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Abstract

Significant changes in the insurance and financial markets are giving in-
creasing attention to the need for developing a standard framework for risk
measurement. Recently, there has been growing interest among insurance and
investment experts to focus on the use of a tail conditional expectation be-
cause it shares properties that are considered desireable and applicable in a
variety of situations. In particular, it satisfies requirements of a “coherent”
risk measure in the spirit developed by Artzner, et al. (1999). In this paper,
we derive explicit formulas for computing tail conditional expectations for el-
liptical distributions, a family of symmetric distributions which includes the
more familiar normal and student-t distributions. We extend this investiga-
tion to multivariate elliptical distributions allowing us to model combinations
of correlated risks. We are able to exploit properties of these distributions nat-
urally permitting us to decompose the conditional expectation so that we are
able to allocate contribution of individual risks to the aggregated risks. This
is meaningful in practice particularly in the case of computing capital require-
ments for an institution who may have several lines of correlated business and
is concerned of fairly allocating the total capital to these constituents.

∗Keywords: elliptical distributions, tail VAR, tail conditional expectations, coherent risk measure.
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1 Introduction
Consider a loss random variable X whose distribution function we shall denote by
FX (x) and the tail function by FX (x) = 1 − FX (x). This may refer to the total
claims for an insurance company or to the total loss in a portfolio of investment for
an individual or institution. The tail conditional expectation (TCE) is defined to be

TCEX (xq) = E (X |X > xq ) (1)

and is interpreted as the expected worst possible loss. Given the loss will exceed a
particular value xq, generally referred to as the q-th quantile with

FX (xq) = 1− q,
the TCE defined in (1) gives the expected loss that can potentially be experienced.
This index has been initially recommended by Artzner, et al. (1999) to measure
both market and non-market risks presumably for a portfolio of investments. It
gives a measure of a right-tail risk, one for which actuaries are very familiar with
because insurance contracts typically possess exposures subject to “low-frequency
but large-losses”, as pointed by Wang (1998). Furthermore, computing expectations
based on conditional tail events is a very familiar process to actuaries because many
insurance policies also contain deductibles below which the policyholder must incur
and reinsurance contracts always involve some level of retention from the ceding
insurer.
A risk measure ϑ is a mapping from the random variable that generally represents

the risk to the set of real numbers:

ϑ : X → R.

It is supposed to provide a value for the degree of risk or uncertainty associated with
the random variable. A risk measure is said to be a coherent risk measure if it satisfies
the following properties:

1. Subadditivity: For any two risks X1 and X2, we have

ϑ (X1 +X2) ≤ ϑ (X1) + ϑ (X2) .

This property requires that combining risks will be less risky than treating
the risks separately. It means that there has to be something gained from
diversification.

2. Monotonicity: For any two risks X1 and X2 where X1 ≤ X2 with probability
1, we have

ϑ (X1) ≤ ϑ (X2) .

This says that the value of the risk measure is greater for risks considered more
risky.
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3. Positive Homogeneity: For any risk X and any positive constant λ, we have

ϑ (λX) = λϑ (X) .

If the risk exposure of a company is proportionately increased or decreased, then
its risk measure must also increase or decrease by an equal proportionate value.
To illustrate, an insurer may buy a quota share reinsurance contract whereby
risk X is reduced to λX. The insurer must also decrease its risk measure by
the same proportion.

4. Translation Invariance: For any risk X and any constant α, we have

ϑ (X + α) = ϑ (X) + α.

This says that increasing (or decreasing) the risk by a constant (risk not subject
to uncertainty) should accordingly increase (or decrease) the risk measure by
an equal amount.

