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Abstract

This paper examines the tail conditional variance of a risk X defined to
be the variability of the risk along its right tail and tail covariances of two
risks X1 and X2 defined to explain the linear dependency of the risks along
their right tails, and study their potential use as risk measures. We explore
properties of these indices as well as discuss their potential applications in
measuring risks particularly for insurance losses where right-tail risks are given
prime attention. These indices are also examined for some common parametric
families of distributions. Some motivations in the context of insurance premium
calculation, capital allocation, and portfolio theory are briefly discussed.

1 Introduction

It is now well-known that there is a growing interest in the finance and actuarial
literature on the use of the so-called tail conditional expectation as a risk measure.
Suppose we have a random variableX denoting an insurance loss or an investment loss
whose distribution function we denote by FX (x) = P (X ≤ x) and tail function we
denote by FX (x) = 1−FX (x) = P (X > x). Usually this loss variable is continuous
defined on the real line R so that a negative loss may be interpreted as a gain. Denote
the q-th quantile of the distribution by xq with it satisfying then FX (xq) = 1 − q
where 0 ≤ q ≤ 1. The tail conditional expectation (TCE) of a risk X is defined to be

TCEq (X) = E (X |X > xq ) . (1)

This risk measure has been extensively examined in Artzner, et al. (1999) and in
Landsman and Valdez (2003) in the case where the loss variable follows the parametric
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family of elliptical distributions. There are several additional ways of expressing the
TCE in (1), among them of which include

TCEq (X) = xq +E (X − xq |X > xq ) (2)

and
TCEq (X) = xq +

1

1− q
E
£
(X − xq)+

¤
(3)

where E
£
(X − xq)+

¤
is a stop-loss premium defined as

E
£
(X − xq)+

¤
=

Z ∞

xq

(x− xq) dFX (x) =

Z ∞

xq

FX (x) dx. (4)

When X is continuous, it is well-documented that the TCE preserves many desirable
properties of a risk measure such as sub-additivity, stop-loss order preserving, and
additivity of comonotonic risks. However, some of these may no longer hold true
when X is purely discrete or X is mixed random variable. See, for example, Dhaene,
et al. (2003). For purposes of simplifying our illustrations in the examination of risk
measures, we shall confine ourselves to continuous random variables.
A less familiar, but maybe important, statistical index of the tail of a distribution

is the tail conditional variance defined to be

TCVq (X) = V ar (X − µX |X > xq ) (5)

and it measures the variability about the mean of the risk along the tail of the
distribution. This is particularly useful for decision makers concerned with the tail of
the distribution and how the variation along the extremes can help assess the riskiness
of the distribution. We may from time to time simply call this the tail variance. For
this to exist, here we assume that both mean µX = E (X) and variance σ2X = V ar (X)
exist. Notice that

V ar (X) = E
£
(X − µX)

2¤
= E

£
(X − µX)

2 · I (X > xq)
¤
+E

£
(X − µX)

2 · I (X ≤ xq)
¤

where, of course, we have

E
£
(X − µX)

2 · I (X > xq)
¤
=

Z ∞

xq

(x− µX)
2 fX (x) dx

= (1− q)

Z ∞

xq

(x− µX)
2 fX (x)

FX (xq)
dx

= (1− q) · E
£
(X − µX)

2 |X > xq
¤

= (1− q) · TCVq (X) .

If xq is chosen to be the mean µX , then we have what is sometimes referred to in
the finance literature the downside semi-variance of risk X which accounts for the
variability above the mean. That is,

V ar+ (X) =

Z ∞

µX

(x− µX)
2 fX (x) dx. (6)
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The downside semi-variance as a measure of risk in the mean-variance context has
been introduced by Markowitz (1959). See also Goovaerts, et al. (1984) for a discus-
sion of the semi-variance premium calculation principle. It is therefore clear that if
the variance of X exists (i.e. finite), then so does the tail conditional variance. This
is because

TCVq (X) ≤
1

1− q
V ar (X) <∞.

The rest of the paper has been organized as follows. In Section 2, we consider
the case where we have the Normal distribution. We derive the TCV in this case,
and discuss the situation when we are comparing two Normal risks with equal TCE,
but with different TCV. In Section 3, we derive expressions for the tail conditional
variance of some other well-known and commonly used loss distributions in insurance
and actuarial science. We also give a result as alternative to computing a tail con-
ditional variance, and we demonstrate its usefulness for some special distributions.
In Section 4, we provide a motivation for using the tail conditional variance as a
new insurance premium principle similar to a semivariance premium principle. In
Section 5, we discuss a motivation for the conditional tail covariance based on an
optimization problem for allocating capital requirements. We also demonstrate the
resulting conditional covariance allocation principle in the case where the risks are
multivariate Normal. We briefly describe, in Section 6, the Markowitz mean-variance
portfolio principle as yet another motivation for using tail conditional variance. We
give concluding remarks in Section 7.

2 Tail Conditional Variance of Normal Risks

Consider a Normal random variable X with mean µ and variance σ2 and we write
X ∼ N (µ, σ2) . We express its density as

fX (x) =
1√
2πσ

exp

"
−1
2

µ
x− µ

σ

¶2#
,

and we shall use the symbols ϕ (·) and Φ (·) to denote, respectively, the density and
distribution functions of a standard normal random variable. We shall use the usual
notation Z to denote the standard Normal random variable. It has been demon-
strated, for example, in Panjer (2002) and Landsman and Valdez (2003), that the tail
conditional expectation (TCE) for the Normal distribution can be expressed as

TCEq (X) = E (X |X > xq ) = µ+
ϕ (zq)

1− Φ (zq)
· σ, (7)

where zq = (xq − µ) /σ is the standardized q-th quantile of the distribution. Now a
direct application of the tail conditional variance formula will show that by applying
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integration by parts after transforming z = (x− µ) /σ, we have

TCVq (X) =
1

1− q

Z ∞

xq

(x− µ)2 fX (x) dx

=
σ2

1− Φ (zq)

Z ∞

zq

z2ϕ (z) dz

=
σ2

1− Φ (zq)

"
−zϕ (z)|∞zq +

Z ∞

zq

ϕ (z) dz

#

=
σ2

1− Φ (zq)
[zqϕ (zq) + 1− Φ (zq)] .

Thus, we see that the TCV for Normal is

TCVq (X) =

∙
1 +

ϕ (zq)

1− Φ (zq)
· zq
¸
× σ2. (8)

Table 1 provides a numerical comparison of the quantile/Value-at-Risk, tail condi-
tional expectation, and tail conditional variance for a risk with Normal distribution
having parameters: mean (µ = 1, 000) and variance (σ2 = 500).

