 3 | 0.3112 | 62.90 | 0.3119 | 62.98 |
Total | 0.3112 | 50 | 0.3119 | 50.00 |

Table 5: Line by Line Sensitivities Table 2 Data of Myers and Read - Lognormal assumption

Capital Allocations Uniform Default Value	Myers-Read/Sherris-van der Hoek Comparison		
MR d_i	MR s_i	SvdH d_i	SvdH s_i
Line 1 | 0.3112 | 37.75 | 0.2882 | not unique |
Line 2 | 0.3112 | 49.55 | 0.3102 | not unique |
Line 3 | 0.3112 | 62.90 | 0.3404 | not unique |
Total | 0.3112 | 50 | 0.3119 | 50 |

Table 6: Line by Line Allocations Table 2 Data of Myers and Read - Lognormal assumption

From these Tables, note that the sensitivities assuming uniform default value under both are similar but that the line by line allocations are significantly different. In this example the Myers and Read (2001) [10] allocations may add up to the total surplus and default option value but the allocation will not give fair (arbitrage-free) prices for individual lines of business that reflect the allocation of the default option value based on equal priority.
Many different methods for allocating capital by line of business have been proposed. Venter (2004) [16], provides a review of these methods including that of Myers and Read (2001) [10]. Panjer (2001) [11] also summarises some of these and develops a covariance based method similar in concept to the CAPM beta. He includes an example with data based on 10 lines of business. The methods of allocation include allocating capital in proportion to variance, in proportion to VaR (Value at Risk), and in proportion to TailVaR by line of business. In these methods the assets and the default option value are not usually explicitly included. This is also the case in the method proposed by Panjer (2001) [11].

We use the data given in Panjer (2001) [11] for correlations by line of business. These correlations are given in Table 7. The value for the liabilities and variance of liabilities that we assume are taken as equal to those given for the premiums in Panjer (2001) [11] and we assume that these represent the market value of the liabilities. For the surplus we use the total surplus derived in Panjer (2001) [11] for his example. The data used are given in Table 8.

Table 7: Correlations by line of business for Panjer Data

Line 1	0.00	0.00	0.05	-0.27	0.02	0.08	0.16	-0.21	-0.17	-0.15
Line 2	0.12	0.05	0.01	-0.11	0.10	0.05	-0.12	-0.09	-0.12	
Line 3	0.02	0.27	0.01	0.22	0.05	0.09	-0.11	0.13	-0.23	
Line 4	0.18	0.02	-0.11	0.22	1.00	-0.11	0.01	-0.03	0.14	-0.01
Line 5	-0.26	0.08	0.10	0.05	-0.11	1.00	0.07	-0.09	-0.46	-0.16
Line 6	-0.11	-0.21	-0.12	-0.11	-0.03	-0.09	-0.25	1.00	-0.16	-0.16
Line 7	-0.89	-0.17	-0.09	0.13	0.14	-0.46	0.09	-0.16	1.00	0.21
Line 8	0.03	-0.15	-0.12	-0.23	-0.01	-0.16	0.14	-0.16	0.21	1.00
Line 9	0.25	-0.69	0.09	0.32	0.16	0.49	0.35	-0.18	-0.08	0.18

Table 8: Liabilities and Standard Deviations

<table>
<thead>
<tr>
<th>Line</th>
<th>Amount</th>
<th>PerCent</th>
<th>Standard Deviation (Dollar)</th>
<th>Standard Deviation (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>36.00</td>
<td>9.6</td>
<td>2.69</td>
<td>7.47</td>
</tr>
<tr>
<td>Line 2</td>
<td>120.40</td>
<td>32.3</td>
<td>4.49</td>
<td>3.73</td>
</tr>
<tr>
<td>Line 3</td>
<td>1.30</td>
<td>0.3</td>
<td>0.21</td>
<td>16.12</td>
</tr>
<tr>
<td>Line 4</td>
<td>52.42</td>
<td>14.0</td>
<td>1.32</td>
<td>2.51</td>
</tr>
<tr>
<td>Line 5</td>
<td>0.70</td>
<td>0.2</td>
<td>0.57</td>
<td>82.14</td>
</tr>
<tr>
<td>Line 6</td>
<td>48.09</td>
<td>12.9</td>
<td>3.87</td>
<td>8.05</td>
</tr>
<tr>
<td>Line 7</td>
<td>47.40</td>
<td>12.7</td>
<td>1.59</td>
<td>3.36</td>
</tr>
<tr>
<td>Line 8</td>
<td>8.08</td>
<td>2.2</td>
<td>0.96</td>
<td>11.85</td>
</tr>
<tr>
<td>Line 9</td>
<td>8.64</td>
<td>2.3</td>
<td>1.06</td>
<td>12.29</td>
</tr>
<tr>
<td>Line 10</td>
<td>50.15</td>
<td>13.4</td>
<td>2.59</td>
<td>5.17</td>
</tr>
<tr>
<td>Liabilities</td>
<td>373.18</td>
<td>100</td>
<td>6.73</td>
<td>1.80</td>
</tr>
<tr>
<td>Assets</td>
<td>400.42</td>
<td>107</td>
<td>60.06</td>
<td>15.00</td>
</tr>
<tr>
<td>Surplus</td>
<td>27.24</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To begin with we show the allocations that would result from allocating surplus only in proportion to various risk measures by line of business assuming a multivariate normal distribution. The risk measures used are the standard deviation, the Value at Risk (or VaR), the TailVaR and the beta measure proposed by Panjer (2001) [11]. The results are given in Figure 1. This shows a very wide variation in the resulting surplus allocations to lines of business for the different risk measures. The allocations do not include the value of the insurer default option value.