Artzner, et al. (1999) demonstrated that the tail conditional expectation satisfies
all requirements for a coherent risk measure. When compared to the traditional
Value-at-Risk (V aR), the tail conditional expectation provides a more conservative
measure of risk for the same level of degree of confidence (1 − q). To see this, note
that

V aRX (1− q) = xq
and since we can re-write formula (1) as

TCEX (xq) = xq + E (X − xq |X > xq )

then
TCEX (xq) ≥ V aRX (1− q)

because the second term is clearly non-negative. Artzner and his co-authors also
showed that the Value-at-Risk does not satisfy all requirements of a coherent risk
measure. In particular, it violates the sub-additivity.
Another interesting feature of the index defined in (1) is that when viewed as

a function of x, for which TCEX (x) may be called the tail conditional expectation
function, it completely determines the distribution for a continuous random variable
X, with finite expectation. To see this, we suppose a is the smallest possible value of
x and note that

TCEX (x) =
1

FX (x)

Z ∞

x

udFX (u) = − 1

FX (x)

Z ∞

x

udFX (u)

= x+
1

FX (x)

Z ∞

x

FX (u) du
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which implies

1

x− TCEX (x) =
FX (x)

− R∞
x
FX (u) du

=
d

dx
log

µ
−
Z ∞

x

FX (u) du

¶
.

Thus, we have

FX (x) =
TCEX (a)− a
TCEX (x)− x exp

½
−
Z x

a

[TCEX (u)− u]−1 du
¾

which says that once the function TCEX (x) is known, the distribution of X can be
uniquely determined. For example, for a positive random variable, if TCEX (x) =
µ+ x, for some constant µ. Then, the tail probability of X is given by

FX (x) =
µ

µ
exp

½Z x

0

µ
−1
µ

¶
du

¾
= exp

µ
−x
µ

¶
which is the tail function of an exponential with mean µ. For an exponential distri-
bution with mean µ, we then observe that its TCE is given by TCEX (xq) = µ+ xq.
For the familiar normal distribution N (µ,σ2) with mean µ and variance σ2, it

was noticed by Panjer (2002) that

TCEX (xq) = µ+

"
1
σ
ϕ
¡xq−µ

σ

¢
1− Φ

¡xq−µ
σ

¢# σ2 (2)

where ϕ (·) and Φ (·) are respectively the density and cumulative distribution func-
tions of a standard normal N (0, 1) random variable. We extend this result into
the larger class of elliptical distributions for which the normal distribution belongs
to. This family essentially includes symmetric distributions for which the Student-t,
exponential power, and logistic distributions are other familiar examples.
In this paper, we show that for univariate elliptical distributions, tail conditional

expectations have the form

TCEX (xq) = µ+ λ · σ2 (3)

where

λ =

1

σ
fZ∗

¡xq−µ
σ

¢
FZ
¡xq−µ

σ

¢ σ2Z , (4)

Z is the spherical random variable that generates the elliptical random variable X,
and has variance σ2Z < ∞, and fZ∗ (x) is the density of another spherical random
variable Z∗ corresponding to Z. For the case of the normal distribution, Z∗ = Z and
is therefore a standard normal random variable with σ2Z = 1 and (3) coinciding with
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(2). We also considered the important case when the variance of X does not exist.
In general, though, we find that we can express λ in (4) as

λ =

1

σ
G
¡
1
2
z2q
¢

FZ (zq)
,

where G is a tail-type function involving the cumulative generator later defined in
this paper. This generator plays an important role in developing the tail conditional
expectation formulas for elliptical distributions.
The use of the tail conditional expectation to compute capital requirements for

financial institutions has recently been proposed. See, for example, Wang (2002). It
has the intuitive interpretation that it provides the expected amount of a loss given
that a shortfall occurs. The amount of shortfall is measured by a quantile from the
loss distribution. Furthermore, by the additivity property of expectation, it allows
for a natural allocation of the total capital among its various constituents:

E (S |S > xq ) =
nX
k=1

E (Xk |S > xq ) ,

where S = X1+···+Xn. Thus, we see that E (Xk |S > xq ) is the contribution of the k-
th risk to the aggregated risks. Panjer (2002) examined this allocation formula in the
case where the risks are multivariate normal. We advance this formula in the general
framework of multivariate elliptical distributions. This class of distributions is widely
becoming popular in actuarial science and finance. See, for example, Embrechts, et
al. (1999, 2001) and Bingham and Kiesel (2002).
For the rest of the paper, it is then organized as follows. In Section 2, we provide

preliminary discussion about elliptical distributions and we state that for elliptically
distributed random variables, it is closed under linear transformations. We also give
examples of known multivariate distributions belonging to this class. In Section 3,
we develop tail conditional expectation formulas for univariate elliptical distributions.
Here we introduce the notion of a cumulative generator which plays an important role
in evaluating TCE. In Section 4, we exploit the properties of elliptical distributions
which allow us to derive explicit forms of the decomposition of TCE of sums of
elliptical risks into individual component risks. We give concluding remarks in Section
5.

2 The Class of Elliptical Distributions
Elliptical distributions are generalizations of the multivariate normal distributions
and therefore share many of its tractable properties. This class of distributions was
introduced by Kelker (1970) and was widely discussed in Fang, et al. (1987). This
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generalization of the normal family seems to provide an attractive tool for actuarial
and financial risk management because it preserves the property to be regular varying
of marginal tails into the multivariate circumstance (Shmidt, 2002).
Let Ψn be a class of functions ψ(t) : [0,∞)→ R such that function ψ(

Pn
i=1 t

2
i ) is

an n-dimensional characteristic function (Fang, et al., 1987). It is clear that

Ψn ⊂ Ψn−1 · ·· ⊂ Ψ1.

Consider an n-dimensional random vector X = (X1, X2, ..., Xn)
T .

Definition 1 The random vector X has a multivariate elliptical distribution, written
as X v En(µ,Σ,ψ), if its characteristic function can be expressed as

ϕX (t) = exp(it
Tµ)ψ

¡
1
2
tTΣt

¢
(5)

for some column-vector µ, n × n positive-definite matrix Σ, and for some function
ψ(t) ∈ Ψn, which is called the characteristic generator.

>From X v En(µ,Σ,ψ), generally speaking, it does not follow that X has a den-
sity fX (x) , but if the density exists it has the following form

fX (x) =
cnp|Σ|gn

·
1

2
(x− µ)T Σ−1 (x− µ)

¸
, (6)

for some function gn (·) called the density generator. The conditionZ ∞

0

xn/2−1gn(x)dx <∞. (7)

guarantees gn(x) to be density generator (Fang, et al. 1987, Ch 2.2). If density
generator does not depend on n which may happen in many cases, we drop the
subscript n and simply write g. In addition, the normalizing constant cn can be
explicitly determined by transforming into polar coordinates and the result is

cn =
Γ (n/2)

(2π)n/2

·Z ∞

0

xn/2−1gn(x)dx
¸−1

. (8)

The detailed evaluation of this result is given in the appendix. One may also similarly
introduce the elliptical distribution by the density generator and then write X ∼
En (µ,Σ, gn) .
>From (5) follows that X ∼ En (µ,Σ, gn) and A be some m× n matrix of rank

m ≤ n and b some m-dimensional column-vector , then

AX+ b ∼ Em
¡
Aµ+ b,AΣAT , gm

¢
. (9)
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In other words, any linear combination of elliptical distributions is another elliptical
distribution with the same characteristic generator ψ or from the same sequence of
density generators g1, ...gn, corresponding to ψ. Therefore any marginal distribution
of X is also elliptical with the same characteristic generator. In particular, for k =
1, 2, ..., n, Xk ∼ E1 (µk,σ2k, g1) so that its density can be written as

fXk (x) =
c1
σk
g1

"
1

2

µ
x− µk
σk

¶2#
. (10)

If we define the sum S = X1+X2+ · · ·+Xn = eTX, where e =(1, ..., 1)T is a column
vector of ones with dimension n, then it immediately follows that

S ∼ En
¡
eTµ, eTΣe, g1

¢
. (11)

Let us notice that condition (7) does not require existence of the mean and co-
variance of vector X. Later we give the example of multivariate elliptical distribution
with infinite mean and variance. It can be shown by a simple transformation in the
integral for the mean that Z ∞

0

g1(x)dx <∞ (12)

guarantees the existence of the mean, and then the mean vector forX ∼ En (µ,Σ, gn)
is E (X) = µ. If in addition

|ψ0(0)| <∞, (13)

the covariance matrix exists and is equal to (Cambanis, et al. 1981)

Cov (X) = −ψ0 (0)Σ. (14)

Then the characteristic generator can be chosen such that

ψ0 (0) = −1 (15)

so that the covariance above becomes

Cov (X) = Σ.