Table 1: Comparison of the TCE and TCV for a N
¡
µ, σ2

¢
Distribution

q µ σ2 xq TCEq (X) TCVq (X)

0.5000 1,000 500 1,000.00 1,017.84 500.00
0.7500 1,000 500 1,015.08 1,028.42 928.67
0.9000 1,000 500 1,028.66 1,039.24 1,624.55
0.9500 1,000 500 1,036.78 1,046.12 2,196.43
0.9750 1,000 500 1,043.83 1,052.27 2,791.01
0.9900 1,000 500 1,052.02 1,059.60 3,600.11
0.9990 1,000 500 1,069.10 1,075.29 5,702.25
0.9999 1,000 500 1,083.16 1,088.49 7,858.95

Now, for purposes of simplifying the illustration, consider just two Normal risks
denoted by X1 and X2. Let X1 ∼ N (µ1, σ

2
1) with µ1 = 100, σ1 = 19.69 and X2 ∼

N (µ2, σ
2
2) with µ2 = 120, σ1 = 10. It is straightforward to show that at q = 0.95, the

respective quantiles are x1,q = 132.40 and x2,q = 136.45. Both Normal risks can also be
shown to have equal tail conditional expectation of TCE0.95 (X1) = TCE0.95 (X2) =
140.63 at q = 0.95. Therefore, decision maker will be indifferent between the two
risks on a tail conditional expectation basis, although in terms of quantile (or value-
at-risk), he will consider X2 to be more risky than X1 because of a larger quantile.
See Figure 1 for a display comparing these two Normal risks. On the other hand,
TCV0.95 (X1) = 439.29 and TCV0.95 (X2) = 1, 704.13 also making the X2 to be more
risky than X1.
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Figure 1: Comparison of two Normal risks with equal tail conditional expectations

3 Expressions for Tail Conditional Variance

This section illustrates examples of computing the tail conditional variance for some
special parametric distributions. In particular, we consider as examples the familiar
Log-Normal, Exponential, and Gamma, as well as other ones also familiar to actuaries
such as the Pareto and the Generalized Pareto.

Example 2.1 Log-Normal SupposeX has a log-Normal distribution, that is, logX ∼
N (µ, σ2) is Normal with mean µ and variance σ2. We can then write its density as

fX (x) =
1

σx
ϕ

µ
log x− µ

σ

¶
, for x > 0.

It has been shown in Dhaene, et al. (2003) that an expression for the tail conditional
expectation is given by

TCEq (X) = exp

µ
µ+

1

2
σ2
¶
· Φ (σ − zq)

1− q
. (9)
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Now applying integration by parts in the TCV formula, we have

TCVq (X) =
1

1− q

Z ∞

xq

³
x− eµ+

1
2
σ2
´2 1

σx
ϕ

µ
log x− µ

σ

¶
dx

=
e2µ

1− q

Z ∞

uq

³
e2σu − 2eσue 12σ2 + eσ

2
´
ϕ (u) du

=
e2µ

1− q

Z ∞

uq

³
e2σu − 2eσue 12σ2 + eσ

2
´
ϕ (u) du.

Therefore, the TCV for a Log-Normal risk has the expression

TCVq (X) =
e2µ+σ

2

1− q

h
eσ

2

Φ (2σ − uq)− 2Φ (σ − uq) + Φ (−uq)
i
.

where uq = (log xq − µ) /σ is the q-th quantile of the log-Normal distribution.

For several special distributions, unlike the first two examples above, it is not quite
as straightforward to compute the TCV. We now prove a useful result for computing
tail conditional variance.

Theorem 1 Assume that X has a finite mean µX and finite variance σ
2
X. Then

TCVq (X) = (xq − µX)
2 + 2E (X − xq |X > xq ) · [E (X∗)− µX ] (10)

where X∗ is a new random variable with density

fX∗ (x) =
FX (x)

E
£
(X − xq)+

¤ , for x > xq.

Proof. Recall from the previous section that

TCVq (X) =
1

1− q

Z ∞

xq

(x− µX)
2 fX (x) dx =

−1
1− q

Z ∞

xq

(x− µX)
2 dFX (x)

and now, applying integration by parts with u = (x− µX)
2 and dv = dFX (x), we

have Z ∞

xq

(x− µX)
2 dFX (x) = (x− µX)FX (x)

¯̄̄
∞
xq − 2

Z ∞

xq

(x− µX)FX (x) dx

so that

TCVq (X) = (xq − µX)
2 +

2

1− q

Z ∞

xq

(x− µX)FX (x) dx.

Define the new random variable X∗ with density given in the theorem. Then, the tail
conditional variance can be expressed as

TCVq (X) = (xq − µX)
2 + 2

E
£
(X − xq)+

¤
1− q

Z ∞

xq

(x− µX)
FX (x)

E
£
(X − xq)+

¤dx
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and the result immediatley follows since we know that

E (X − xq |X > xq ) =
1

1− q
E
£
(X − xq)+

¤
.

We immediately notice from (4) that the density of X∗ is a proper density becauseZ ∞

xq

fX∗ (x) dx =

Z ∞

xq

FX (x)

E
£
(X − xq)+

¤dx = R∞
xq

FX (x) dx

E
£
(X − xq)+

¤ = 1.
Example 2.2 Exponential Let X ∼ Exp (λ) be exponential with mean parameter
equal to 1/λ. Then it is straightforward to show that

E
£
(X − xq)+

¤
=
1

λ
e−λxq = (1− q)µX

and therefore X∗ has density

fX∗ (x) =
λe−λx

1− q
, for x > xq.

Clearly, this gives a truncated-from-below exponential distribution. Its mean is equal
to E (X∗) = xq + µX . Putting these results together and using the expression in the
Theorem, it is not difficult to show that, for the Exponential random variable, its tail
conditional variance can be written as

TCVq (X) = x2q + µ2X . (11)

Example 2.3 Gamma Let X ∼ Gamma (α, β) be Gamma distributed with parame-
ters α and β. We express its density as follows:

fX (x) =
βα

Γ (α)
xα−1e−βx, for x > 0. (12)

For notation, we shall use the following

FX (x |α, β ) =
Z ∞

xq

βα

Γ (α)
xα−1e−βxdx

to denote the tail function of a Gamma distributed random variable with parameters
α and β. Then we can show that

E
£
(X − xq)+

¤
=

Z ∞

xq

xfX (x) dx =
α

β
FX (xq |α+ 1, β )

where FX (xq |α+ 1, β ) denotes the tail function of a Gamma random variable with
parameters α+ 1 and β. Therefore X∗ has density

fX∗ (x) =
FX (x |α, β )

α

β
FX (xq |α+ 1, β )

, for x > xq.
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Clearly, this gives a truncated-from-below Gamma distribution. One can use the
expression in the Theorem, it is not difficult to show then that, for the Gamma
random variable, its tail conditional variance can be expressed as

TCVq (X) =
α (α+ 1)

β2
FX (xq |α+ 2, β )
FX (xq |α, β )

− 2α
2

β2
FX (xq |α+ 1, β )
FX (xq |α, β )

+
α2

β2

=
α2

β2

∙
α+ 1

α

FX (xq |α+ 2, β )
FX (xq |α, β )

− 2FX (xq |α+ 1, β )
FX (xq |α, β )

+ 1

¸
. (13)

Example 2.4 Pareto A distribution with wide application in actuarial science is the
Pareto distribution. Let X be Pareto with density

fX (x) =
αxα0
xα+1

for x ≥ x0 > 0, (14)

where the shape parameter α > 0 provides a measure of how heavy the tail of the
distribution is. See, for example, Klugman, et al. (1998) and Kleiber and Kotz (2003)
for further discussion about the applications of this distribution. It is not difficult to
show that its distribution function can be expressed as

FX (x) = 1−
µ
x

x0

¶−α
for x ≥ x0 > 0

and its mean can be expressed as E (X) = µX =
αx0
α− 1 , provided α > 1. Its quantile

xq clearly satisfies µ
x0
xq

¶α

= 1− q.