Next we illustrate the Myers and Read (2001) [10] allocations using the Panjer (2001) [11] data. To do this we explicitly include assets equal to the total of the liabilities plus the surplus. We assume that all lines of business have the same correlation with the assets for simplicity, although there is no difficulty in assuming different correlations with the assets for different lines of business. We first used the Myers and Read (2001) [10] normal distribution results with a uniform default value to determine by line surplus allocations. We then used the lognormal distribution results assuming the correlations given in the Panjer (2001) [11] data. This is effectively the same as using log-normal marginals with a normal copula with correlations given by the Panjer (2001) [11] data. The capital allocations were very similar for the two distributional assumptions. As a result we show the log-normal distribution results in order to compare with the formula for allocating capital given in this paper.

The allocations for the different lines of business using Myers and Read
(2001) [10] lognormal distribution results for an asset correlation for all lines of business ranging from -1 to +1 are given in Figure 2. We show the distribution across lines for each assumed asset correlation as well as the per dollar values and the actual dollar values. These figures include in the capital the surplus and the insurer default value. The default value varies with different correlations and the distribution by line of business varies significantly as well.

![Figure 2: Myers and Read Lognormal Capital Allocations - Uniform Default Value](image)

The Myers and Read (2001) [10] capital allocation is shown in Figure 3, the tremendous variation across the lines of business for the different assumed asset correlations is clearly evident.

Using the log-normal results in Myers and Read (2001) [10] and assuming that the correlations in Table 7 are for the lognormal case we derive allocations by line-of-business for the approach in this paper. We compare our results for the by line default option value, as a percentage of the liabilities and for the Myers and Read (2001) [10] case for the assumption that the surplus ratio is constant by line. The results are given in Figure 4.

The total insurer default values using the formulae in this paper and for the lognormal Myers and Read (2001) [10] case are almost identical. The Myers and Read (2001) [10] values for the default option value by line of business differ substantially in all but the zero asset correlation case compared to the default option value determined based on the by line insolvency payoffs given by the formula in this paper. The default option values by line of business based on
Figure 3: Myers-Read Allocations - Panjer data assuming Log-normal distributions

Figure 4: Myers and Read and Sherris Default Option Allocations - Lognormal assumption
Sherris (2004) [14] and the formula in this paper are shown in Figure 5. In Figure 6 we show the allocation of capital assuming a constant by-line surplus ratio and including the default option value for differing correlations between assets and lines of business using the results in this paper.

Given the differences in allocations for these different methods we urge caution to those using by-line allocations for insurer financial decision making. From the results it is important to reflect the correlation of the liabilities with the assets in any capital allocation and it is also important to determine the fair allocation of the default option based on assumed payoffs in the event of insolvency by line of business if these are to be used for pricing in the multi-line insurer.

5 Conclusion

We have developed expressions for the allocation of the insurer default option value by line of business that reflects the actual by-line payoff in the event of insolvency. We have used the assumption of log-normal lines of business and a log-normal ratio of asset to liabilities to derive closed form results and illustrated these with examples from Myers and Read (2001) [10] and data from Panjer (2001) [11]. The approach we have used will give fair default option values for lines of business that can be used in pricing for the multiline insurer.