Notice that condition (13) is equivalent to the condition
R∞
0

√
xg1(x)dx <∞.

We now consider some important families of elliptical distributions.

2.1 Multivariate Normal Family

An elliptical vector X belongs to the multivariate normal family with the density
generator

g (u) = e−u (16)
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(which does not depend on n). We shall write X ∼ Nn (µ,Σ) . It is easy to see that
the joint density of X is given by

fX (x) =
cnp|Σ| exp

·
−1
2
(x− µ)T Σ−1 (x− µ)

¸
>From (8), it immediately follows that the normalizing constant is given by cn =
(2π)−n/2. It is well-known that its characterictic function is

ϕX (t) = exp
¡
itTµ−1

2
tTΣt

¢
so that the characteristic generator is

ψ (t) = e−t.

Notice that choosing the density generator in (16) automatically gives ψ0 (0) = −1
and hence Σ = Cov (X).

2.2 Multivariate Student t Family

An elliptical vector X is said to have a multivariate Student t distribution if its
density generator can be expressed as

gn (u) =

µ
1 +

u

kp

¶−p
(17)

where the parameter p > n/2 and kp is some constant that may depend on p. We
write X ∼ tn (µ,Σ;p) if X belongs to this family. Its joint density has therefore the
form

fX (x) =
cnp|Σ|

"
1 +

(x− µ)T Σ−1 (x− µ)
2kp

#−p
.

Using (8), it can be shown that the normalizing constant is

cn =
Γ(p)

Γ(p− n/2)(2πkp)
−n/2.

Here we introduced the multivariate Student t in its most general form. Similar to
this form was considered in Gupta and Varga (1993) where they called this family
Symmetric Multivariate Pearson Type VII distributions. Taking for example p =
(n+m) /2 where n and m are integers, and kp = m, we get the traditional form of
the multivariate Student t distribution with density

fX (x) =
Γ((n+m)/2)

(πm)n/2Γ(m/2)
p|Σ|

"
1 +

(x− µ)T Σ−1 (x− µ)
m

#−(n+m)/2
. (18)
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In the univariate case where n = 1, Bian and Tiku (1997) and MacDonald (1996)
suggested to put kp = (2p− 3)/2 if p > 3/2 to get the so-called Generalized Student
t (GST) univariate distribution with density

fX (x) =
1

σ
p
2kpB (1/2, p− 1/2)

"
1 +

(x− µ)2
2kpσ2

#−p
,

where B (·, ·) is the beta function. This parameterization leads to the important
property that V ar (X) = σ2. In the case where 1/2 < p ≤ 3/2, the variance does
not exist and one can put kp = 1/2. In Landsman and Makov (1999) and Landsman
(2002), credibility formulas were examined for this family. Figure 1 shows density
functions for the Generalized Student t distributions with different parameter values
of p. The values of µ and σ are respectively chosen to be 0 and 1. The smoothed
curve in the figure corresponds to the case of the standard normal distribution.

-4 -3 -2 -1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

f(x
)

p = 0.75

p = 1

p = 2.5

p = 5

normal

Figure 1: Density functions for the Generalized Student t distribution.
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Now extending this to the multivariate case, we suggest to keep kp = (2p− 3)/2
if p > 3/2, then this multivariate GST has the advantage that

Cov(X) = Σ.