It is easy to demonstrate, using (4) that the stop-loss premium can be expressed, for
the Pareto, as

E
£
(X − xq)+

¤
=

Z ∞

xq

FX (x) dx =

Z ∞

xq

µ
x

x0

¶−α
dx =

xq
α− 1

µ
x0
xq

¶α

provided α > 1. Thus, we have

E [X − xq |X > xq ] =
1

1− q
E
£
(X − xq)+

¤
=

1

1− q

xq
α− 1

µ
x0
xq

¶α

=
xq

α− 1 .

The new random variable X∗ in Theorem (1) has density function

fX∗ (x) =

³
x
x0

´−α
xq
α−1

³
x0
xq

´α = α− 1
xq

³xq
x

´α
=
(α− 1)xα−1q

x(α−1)+1
, for x > xq.

This is clearly another Pareto distribution with parameters xq and a shape parameter
α− 1. Its mean is therefore

E (X∗) =

µ
α− 1
α− 2

¶
xq,
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provided α > 2. Putting these results together and using the expression in the
Theorem, it is not difficult to show that, for the Pareto distribution, its tail conditional
variance can be written as

TCVq (X) = (xq − µX)
2 +

2

α− 1xq ·
∙µ

α− 1
α− 2

¶
xq − µX

¸
. (15)

In Figure 2, we give a comparison of the TCV between the Pareto and the Gamma
distributions. For the Gamma, we selected the parameters α = 200 and β = 2, while
for the Pareto, we chose α = 15.18 and x0 = 107.05. These parameters have been
chosen so that the means and the variances between the distributions match.
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Figure 2: Comparison of TCV between Gamma and Pareto distributions

Example 2.5 Generalized Pareto [This example has yet to be confirmed.] A distrib-
ution with wide application in extreme value theory is a generalization of the Pareto
distribution. Let X be Generalized Pareto with distribution function

FX (x) = 1−
µ
1 + ξ

x

x0

¶−1/ξ
for x ∈ D (ξ, x0)

where D (ξ, x0) denotes the domain and is defined by

D (ξ, x0) =

½
x ≥ 0, for ξ ≥ 0
0 ≤ x ≤ −1/ξ, for ξ < 0

.
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See, for example, Embrechts, et al. (1997) and Mikosch (2004) for discussion about
the applications of this distribution in insurance and finance. For the parameters,
ξ ∈ R is the shape parameter while x0 > 0 is the scale parameter. Its mean can be
expressed as E (X) = µX =

x0
1− ξ

, provided ξ < 1. Its quantile xq clearly satisfies

xq =
x0
ξ

h
(1− q)−ξ − 1

i
.

It is easy to demonstrate, using (4) that the stop-loss premium can be expressed, for
the Pareto, as

E
£
(X − xq)+

¤
=

Z ∞

xq

FX (x) dx =

Z ∞

xq

µ
1 + ξ

x

x0

¶−1/ξ
dx

=
x0
ξ

Z ∞

(1−q)−ξ
u−1/ξdu =

x0
1− ξ

(1− q)1−ξ ,

provided ξ < 1. Thus, we have the tail conditional expectation

E [X − xq |X > xq ] =
1

1− q
E
£
(X − xq)+

¤
=

1

1− q

x0
1− ξ

(1− q)1−ξ

=
x0
1− ξ

µ
1 +

ξ

x0
xq

¶
=

x0 + ξxq
1− ξ

,

provided x0 + ξxq > 0. This corresponds exactly that shown on page 113 of Mikosch
(2004). Now the new random variable X∗ in Theorem (1) therefore has density
function

fX∗ (x) =

³
1 + ξ x

x0

´−1/ξ
x0
1− ξ

(1− q)1−ξ
=

1− ξ

x0 (1− q)1−ξ

µ
1 + ξ

x

x0

¶−1/ξ
, for x > xq.

Its mean can be directly computed as

E (X∗) =
1− ξ

x0 (1− q)1−ξ

Z ∞

xq

x

µ
1 + ξ

x

x0

¶−1/ξ
dx

=
x0 (1− ξ) /ξ2

(1− q)1−ξ

Z ∞

(1−q)−ξ
(u− 1)u−1/ξdu

=
x0
ξ

∙
1− ξ

1− 2ξ (1− q)−ξ − 1
¸
,

provided ξ < 1/2. Putting these results together and using the expression in the The-
orem, it is not difficult to show that the tail conditional variance for the Generalized
Pareto can be written as

TCVq (X) = (xq − µX)
2 + 2

µ
x0 + ξxq
1− ξ

¶
·
½
x0
ξ

∙
1− ξ

1− 2ξ (1− q)−ξ − 1
¸
− µX

¾
. (16)
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4 A New Insurance Premium Principle

Consider an insurance company which has the option of accepting a risk X with
known distribution function in exchange for a loaded premium π. See Wang, et al.
(1997) for axiomatic treatment of insurance premium calculations and Goovaerts, et
al. (1984) for discussion of several premium calculation principles and their proper-
ties. A premium calculation principle assigns a value π to a given risk X. There are
several already well-known premium principles such as the variance/standard devia-
tion principle, the zero utility principle, and the Esscher principle. We recommend
the following premium calculation principle based on the tail conditional variance of
a risk X:

π (X) = µX + β
q
TCVq (X), (17)

for some fixed positive parameter β. This principle induces the intuitive interpre-
tation that the insurance company gives special emphasis on the importance of the
variability along the tail of the distribution, or in short, the extreme events causing
large losses. It is suspected that this premium principle, similar to the semivariance,
can be derived using the argument of utility theory with the insurance company hav-
ing a mixture of quadratic and linear terms in its utility of wealth function as depicted
in Figure 3.

wealth

ut
ilit

y

L

quadratic

linear

Figure 3: A mixed Quadratic/Linear utility of wealth function

We next consider some properties of this premium principle.
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Property 4.1 Non-negative Loading Note that because

TCVq (X) ≥ 0,

there is always a non-negative risk premium associated with this premium principle.
In fact, we have π (X)− µX ≥ 0.

Property 4.2 Positive Homogeneous Consider the random variable Y = αX for
some positive α. Then, it is clear that its quantile is equal to yq = αxq and its mean
is equal to µY = αµX . Thus, its tail conditional variance is given by

TCVq (Y ) = V ar [Y − µY |Y > yq ] = V ar [α (X − µX) |X > xq ]

=
1

1− q

Z ∞

xq

α2 (x− µX)
2 fX (x) dx = α2TCVq (X) .