We have shown how the results of applying different methods of allocation can give significantly different results so that the approach used is important.
Figure 6: Sherris-van der Hoek Allocations with Constant Solvency Ratio By Line

Although our total value for the insurer default option value is similar to that of Myers and Read (2001) [10], the allocation by line of business for an insurer current balance sheet differs significantly. We have considered the current balance sheet of the insurer. There are no multi-period dynamics included in the model as a result. Methods to determine capital allocation and pricing in a dynamic model is an interesting issue worthy of further research.
6 Appendix A - Change of Measure

Lemma 1 If $B^j (t) \ 0 \leq t \leq T$ is a Brownian motion under Q then

$$\tilde{B}^j (t) = B^j (t) - \rho_{ij} \sigma_i t$$

is Brownian motion under Q_i.

Proof. Let $B^j (t)$ be Brownian motion under Q and $\tilde{B}^j (t) \equiv B^j (t) - \int_0^t \varphi^j (u) \ du$ be Brownian motion under Q_i. We need to derive $\varphi^j (t)$ for $0 \leq t \leq T$. We have

$$E^Q \left[\tilde{B}^j (t) | \mathcal{F}_s \right] = E^Q \left[Z_i (t) \tilde{B}^j (t) | \mathcal{F}_s \right] \quad t > s$$

Now

$$L_i (t) = L_i (0) \exp \left[\left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i B^i (t) \right]$$

so

$$Z_i (t) = \frac{1}{L_i (0)} \frac{L_i (t) e^{(r-\mu_i)t}}{e^{rt}} = \exp \left[\frac{1}{2} \sigma_i^2 t + \sigma_i B^i (t) \right]$$

and

$$dZ_i (t) = Z_i (t) \sigma_i dB^i (t)$$

It follows that

$$d \left(Z_i (t) \tilde{B}^j (t) \right) = Z_i (t) dB^j (t) + \tilde{B}^j (t) dZ_i (t) + d\tilde{B}^j (t) dZ_i (t)$$

$$= Z_i (t) dB^j (t) - Z_i (t) \varphi^j (t) dt + \tilde{B}^j (t) dZ_i (t) + d\tilde{B}^j (t) dZ_i (t)$$

$$= Z_i (t) dB^j (t) + \left[Z_i (t) \rho_{ij} \sigma_i - Z_i (t) \varphi^j (t) \right] dt + \tilde{B}^j (t) dZ_i (t)$$

hence

$$Z_i (t) \tilde{B}^j (t) = \left[Z_i (s) \tilde{B}^j (s) + \int_s^t \tilde{B}^j (u) dZ_i (u) + Z_i (u) dB^j (u) \right]$$

and

$$E^Q \left[Z_i (t) \tilde{B}^j (t) | \mathcal{F}_s \right] = Z_i (s) \tilde{B}^j (s) + E^Q \left[\int_s^t Z_i (u) \left[\rho_{ij} \sigma_i - \varphi^j (u) \right] du | \mathcal{F}_s \right]$$

We also have

$$E^{Q_i} \left[\left(\tilde{B}^j (t)^2 - t \right) | \mathcal{F}_s \right] = E^Q \left[Z_i (t) \left(\tilde{B}^j (t)^2 - t \right) | \mathcal{F}_s \right]$$

26
\[
\begin{aligned}
&d \left(Z_i(t) \left(\tilde{B}^j(t)^2 - t \right) \right) \\
= & \left[2Z_i(t) \tilde{B}^j(t) \left[d\tilde{B}^j(t) - \varphi^{ij}(t) \, dt \right] \\
&+ \left(\tilde{B}^j(t)^2 - t \right) dZ_i(t) + 2\tilde{B}^j(t) d\tilde{B}^j(t) Z_i(t) \sigma_i dB^j(t) \right] \\
= & \left[2Z_i(t) \tilde{B}^j(t) d\tilde{B}^j(t) + \left(\tilde{B}^j(t)^2 - t \right) dZ_i(t) \right] \\
&+ 2Z_i(t) \tilde{B}^j(t) \left[\sigma_i \rho_{ij} - \varphi^{ij}(t) \right] dt \\
\end{aligned}
\]

so

\[
E^Q \left[Z_i(t) \left(\tilde{B}^j(t)^2 - t \right) \right] = Z_i(s) \left(\tilde{B}^j(s)^2 - s \right) + E^Q \left[\int_s^t 2Z_i(u) \tilde{B}^j(u) \left[\sigma_i \rho_{ij} - \varphi^{ij}(u) \right] du \right]
\]

Therefore we have that

\[
\varphi^{ij}(t) = \sigma_i \rho_{ij} \quad j = 1, 2, \ldots, M, \Lambda
\]

since in this case

\[
E^Q_i \left[\tilde{B}^j(t) \right] = \tilde{B}^j(s) \\
E^Q_i \left[\left(\tilde{B}^j(t)^2 - t \right) \right] = \left(\tilde{B}^j(s)^2 - s \right)
\]

and from Levy's Theorem (1948), subject to some technical conditions, \(\tilde{B}^j(t) \) is Brownian motion under \(Q_i \) (see for example Karatzas and Shreve (1988) [5] pages 156-157).