In particular, for p = (n+m)/2, we suggest instead of (18) to consider

fX (x) =
Γ((n+m)/2)

[π (n+m− 3)]n/2 Γ(m/2)p|Σ|
"
1 +

(x− µ)T Σ−1 (x− µ)
n+m− 3

#−(n+m)/2
because it also has the property that the covariance is Cov(X) = Σ. If 1/2 < p ≤ 3/2,
the variance does not exist and we have a heavy-tailed multivariate distribution. If
1/2 < p ≤ 1, even the expectation does not exist. In the case where p = 1, we have
the multivariate Cauchy distribution with density

fX (x) =
Γ(n+1

2
)π−(n+1)/2p|Σ|

h
1 + (x− µ)T Σ−1 (x− µ)

i−(n+1)/2
.

2.3 Multivariate Logistic Family

An elliptical vector X belongs to the family of multivariate logistic distributions if
its density generator has the form

g (u) =
e−u

(1 + e−u)2
.

Its joint density has the form

fX (x) =
cnp|Σ| exp

h
−1
2
(x− µ)T Σ−1 (x− µ)

i
n
1 + exp

h
−1
2
(x− µ)T Σ−1 (x− µ)

io2
where the normalizing constant can be evaluated using (8) as follows

cn =
Γ (n/2)

(2π)n/2

·Z ∞

0

xn/2−1
e−x

(1 + e−x)2
dx

¸−1
.

We observe that this normalizing constant has been mistakenly printed in both Fang,
et al. (1990) and Gupta and Varga (1993). Further simplification of this normalizing
constant suggests that by first observing that e−x

(1+e−x)2 =
P∞

j=1 (−1)j−1 je−jx and then
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re-writing it as follows:

cn =
Γ (n/2)

(2π)n/2

" ∞X
j=1

(−1)j−1
Z ∞

0

xn/2−1je−jxdx

#−1

=
Γ (n/2)

(2π)n/2

" ∞X
j=1

(−1)j−1 j1−n/2
Z ∞

0

yn/2−1e−ydy

#−1

=
Γ (n/2)

(2π)n/2

" ∞X
j=1

(−1)j−1 j1−n/2Γ (n/2)
#−1

= (2π)−n/2
" ∞X
j=1

(−1)j−1 j1−n/2
#−1

.

If X belongs to the family of multivariate logistic distributions, we shall write X ∼
MLn (µ,Σ).

2.4 Multivariate Exponential Power Family

An elliptical vector X is said to have a multivariate exponential power distribution if
its density generator has the form

g (u) = e−ru
s

, for r, s > 0.

The joint density of X can be expressed in the form

fX (x) =
cnp|Σ| exp

n
−r
2

h
(x− µ)T Σ−1 (x− µ)

iso
where the normalizing constant is given by

cn =
Γ (n/2)

(2π)n/2

µZ ∞

0

xn/2−1e−rx
s

dx

¶−1
=

Γ (n/2)

(2π)n/2

µZ ∞

0

1

s
y
1
s
(n/2−s)e−rydy

¶−1
=

Γ (n/2)

(2π)n/2

µ
1

rs
r1−n/(2s)

Z ∞

0

yn/(2s)−1e−ydy
¶−1

=
sΓ (n/2)

(2π)n/2 Γ (n/ (2s))
rn/(2s).

When r = s = 1, this family of distributions clearly reduces to the multivariate
normal family. When s = 1 alone, this family reduces to the original Kotz multivariate
distribution suggested by Kotz (1975). If s = 1/2 and r =

√
2, we have the family of

Double Exponential or Laplace distributions.

Figure 2 displays a comparison of the bivariate densities for some of the well-known
elliptical distributions discussed in this section.
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Normal Student t

Logistic Laplace

Figure 2: Comparing bivariate densities for some well-known elliptical distributions.