Thus,

π (Y ) = µY + β ·
q
TCVq (Y ) = αµX + β ·

q
α2TCVq (X) = απ (X) .

Property 4.3 Translation Invariant Consider the random variable Y = X + α for
some positive α. Then, it is clear that its quantile is equal to yq = xq + α and its
mean is equal to µY = µX + α. Thus, its tail conditional variance is given by

TCVq (Y ) = V ar [Y − µY |Y > yq ]

= V ar [X + α− µX − α |X + α > xq + α ]

= TCVq (X) .

Thus,

π (Y ) = µY + β ·
q
TCVq (Y ) = µX + α+ β ·

q
TCVq (X) = π (X) + α.

Thus, this premium principle is translation invariant.

Property 4.4 Sub-additivity Consider two random variables X1 and X2 and denote
its sum by S = X1 +X2. Denote the q-th quantile of the sum by sq and its mean by
µS = µ1 + µ2. Thus, its tail conditional variance is given by

TCVq (S) = V ar [S − µS |S > sq ] = V ar [(X1 − µ1) + (X2 − µ2) |S > sq ]

= V ar [X1 − µ1 |S > sq ] + 2Cov [X1 − µ1, X2 − µ2 |S > sq ] + V ar [X2 − µ2 |S > sq ]

≤ V ar [X1 − µ1 |S > sq ] + 2V ar [X1 − µ1 |S > sq ]V ar [X2 − µ2 |S > sq ]

+V ar [X2 − µ2 |S > sq ]

= {V ar [X1 − µ1 |S > sq ] + V ar [X2 − µ2 |S > sq ]}2

= {TCVq (X1) + TCVq (X2)}2 .

The sub-additivity of the premium should immediately follow.
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Property 4.5 Stop-Loss Order Preserving Consider two random variables X1 and
X2 where X1 ≤sl X2 in stop-loss order. Then according to this property, we must
also have

X1 ≤sl X2 =⇒ TCVX1 (x1q) ≤ TCVX2 (x2q) .

Property 4.6 Additivity for Comonotonic Risks Consider two random variables X1

and X2. Then, according to this property, we must have

TCVSc
¡
scq
¢
≤ TCVXC

1
(x1q) + TCVXC

2
(x2q) .

Here we assume that the random vector (Xc
1, X

c
2) denotes the comonotonic counter-

part of (X1,X2), which means that both vectors have the same marginal distribu-
tions, but the former vector exhibits the comonotonic dependency. See Dhaene, et
al. (2003). Since X1 +X2 ≤ Xc

1 +Xc
2, we find the following subadditivity property

also holds:
TCVS (sq) ≤ TCVXC

1
(x1q) + TCVXC

2
(x2q) .

[Properties 3.5 and 3.6 have yet to be verified!!!!]

5 Applications in Capital Allocation

This section discusses the usefulness of the tail conditional variance as a risk measure
for capital allocation and as a consequence of introducing the resulting allocation
formula, we define the tail covariance. The solvency of any financial institution is
of utmost importance to consumers, regulators, shareholders and investors. In the
insurance industry, for example, companies are obligated to hold a sufficient amount
of capital to be able to continue conducting business. Policyholders view the presence
of strong capital very positively because this helps ensure that claims will be met,
with a high probability, when they become due. Investors rely on the capital to
assess company’s relative financial strength as well as the return on their capital
investments. The accounting of the required amount of capital in the company’s
balance sheet depend on the purpose of the financial reporting. From a regulatory
point-of-view, Risk-Based Capital (RBC) requirements are often prescribed when
determining the required capital to hold.
It is important that the insurance company, or any other financial insitution, holds

the appropriate amount of capital. It can hold sufficiently large amounts of capital
but doing so comes with a premium called the cost of capital which investors usually
demand in exchange for lending them. On the other hand, holding small amounts
of capital are often viewed negatively by investors as well as policyholders because
capital helps detect the company’s capacity to bear risks. The same can be said about
ratings agencies that frequently assess the financial strengths of the company.
In this section, we mainly focus on the issue of capital allocation, a term commonly

used in the insurance and finance literature to refer to the process of fairly sub-
dividing the total capital resource of a diversified financial institution across its various
constituents. For example, a diversified insurance company may wish to sub-divide
its total capital across its various lines of business (e.g. life, general/casualty, health).
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The same can be said about a financial firm (e.g. bank) with a diversified portfolio
of investments across various industries (e.g. manufacturing, financial services) or
some other categorical divisions deemed appropriate. The same principles are equally
applicable to an insurance company with a single major line of business, but with
several types of products (e.g. traditional whole life, universal life in the case of a
life company). We examine existing methods of capital allocation by expressing the
allocation formula as a solution to an optimization problem. By doing so, we are also
able to offer additional methods of capital allocation. The primary advantage of the
optimization techniques is that it offers intuitive insights as to the usefulness of the
allocation method, thereby giving the users the flexibility to decide on the fairness of
the allocation method.
Some of the more common reasons for capital allocation have appropriately been

documented in Valdez and Chernih (2003). Most insurance companies write several
lines of business and want their total capital allocated across these lines of business
for a few reasons. First, there is need to redistribute the total cost associated with
holding capital across various business units so that this cost is equitably distributed
and transferred back to the policyholders in the form of equitable premiums. Second,
capital allocation formulas provide a useful device for fairly assessing the performance
of managers of the various lines of business. Salaries and bonuses may be linked to
this performance. Third, capital allocation may assist in making further business
decisions of re-allocating future additional capital, prioritizing new capital budgeting
projects, and deciding business expansions, reductions, or even eliminations. Lastly,
the allocation of expenses across business units is a necessary activity for financial
reporting purposes and the capital allocation formulas may be used to assist in such
expense allocation.
In the literature, there is an increasing focus on the area of formulating capital

requirements and developing capital standards. However, there appears to be little
work done in the subject of capital allocation. In its request for research proposals
in 2002, the Casualty Actuarial Society specifically recognized the significance of ad-
dressing strategies for capital allocation. In Valdez and Chernih (2003), the authors
developed Wang’s capital allocation formula when risks are considered multivariate
elliptical. We re-examine this so-called covariance-based allocation principle by ex-
pressing the allocation formula as a solution to an optimization problem. See also
Wang (2002). In Dhaene, Gooavaerts, and Kaas (2003), the authors considered some
examples of risk measures used for computing economic capital and that led to opti-
mal capital allocation formulas. Panjer (2002) calculates capital allocation based on
the Tail Value-at-Risk (Tail VaR) and provides the explicit form when risks follow
a multivariate normal distribution. In Landsman and Valdez (2003), these capital
allocation formulas are extended to the case when risks follow the larger class of
multivariate elliptical distributions recovering the Panjer’s formulas when risks are
multivariate normal.
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5.1 Notation and Definitions