Under the change of measure \(Q_i \)

\[
\begin{aligned}
\quad dL_j(t) &= \mu_j L_j(t) \, dt + \sigma_j L_j(t) \, dB^j(t) \\
&= \mu_j L_j(t) \, dt + \sigma_j L_j(t) \left[d\tilde{B}^j(t) + \sigma_i \rho_{ij} dt \right] \\
&= \left(\mu_j + \sigma_j \rho_{ij} \right) L_j(t) \, dt + \sigma_j L_j(t) \, dB^j(t) \\
&\quad \quad j = 1, \ldots, M \ \ (27)
\end{aligned}
\]

and

\[
\begin{aligned}
\quad d\Lambda(t) &= \mu_{\Lambda} \Lambda(t) \, dt + \sigma_{\Lambda} \Lambda(t) \, dB^{\Lambda}(t) \\
&= \mu_{\Lambda} \Lambda(t) \, dt + \sigma_{\Lambda} \Lambda(t) \left[d\tilde{B}^{\Lambda}(t) + \sigma_i \rho_{i\Lambda} dt \right] \\
&= \left(\mu_{\Lambda} + \sigma_{\Lambda} \rho_{i\Lambda} \right) \Lambda(t) \, dt + \sigma_{\Lambda} \Lambda(t) \, d\tilde{B}^{\Lambda}(t) \ \ (28)
\end{aligned}
\]

\[\blacksquare\]
Appendix B - Default Option Value Sensitivity for Line of Business

Assume that $\mu_i = r$, so that there are no intermediate cash flows on the liabilities, for all i and $T = 1$. We then have

$$D_i = L_i e^{rM^i(0)}$$

$$= L_i \left[N(-d_{2i}) - \Lambda(0) e^{\mu_i \Lambda} N(-d_{1i}) \right]$$

$$= L_i \left[N(-d_{2i}) - (1 + s) e^{\mu_i \Lambda} N(-d_{1i}) \right]$$

$$= L_i \tilde{d}_i$$

(29)

where

$$d_{1i} = \frac{\ln (1 + s) + \left(\mu_i^i + \frac{1}{2} \sigma^2 \right)}{\sigma}$$

$$d_{2i} = d_{1i} - \sigma \Lambda$$

$$\mu_i^i = \mu \Lambda + \rho_i \Lambda \sigma_i \sigma \Lambda$$

and

$$D = \sum_{i=1}^{M} D_i$$

The Myers and Read (2001) [10] sensitivity for our default option value is then given by

$$d_i = \frac{\partial D}{\partial L_i}$$

$$= \tilde{d}_i + \sum_{j=1}^{M} L_j \frac{\partial \tilde{d}_j}{\partial L_i}$$

$$= \tilde{d}_i + \sum_{j=1}^{M} L_j \frac{\partial \tilde{d}_j}{\partial s} \frac{\partial s}{\partial L_i} + \sum_{j=1}^{M} L_j \frac{\partial \tilde{d}_j}{\partial \sigma \Lambda} \frac{\partial \sigma \Lambda}{\partial L_i} + \sum_{j=1}^{M} L_j \frac{\partial \tilde{d}_j}{\partial \mu_i \Lambda} \frac{\partial \mu_i \Lambda}{\partial L_i}$$

(30)

since \tilde{d}_j is a function of s, $\sigma \Lambda$ and μ_i^j.

Note that

$$N'(-d_{2j}) = (1 + s) e^{\mu_i \Lambda} N'(-d_{1j})$$

so that

$$\frac{\partial \tilde{d}_j}{\partial s} = -e^{\mu_i \Lambda} N'(-d_{1j})$$

Now

$$\frac{\partial s}{\partial L_i} = \frac{1}{L} (s_i - s)$$

(31)
where
\[s_i = \frac{\partial V}{\partial L_i} - 1 \]
is the additional marginal capital subscribed per unit of liability for line \(i \). For the current balance sheet, the surplus ratio \(s \) is given by
\[V = (1 + s) L \]
Hence
\[\frac{\partial V}{\partial L_i} = L \frac{\partial s}{\partial L_i} + (1 + s) \]
from which (31) follows.