3 TCE Formulas for Univariate Elliptical Distrib-
utions

This section develops tail conditional expectation formulas for univariate elliptical
distributions which as a matter of fact coincides with the class of symmetric distri-
butions on the line R. Recall that we denote by xq the q-th quantile of the loss
distribution FX (x). Because we are interested in considering the tails of symmetric
distributions, we suppose that q > 1/2 so that clearly

xq > µ. (19)

Now suppose g (x) is a non-negative function on [0,∞) satisfying the condition
that Z ∞

0

x−1/2g(x)dx <∞.
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Then (see Section 2) g (x) can be a density generator of a univariate elliptical dis-
tribution of a random variable X ∼ E1 (µ, σ

2, g) whose density can be expressed
as

fX (x) =
c

σ
g

"
1
2

µ
x− µ
σ

¶2#
(20)

where c is the normalizing constant.
Note that because X has an elliptical distribution, the standardized random vari-

able Z = (X − µ) /σ will have a standard elliptical (oftentimes called spherical)
distribution function

FZ (z) = c

Z z

−∞
g
¡
1
2
u2
¢
du,

with mean 0 and variance

σ2Z = 2c

Z ∞

0

u2g
¡
1
2
u2
¢
du = −ψ0(0),

if condition (13) holds. Furthermore, if the generator of the elliptical family is chosen
such that condition (15) holds, then σ2Z = 1.
Define the function

G (x) = c

Z x

0

g (u) du (21)

which we suggest to call the cumulative generator. This function G plays an impor-
tant role in our derivation of tail conditional expectations for the class of elliptical
distributions. Note that condition (12) which guarantees the existence of the expec-
tation can equivalently be expressed as

G (∞) <∞.
Denote by

G (x) = G (∞)−G (x) .
Theorem 1 Let X ∼ E1 (µ,σ2, g) and G be the cumulative generator defined in (21).
Under condition (12), the tail conditional expectation of X is given by

TCEX (xq) = µ+ λ · σ2 (22)

where λ is expressed as

λ =

1

σ
G
¡
1
2
z2q
¢

FX (xq)
=

1

σ
G
¡
1
2
z2q
¢

FZ (zq)
(23)

and zq = (xq − µ) /σ. Moreover, if the variance of X exists, or equivalently if (13)
holds, then 1

σ2Z
G
¡
1
2
z2
¢
has the sense of a density of another spherical random variable

Z∗ and λ has the form

λ =

1

σ
fZ∗(zq)

FZ (zq)
σ2Z . (24)
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Proof. Note that

TCEX (xq) =
1

FX (xq)

Z ∞

xq

x · c
σ
g
£
1
2
((x− µ) /σ)2¤ dx

and by letting z = (x− µ) /σ, we have

TCEX (xq) =
1

FX (xq)

Z ∞

zq

c (µ+ σz) g
¡
1
2
z2
¢
dz

=
1

FX (xq)

"
µFX (zq) + cσ

Z ∞

zq

zg
¡
1
2
z2
¢
dz

#
= µ+ λ · σ2,

where

λ =
1

FX (xq)
· c
σ

Z ∞

1
2
z2q

g (u) du =

1

σ
Ḡ
¡
1
2
z2q
¢

FZ (zq)

which proves the result in (23).
Now to prove (24), suppose condition (13) holds, i.e. variance of X exists and

1
2
σ2Z = c

Z ∞

0

z2g
¡
1
2
z2
¢
dz =

Z ∞

0

zdG
¡
1
2
z2
¢
<∞.

Then,
G( 12 z2)
G(∞) = F eZ(z) is a distribution function of some random variable eZ with

expectation given by

E
³ eZ´ = 1

G (∞)
Z ∞

0

zdG
¡
1
2
z2
¢
=

Z ∞

0

"
1− G

¡
1
2
z2
¢

G (∞)

#
dz =

1

2
σ2Z

1

G (∞) <∞.

Consequently, Z ∞

0

G
¡
1
2
z2
¢
dz = 1

2
σ2Z

and 1
σ2Z
G
¡
1
2
z2
¢
= fZ∗(z) is a density of some symmetric random variable Z∗, defined

on R.