Suppose that a firm has n different business units, each unit faces the risk of losing
X1,X2, ...,Xn, respectively, at the end of a single period. We assume that for i =
1, 2, ..., n, Xi is a random variable on a well-defined probability space and that the
random vector XT = (X1,X2, ...,Xn) has a dependency structure characterized by
its joint distribution.
Let S be the total company loss random variable. Clearly, for the insurance

company:
S = X1 +X2 + · · ·+Xn. (18)

Other types of financial firm may be interested in a total weighted loss random
variable such as

S = w1X1 + w2X2 + · · ·+ wnXn (19)

where (w1, w2, ..., wn) is a weight vector satisfying
Pn

i=1wi = 1. This article focuses
on the total loss in (18) although the ideas developed here can easily extend to the
situation in (19). We now assume that the company has already determined the level
of capital for the entire company. Denote this total capital by K and assume that it
has been determined by a risk measure

ρ (S) : S → R

which is a functional of the risk S to the set of real numbers R, that is,K = ρ (S) ∈ R.
The company wishes to decompose this total company across its various business
units. For discussion of risk measures such as requirements of a coherent risk measure,
see Artzner, et al. (1999). Also see Dhaene, Goovaerts, and Kaas (2003) for further
discussion of risk measures more applicable to insurance situations.

Definition 2 Denote the vector of losses by XT = (X1, X2, ..., Xn). An allocation A
is the mapping

A : XT → Rn

such that A
¡
XT
¢
= (K1, K2, ...,Kn)

T ∈ Rn where

nX
i=1

Ki = K = ρ (S) , (20)

S is the total company loss and K is the total company capital.

Each component Ki in the allocation represents the i-th business unit’s contri-
bution to the total company. The requirement in (20) is referred to as the “full
allocation” requirement. In principle, if the i-th business unit operates as a single en-
tity separated from the rest of the company, its capital requirement would have been,
applying the same risk measure, ρ (Xi). If the sub-additivity property (Artzner, et
al. 1999) of the risk measure holds, that is,

ρ (S) ≤ ρ (X1) + · · ·+ ρ (Xn) , (21)
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then clearly, we have
nX
i=1

[ρ (Xi)−Ki] ≥ 0

which represents the total company’s diversification benefit. Each component ρ (Xi)−
Ki in the summation represents each company’s contribution to this total benefit.

Definition 3 For a company with n business units and facing a vector of losses
XT = (X1, X2, ...,Xn), the i-th business unit’s diversification benefit is given by

δi = ρ (Xi)−Ki (22)

for i = 1, ..., n.

Although the total company’s diversification benefit is non-negative if sub-additivity
holds, each business unit’s contribution to this total is not necessarily non-negative,
i.e. δi can be negative. Clearly if δi ≥ 0, the unit is better off joining the firm.
Otherwise, if δi < 0, the unit is better off operating marginally as a separate entity.

5.2 Optimization Principles for Capital Allocation

The allocation (K1, ..., Kn) is a decision made by the company and is subject to
some potential mistake or error. Denote the loss associated with such a decision by
D (Ki;Xi, ρ) for the i-th business unit. We shall call D the decision loss function.
The total loss associated with the decision (K1, ..., Kn) is then

L =
nX
i=1

D (Ki;Xi, ρ) . (23)

The company wishes then to minimize this loss subject to the full allocation require-
ment in (20). Thus, the decision is then to search for the allocation (K1, ...,Kn) by
solving the optimization problem:

min
K1,...,KnP

Ki=K

nX
i=1

D (Ki;Xi, ρ) . (24)

Writing up the lagrange function, we have

L (K1, ..., Kn) =
nX
i=1

D (Ki;Xi, ρ)− λ

Ã
nX
i=1

Ki −K

!
. (25)

For an optimum then, the first-order conditions can be expressed as:

∂L (K1, ..., Kn)

∂Ki
=

∂D (Ki;Xi, ρ)

∂Ki
− λ = 0, for all i = 1, ..., n (26)

and
∂L (K1, ..., Kn)

∂λ
= 0. (27)

The last of these conditions in (27) is clearly the full allocation requirement. We now
examine different decision loss functions leading to some allocation formulas.
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5.3 The Covariance Allocation Principle

Assume that the mean vector is µT = (µ1, µ2, ..., µn) for the vector of losses X
T , that

is, µi = E (Xi) for i = 1, ..., n. The decision loss function leading to the covariance
allocation formula is given by

D (Ki;Xi, ρ) = E

"
(Xi − µi)−

Ki

K
·

nX
i=1

(Xi − µi)

#2
. (28)

Without loss of generality, consider the transformed variables X∗
i = Xi − µi which

clearly has zero mean. The decision loss function becomes

D (Ki;X
∗
i , ρ) = E

µ
X∗

i −
Ki

K
· S∗

¶2
where S∗ =

Pn
i=1X

∗
i . According to (26), we have

−2E
∙µ

X∗
i −

Ki

K
· S∗

¶µ
S∗

K

¶¸
− λ = 0.

Multiplying both sides by 1
2
K2 and simplifying, we get

KiE
¡
Z∗2
¢
= KE (X∗

i S
∗) +

1

2
λK2.

Since E (S∗2) = V ar (S∗) and E (X∗
i S

∗) = Cov (X∗
i , S

∗), we have

KiV ar (S
∗) = KCov (X∗

i , S
∗) +

1

2
λK2.

Now, summing both sides from i = 1 to n, we haveÃ
nX
i=1

Ki

!
V ar (S∗) = K

"
nX
i=1

Cov (X∗
i , S

∗)

#
+

n

2
λK2

= KCov

Ã
nX
i=1

X∗
i , S

∗

!
+

n

2
λK2

= KCov (S∗, S∗) +
n

2
λK2

= KV ar (S∗) +
n

2
λK2

which implies the lagrange multiplier λ = 0. This leads to the allocation formula

Ki =
Cov (X∗

i , S
∗)

V ar (S∗)
·K.

Notice that because

Cov (X∗
i , S

∗)

V ar (S∗)
=

Cov (Xi − µi, S − µS)

V ar (S − µS)
=

Cov (Xi, S)

V ar (S)
,
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where µS =
Pn

i=1 µi, the result then is equivalent to the following allocation formula

Ki =
Cov (Xi, S)

V ar (S)
·K (29)

which is called the covariance allocation formula. [Note: discuss how this allocation
is related to the β in the CAPM.] See also Valdez and Chernih (2003) for discussion
of this allocation formula when the claims follow a multivariate elliptical distribution.