We also have
\[\frac{\partial \tilde{d}_i}{\partial \sigma} = N' (-d_{2j}) \]
and
\[\frac{\partial \sigma}{\partial L_i} = \frac{1}{\sigma L} \left[- \left(\sigma^2 L - \sigma L \sigma V \rho_{LV} + \sigma_i \sigma V \rho_{iV} - \sigma_i \sigma L \rho_{iL} \right) \right] = -\frac{\mu^i}{\sigma L} \]

Now
\[\frac{\partial \tilde{d}_j}{\partial \mu} = -(1 + s) e^{\mu} N' (-d_{1j}) \]
and
\[\frac{\partial \mu^i}{\partial L_i} = \frac{\partial}{\partial L_i} \left[\sigma^2 L - \sigma L \sigma V \rho_{LV} + \sigma_j \sigma V \rho_{jV} - \sigma_j \sigma L \rho_{jL} \right] \]
\[= \frac{\partial}{\partial L_i} \left[\sigma^2 L - \sigma L \sigma V \rho_{LV} \right] - \frac{1}{L} \left[\sigma_i \sigma j \rho_{ij} - \sigma_j \sigma L \rho_{jL} \right] \]

Since
\[\sigma^2 L = \sum_{i=1}^{M} \sum_{j=1}^{M} x_i x_j \sigma \sigma \rho_{ij} \]
and
\[\frac{\partial x_j}{\partial L_i} = \frac{1}{L} \left[\delta_{ji} - x_j \right] \]
where
\[\delta_{ji} = 1 \text{ if } j = i \text{ and } 0 \text{ if } j \neq i \]
we have
\[\frac{\partial \sigma^2}{\partial L_i} = 2 \sum_{i=1}^{M} \sum_{j=1}^{M} x_j \rho_{ij} \sigma \sigma \rho_{ij} \frac{1}{L} \left[\delta_{ji} - x_j \right] = \frac{2}{L} \left[\sigma_i \sigma L \rho_{iL} - \sigma^2 \right] \]
Also
\[\sigma L \sigma V \rho_{LV} = \sigma LV = \sum_{i=1}^{M} x_i \sigma i \sigma V \rho_{iV} \]
so

\[
\frac{\partial \sigma_{LV}}{\partial L_i} = \sum_{i=1}^{M} \sigma_i \sigma_V \rho_{iV} \frac{1}{L} [\delta_{ji} - x_i] = \frac{1}{L} [\sigma_i \sigma_V \rho_{iV} - \sigma_{LV}]
\]

and

\[
\frac{\partial \mu^j}{\partial L_i} = \frac{1}{L} \left\{ 2 (\sigma_i \sigma_L \rho_{iL} - \sigma_L^2) - (\sigma_i \sigma_V \rho_{iV} - \sigma_{LV}) - (\sigma_i \sigma_j \rho_{ij} - \sigma_j \sigma_L \rho_{jL}) \right\}
\]

Putting this all together we have an expression for the sensitivity of our default option value for a marginal change in a single line of business

\[
\frac{\partial D}{\partial L_i} = \bar{d}_i + \sum_{j=1}^{M} L_j \left(-e^{\mu^j} N^j (-d_{1j}) \right) \left(\frac{1}{L} (s_i - s) \right)
\]

\[
+ \sum_{j=1}^{M} L_j N^j (-d_{2j}) \left(-\frac{\mu^j}{\sigma_A L} \right)
\]

\[
- \sum_{j=1}^{M} \frac{L_j}{L} \left((1 + s) e^{\mu^j} N^j (-d_{1j}) \right) \left[\begin{array}{c} 2 (\sigma_i \sigma_L \rho_{iL} - \sigma_L^2) \\ - (\sigma_i \sigma_V \rho_{iV} - \sigma_{LV}) \\ - (\sigma_i \sigma_j \rho_{ij} - \sigma_j \sigma_L \rho_{jL}) \end{array} \right]
\]

Note that this is a function of the marginal additional capital required per unit of liability for a marginal change in line of business, \(s_i\), all other things equal. These sensitivities can be determined so that the insurer level default option value per unit of liability does not change for a marginal change in a line of business and so that the sensitivity of the total insurer default option value for each line of business is equal. We would then solve for the required \(s_i\) by setting \(\frac{\partial D}{\partial L_i} = d_i = d = \frac{D}{L}\) based on the current insurer balance sheet values of \(D\) and \(L\), exactly as in Myers and Read (2001) [10].

30
References