5.4 The Tail Covariance Allocation Principle

Consider now a variation to the covariance allocation principle where the decision
loss function is expressed as

D (Ki;Xi, ρ) = E

⎧⎨⎩
"
(Xi − µi)−

Ki

K
·

nX
i=1

(Xi − µi)

#2 ¯̄̄̄¯̄S > F−1S (q)

⎫⎬⎭ . (30)

Again without loss of generality, consider the transformed variables S∗i = Xi − µi
which clearly has zero mean. The decision loss function becomes

D (Ki;X
∗
i , ρ) = E

"µ
X∗

i −
Ki

K
· S∗

¶2 ¯̄̄̄¯S > F−1S (q)

#
where S∗ =

Pn
i=1 S

∗
i . Following the same reasoning as in the covariance allocation

principle, except now there is a conditioning event, the resulting allocation formula
can be displayed as

Ki =
Cov

¡
Xi − µi, S − µS

¯̄
S > F−1S (q)

¢
V ar

¡
S − µS

¯̄
S > F−1S (q)

¢ ·K (31)

which we call the tail covariance allocation formula. If F−1S (q) is chosen to be the
total capital K, then we have the special case where the allocation formula is given
by

Ki =
Cov (Xi − µi, S − µS |S > K )

V ar (S − µS |S > K )
·K.

We now define the tail covariance between two random variables.

Definition 4 Consider a bivariate vector YT = (Y1, Y2) with mean vector µT =
(µ1, µ2). The tail covariance of Y

T , conditional on Y2 > F−1Y2
(q) is defined to be

TCCq (Y1 |Y2 ) = Cov
¡
Y1 − µ1, Y2 − µ2

¯̄
Y2 > F−1Y2

(q)
¢
, (32)

where F−1Y2
(q) denotes the q-th quantile of the distribution of Y2.

Thus, we can write the tail covariance allocation formula as

Ki =
TCCq (Xi |S )
TCVq (S)

·K,

where sq = F−1S (q).

18



5.5 The Case of the Multivariate Normal

Now, consider the special case where the loss random vector XT = (X1, X2, ...,Xn)
follows a multivariate Normal distribution with mean vector

µT = (µ1, µ2, ..., µn)

and variance-covariance matrix

Σ = (σij) for i, j = 1, 2, ..., n.

For simplicity, σii = σ2i . It is well-known that the sum S =
Pn

i=1Xi also has a
Normal distribution with mean

µS =
nX
i=1

µi

and variance

σ2S = V ar (S) =
nX
i=1

nX
j=1

σij.

It is less known that for i = 1, 2, ...n, the random vector XT
i,S = (Xi, S) is also jointly

distributed as a bivariate Normal with mean vector µT
i,S = (µi, µS) and covariance

matrix

V ar (Xi,S) = Σi,S=

µ
σ2i σ2i + ρσiσS

σ2i + ρσiσS σ2S

¶
.

Landsman and Valdez (2003) extended this result to the multivariate Elliptical case
for which the Normal family belongs to. Panjer (2002) has demonstrated that the
tail conditional expectation has the following explicit form:

TCEq (S) = µS +
(1/σS)ϕ [(sq − µS) /σS]

1− Φ [(sq − µS) /σS]
σ2S (33)

where sq = F−1S (q) denotes the q-th quantile of the distribution of S. The following
capital decomposition was also shown in Panjer (2002):

E (Xi |S > sq ) = µi +
(1/σS)ϕ [(sq − µS) /σS]

1− Φ [(sq − µS) /σS]
σi,S (34)

where σi,S = Cov (Xi, S) denotes the covariance of Xi and S. Both formulas (33)
and (34) have been similarly demonstrated in the case where the losses follow a
multivariate Elliptical distribution. See Landsman and Valdez (2003).
In the following, we derive an expression for the tail covariance

TCCq (Xi |S ) = Cov (Xi − µi, S − µS |S > sq )

in the case of Normal distribution. The conditional tail variance of S has been derived
in (8). Write the correlation coefficient of Xi and S as

ρi,S =
Cov (Xi, S)

V ar (Xi)V ar (S)
=

σi,S
σiσS

.
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Using the definition of the conditional tail covariance, we have

TCCq (Xi |S ) =
1

F S (sq)

Z ∞

−∞

Z ∞

sq

(xi − µi) (s− µS) fXi,S (xi, s) dsdxi (35)

where fXi,S (·, ·) denotes the bivariate Normal density of (Xi, S) and is given by, for
completeness purposes,

fXi,S (xi, s) =
1

2πσiσS
q
1− ρ2i,S

exp

(
− 1

2
¡
1− ρ2i,S

¢ "µxi − µi
σi

¶2

−2ρi,S
µ
xi − µi
σi

¶µ
s− µS
σS

¶
+

µ
s− µS
σS

¶2#)
. (36)

Now making the transformation

z1 =
xi − µi
σi

and z2 =

µ
s− µS
σS

¶
,

the Jacobian of this transformation is |J | = 1/ (σiσS) so that

TCCq (Xi |S ) =
σiσS

FS (sq)

Z ∞

−∞

Z ∞

s∗q

z1z2 ·
1

2π
q
1− ρ2i,S

e
− 1

2(1−ρ2i,S)
(z21−2ρi,Sz1z2+z22)

dz2dz1,

(37)
where s∗q = (sq − µS) /σS. Thus, it is clear from (35) and (37) that

Cov (Xi − µi, S − µS |S > sq ) = σiσSCov
¡
Z1, Z2

¯̄
Z2 > s∗q

¢
where (Z1, Z2) has a standard bivariate Normal distribution. We now state and prove
the result for the multivariate Normal.

Theorem 5 Suppose that XT = (X1,X2, ..., Xn) follows a multivariate Normal dis-
tribution with mean vector

µT = (µ1, µ2, ..., µn)

and variance-covariance matrix

Σ = (σij) for i, j = 1, 2, ..., n.

Then the conditional tail covariance of (Xi, S), for i = 1, 2, ..., n, can be expressed as

TCCq (Xi |S ) = ρi,SσiσS

"
1 +

ϕ
¡
s∗q
¢

1− Φ
¡
s∗q
¢s∗q
#
, (38)

where ρi,S =
σi,S
σiσS

is the correlation coefficient of Xi and S, and s∗q = (sq − µS) /σS.
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Proof. Completing squares in (37), the double integral can be expressed asZ ∞

−∞
z1ϕ (z1)

⎧⎨⎩
Z ∞

s∗q

z2 ·
1

√
2π
q
1− ρ2i,S

e−
1
2 [(z2−ρi,Sz1)/

√
1−ρ2i,S]

2

dz2

⎫⎬⎭ dz1.

By letting u =
¡
z2 − ρi,Sz1

¢
/
q
1− ρ2i,S and defining uq =

¡
s∗q − ρi,Sz1

¢
/
q
1− ρ2i,S,

then the integral inside the brace becomesZ ∞

s∗q

z2 ·
1√
2π

e−
1
2 [(z2−ρi,Sz1)/

√
1−ρ2i,S]

2

dz2 =

Z ∞

uq

³q
1− ρ2i,Su+ ρi,Sz1

´
ϕ (u) du

=
q
1− ρ2i,S [−ϕ (u)]

∞
uq
+ ρi,Sz1 [1− Φ (uq)]

=
q
1− ρ2i,Sϕ (uq) + ρi,Sz1 [1− Φ (uq)] .

What we have thus far is that

TCCq (Xi |S )

=
σiσS

F S (sq)

Z ∞

−∞
z1ϕ (z1)

nq
1− ρ2i,Sϕ (uq) + ρi,Sz1 [1− Φ (uq)]

o
dz1

=
σiσS

F S (sq)

⎧⎨⎩
q
1− ρ2i,SE

h
Z1ϕ

³¡
s∗q − ρi,Sz1

¢
/
q
1− ρ2i,S

´i
+ρi,S

n
E (Z21)−E

h
Z21Φ

³¡
s∗q − ρi,Sz1

¢
/
q
1− ρ2i,S

´io ⎫⎬⎭ . (39)

The following results can be found in Valdez (2004a):

E [Z1ϕ (a− bZ1)] =
ab

(1 + b2)3/2
· ϕ
µ

a√
1 + b2

¶
(40)

and

E
£
Z21Φ (a− bZ1)

¤
= Φ

µ
a√
1 + b2

¶
− ab2

(1 + b2)3/2
· ϕ
µ

a√
1 + b2

¶
. (41)

See the appendix for a detailed proof of these two results. By choosing a = s∗q/
q
1− ρ2i,S

and b = ρi,S/
q
1− ρ2i,S, we have

a√
1 + b2

= s∗q,
ab

(1 + b2)3/2
= ρi,S

q
1− ρ2i,Ss

∗
q, and

ab2

(1 + b2)3/2
= ρ2i,Ss

∗
q.

Therefore, from (39), it can be verified that

TCCq (Xi |S ) =
σiσS

1− Φ
¡
s∗q
¢ ½ ρi,S

¡
1− ρ2i,S

¢
s∗qϕ

¡
s∗q
¢

+ρi,S
£
1− Φ

¡
s∗q
¢
+ ρ2i,S s∗qϕ

¡
s∗q
¢¤ ¾

=
σiσS

1− Φ
¡
s∗q
¢ ©ρi,Ss∗qϕ ¡s∗q¢+ ρi,S

£
1− Φ

¡
s∗q
¢¤ª

= ρi,SσiσS

"
1 +

ϕ
¡
s∗q
¢

1− Φ
¡
s∗q
¢s∗q
#
.
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Notice that it is straightforward to verify that if we sum the tail covariance above
from i = 1 to i = n,

nX
i=1

TCCq (Xi |S ) =
nX
i=1

ρi,SσiσS

"
1 +

s∗qϕ
¡
s∗q
¢

1− Φ
¡
s∗q
¢#

= σ2S

"
1 +

s∗qϕ
¡
s∗q
¢

1− Φ
¡
s∗q
¢# ,

which gives clearly TCVq (S) , the correct conditional variance for the Normal as given
in (8). This follows immediately from the fact that

nX
i=1

TCCq (Xi |S ) =
nX
i=1

Cov (Xi − µi, S − µS |S > sq )

= Cov

Ã
nX
i=1

Xi −
nX
i=1

µi, S − µS |S > sq

!
= Cov (S − µS, S − µS |S > sq )

= V ar (S − µS |S > sq )

= TCVq (S) .

Hence, the tail covariance allocation principle preserves the full allocation. Further-
more, it is also interesting to notice that in terms of percentage allocation, it would
be the same as that of the covariance allocation principle. This is because, in the
Normal distribution case, we have

TCCq (Xi |S )
TCVq (S)

=

ρi,SσiσS

∙
1 +

s∗qϕ(s∗q)
1−Φ(s∗q)

¸
σ2S

∙
1 +

s∗qϕ(s∗q)
1−Φ(s∗q)

¸ =
σi,S
σ2S

=
Cov (Xi, S)

V ar (S)
.

6 Mean-Variance Portfolio Analysis

In this section, we explore the use of the tail conditional variance within the framework
of asset allocation in investments. The fundamental problem here, just like in the
Markowitz setting, is to select from a universe of available assets for investment to
minimize some sort of a measure of risk subject to a target level of expected return
and some other possible constraints.
Consider the investor problem of determining the proportions to invest in each of n

available assets, which may include a risk-free asset. Suppose that the rate-of-return,
in a single period, for these assets is a random vector represented byRT = (R1, ..., Rn).
Now if wi denotes the proportion of wealth invested in asset i, then the portfolio rate
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of return can be expressed as Rp =
Pn

i=1wiRi. To construct the Markowitz (1952)
mean-variance portfolio, one would solve the following optimization problem

min
w1,...,wnP

wi=1

V ar (Rp)

subject to: (i) a target rate of return, say µT , that is, E (Rp) = µT , and (ii) no
negative holdings, wi ≥ 0. Instead of minimizing the variance believed to measure
the risk of the portfolio, one may wish to minimize some other risk measure such
as the quantile or the tail conditional expectation. Alternatively, one can minimize
the tail variance of the portfolio. Investment problems are the opposite of insurance
losses so that the downside risk is normally considered. Thus, when considering tail
variance, the conditioning must be on the downside risk, either that or consider the
negative of the portfolio return which can be interpreted then as a loss.
For purposes of illustration, let us consider the simple example of choosing to

invest in one risky asset and one risk-free asset. Denote by RF the return on the
risk-free asset and is considered non-random. Denote by R the random rate of return
on the risky asset and assume that it has a Normal distribution with mean µ and
variance σ2. If a proportion α is invested in risky asset, then the portfolio return will
be Rp = αR + (1− α)RF which clearly also has a Normal distribution with mean
E (Rp) = αµ + (1− α)RF and variance V ar (Rp) = α2σ2. Its q-th quantile can be
expressed as

rpq = ασΦ−1 (q) + αµ+ (1− α)RF .

Its conditional tail variance is therefore, using the result in (8),

TCVq (Rp) = α2σ2
∙
1 +

ϕ (zq)

1− Φ (zq)
zq

¸
,

where zq = Φ−1 (q) is the standardized q-th quantile of the distribution, and is inde-
pendent of α. Thus, this TCV can similarly be represented as

TCVq (Rp) = α2σ2
∙
1 +

ϕ (Φ−1 (q))

1− q
Φ−1 (q)

¸
. (42)

Suppose we allow for negative holdings. Now, consider the utility function

U = Rp − β [Rp − E (Rp)]
2 I (Rp ≤ rpq) , (43)

where I (Rp ≤ rpq) is an indicator that the portfolio return falls below some threshold.
Thus for this utility function, the investor is risk-neutral up until the point it falls
below this threshold. Taking the expected utility, we have

E (U) = E (Rp)− βE
©
[Rp −E (Rp)]

2 I (Rp ≤ rpq)
ª

= E (Rp)− βV ar (Rp) + βE
©
[Rp − E (Rp)]

2 I (Rp > rpq)
ª

= E (Rp)− βV ar (Rp) + β (1− q)TCVq (Rp) .
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For the case where the returns are Normal, we would have

E (U) = αµ+ (1− α)RF − β (1− q)α2σ2
∙

q

1− q
− ϕ (zq)

1− Φ (zq)
zq

¸
. (44)

Minimizing (44), we differentiate

∂

∂α
E (U) = (µ−RF )− 2αβ (1− q)σ2

∙
q

1− q
− ϕ (zq)

1− Φ (zq)
zq

¸
Thus, we solve for α once this derivative is set to zero. The solution for α, the
proportion invested in the risky asset, can be expressed as a Merton-type ratio

α =
(µ−RF )

2β (1− q)σ2
h

q
1−q −

ϕ(zq)
1−Φ(zq)zq

i = (µ−RF )

2β [σ2 − TCVq (R)]
.

For numerical illustration, consider the case where risk-free rate of return is RF =
0.02 and the return from the risky asset has a Normal distribution with mean µ = 0.05
and variance σ2 = 0.0025. Choose q = 0.05 and β = 100. Then it is straightforward to
show that TCVq (R) = σ2

h
1 + ϕ(zq)

1−Φ(zq)zq
i
= 0.002054 so that the optimal proportion

to invest in risky asset is α = 33.6%. In Figure 4, we show how this proportion varies

with q noting that we can write σ2 = TCVq (R)×
h
1 + ϕ(zq)

1−Φ(zq)zq
i−1
.
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Figure 4: Proportion invested in risky assets as a function of q
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The proportion α as a function of q can actually be re-written as

α (q) =
(µ−RF ) (1− q)

2βσ2ϕ (Φ−1 (q))Φ−1 (q)
.

As also observed from the Figure 4, it is not difficult to show that

lim
q−→0+

α (q) = lim
q−→1/2−

α (q) =∞,

lim
q−→1/2+

α (q) = −∞,

and
lim

q−→1−
α (q) = 0.

7 Concluding Remarks

The paper examines the tail conditional variance of a risk X defined to be the vari-
ability of the risk along its right tail and tail covariances of two risks X1 and X2

defined to explain the linear dependency of the risks along their right tails. There
are potential benefits of using the tail variance as a risk measure, particularly when
measuring risks associated with insurance losses where right-tail risks are given prime
attention. These statistical indices are also examined for some common parametric
families of distributions. Some motivations in the context of insurance premium cal-
culation, capital allocation, and Markowitz portfolio theory are also discussed. We
were able to derive explicit forms of the tail covariance in the case where the risks
are multivariate Normal. For further research, it would be interesting to extend these
results in the case of multivariate Elliptical as was done in Landsman and Valdez
(2003) for the tail conditional expectation. Some work in progress on these results
are in Valdez (2004b).
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8 Appendix

In this appendix, we prove the results in equations (40) and (41). These results can
similarly be found in Valdez (2004a).

Proposition 6 Suppose Z ∼ N (0, 1), the standard normal random variable. Then
the following holds for any constants a and b:

(i) E [ϕ (a− bZ)] =
1√
1 + b2

· ϕ
µ

a√
1 + b2

¶
(45)

and

(ii) E [Zϕ (a− bZ)] =
ab

(1 + b2)3/2
· ϕ
µ

a√
1 + b2

¶
. (46)

Proof. The proof is straightforward integration problem. First, notice that we can
re-write

ϕ (z)ϕ (a− bz) =
1√
2π
· 1√
2π
exp

½
−1
2

£
z2 + (a− bz)2

¤¾
=

1√
2π
· 1√
2π
exp

½
−1
2

£
z2
¡
1 + b2

¢
− 2abz + a2

¤¾
=

1√
2π
exp

½
−1
2

∙
a2 − a2b2

1 + b2

¸¾

× 1√
2π
exp

⎧⎨⎩−12
⎡⎣Ã z − ab

1+b2

1/
√
1 + b2

!2⎤⎦⎫⎬⎭
after completing squares. Further simplifying, we have

ϕ (z)ϕ (a− bz) =
1√
2π
exp

"
−1
2

µ
a√
1 + b2

¶2#

× 1√
2π
exp

⎧⎨⎩−12
⎡⎣Ã z − ab

1+b2

1/
√
1 + b2

!2⎤⎦⎫⎬⎭
= ϕ

µ
a√
1 + b2

¶
ϕ

Ã
z − ab

1+b2

1/
√
1 + b2

!
.

It therefore follows that

E [ϕ (a− bZ)] =

Z ∞

−∞
ϕ (z)ϕ (a− bz) dz

= ϕ

µ
a√
1 + b2

¶Z ∞

−∞
ϕ

Ã
z − ab

1+b2

1/
√
1 + b2

!
dz

=
1√
1 + b2

· ϕ
µ

a√
1 + b2

¶
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which proves the first part of the proposition. For the second part, we have

E [Z · ϕ (a− bZ)] =

Z ∞

−∞
zϕ (z)ϕ (a− bz) dz

= ϕ

µ
a√
1 + b2

¶Z ∞

−∞
zϕ

Ã
z − ab

1+b2

1/
√
1 + b2

!
dz

=
1√
1 + b2

· ab

1 + b2
· ϕ
µ

a√
1 + b2

¶
and the result follows.

Proposition 7 Suppose Z ∼ N (0, 1), the standard normal random variable. Then
the following holds for any constants a and b:

(i) E [Z · Φ (a− bZ)] =
−b√
1 + b2

· ϕ
µ

a√
1 + b2

¶
. (47)

and

(ii) E
£
Z2 · Φ (a− bZ)

¤
= Φ

µ
a√
1 + b2

¶
− ab

(1 + b2)3/2
· ϕ
µ

a√
1 + b2

¶
. (48)

Proof. The proof of the first part of the proposition is a straightforward application
of integration by parts. Observe that

dϕ (z)

dz
=

d

dz

µ
1√
2π

e−
1
2
z2
¶
=

1√
2π

e−
1
2
z2 · (−z) = −zϕ (z) .

Now applying integration by parts, we haveZ ∞

−∞
zϕ (z)Φ (a− bz) dz = −

Z ∞

−∞
Φ (a− bz) d (ϕ (z))

= − ϕ (z)Φ (a− bz)|∞−∞ −
Z ∞

−∞
bϕ (z)ϕ (a− bz) dz

= −
Z ∞

−∞
bϕ (z)ϕ (a− bz) dz = −bE [ϕ (a− bz)]

where clearly (48) immediately follows using the result (45) in Proposition 5. For the
second part, we again apply integration by partsZ ∞

−∞
z2ϕ (z)Φ (a− bz) dz = −

Z ∞

−∞
zΦ (a− bz) d (ϕ (z))

= − zϕ (z)Φ (a− bz)|∞−∞ +
Z ∞

−∞
Φ (a− bz)ϕ (z) dz

−b
Z ∞

−∞
zϕ (a− bz)ϕ (z) dz

= E [Φ (a− bz)]− bE [zϕ (a− bz)]

= E [Φ (a− bz)]− ab2

(1 + b2)3/2
· ϕ
µ

a√
1 + b2

¶
.
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It is not difficult to show that

E [Φ (a− bZ)] = Φ

µ
a√
1 + b2

¶
.

See Valdez (2004a) for a detailed proof.
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