It is clear that (22) generalizes the tail conditional expectation formula derived
by Panjer (2002) for the class of normal distributions to the larger class of univariate
symmetric distributions. We now illustrate Theorem 1 by considering examples for
some well-known symmetric distributions which include the normal distribution. For
the normal distribution, we exactly replicate the formula developed by Panjer (2002).
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1. Normal Distribution. Let X ∼ N (µ, σ2) so that the function in (20) has the
form g (u) = exp (−u) . Therefore,

G (x) = c

Z x

0

g (u) du = c

Z x

0

e−udu = c
¡
1− e−x¢

and
1

σ
G
¡
1
2
z2q
¢
=
c

σ
exp

¡−1
2
z2q
¢
=
c

σ

√
2πϕ (zq) =

1

σ
ϕ (zq)

where it is well-known that the normalizing constant is c =
¡√
2π
¢−1
. Thus for

the normal distribution, we find σ2Z = 1 and

λ =

1

σ
ϕ (zq)

1− Φ (zq)
, (25)

where ϕ (·) and Φ (·) denote respectively the density and distribution functions
of a standard normal distribution. Notice that Z∗ in Theorem 1 is simply the
standard normal variable Z.

2. Generalized Student-t Distribution. LetX belong to the univariate Generalized
Student t family with density generator expressed as in (17) so that

G (x) = cp

Z x

0

g (u) du = cp

Z x

0

µ
1 +

u

kp

¶−p
du = cp

kp
p− 1

"
1−

µ
1 +

x

kp

¶1−p#
provided p > 1. Here we denote the normalizing constant by cp with the
subscript p to emphasize that it depends on the parameter p.Recall from Section
2.2 that cp can be expressed as

cp =
Γ (p)p

2kpΓ (1/2)Γ (p− 1/2)
=

Γ (p)p
2πkpΓ (p− 1/2)

. (26)

Note that the case where p = 1 gives the Cauchy distribution for which the
mean does not exist and therefore its TCE also does not exist. Now considering
the case only where p > 1, we get

1

σ
G
¡
1
2
z2q
¢
=

cp
σ

kp
p− 1

µ
1 +

z2q
2kp

¶−p+1
=

1

σ

cp
cp−1

kp
(p− 1) · fZ

Ãs
kp−1
kp

zq; p− 1
!
, (27)

where fZ (·; p) denotes the density of a standardized GST with parameter p,
and kp−1 = 1/2, cp−1 = 1/

p
2kp−1 = 1, when 0 < p − 1 ≤ 1/2. Recall from

section 2.2 again that for the GST family, we have

kp =

½
2p−3
2
, if p > 3/2

1
2
, if 1/2 < p ≤ 3/2 . (28)
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For the case p > 3/2, the variance of X exists and GST was constructed such
that V ar (X) = σ2, that is, σ2Z = 1 (see Section 2.2). From (26), it follows that

cp
cp−1

=
Γ (p)Γ (p− 3/2)

Γ (p− 1/2)Γ (p− 1)

s
kp−1
kp

=
(p− 1)
(p− 3/2)

s
kp−1
kp
, (29)

and then from (27), (29), and (28),

1

σ
G
¡
1
2
z2q
¢
=
1

σ
·
s
kp−1
kp

fZ

Ãs
kp−1
kp

zq; p− 1
!
. (30)

Moreover, when p > 5/2, p− 1 > 3/2, so that we can re-express (30) as follows:
1

σ
G
¡
1
2
z2q
¢
=
1

σ
·
r
2p− 5
2p− 3 fZ

µr
2p− 5
2p− 3zq; p− 1

¶
.

Thus, we have

λ =

1

σ

q
2p−5
2p−3 · fZ

³q
2p−5
2p−3zq; p− 1

´
FZ (zq; p)

(31)

and Z∗ is simply a scaled standardized GST with parameter p − 1. Notice
that (see, for example, Landsman and Makov, 1999) when p → ∞, the GST
distribution tends to the Normal distribution. It is clear from (31) that λ will
tend to that of the normal distribution in (25).

For 3/2 < p ≤ 5/2, 1/2 < p− 1 ≤ 3/2 , and taking into account (28), we have
kp−1
kp

=
1

2p− 3 ,

and

λ =

1
σ

q
1

2p−3 · fZ
³q

1
2p−3zq; p− 1

´
FZ (zq; p)

.

Now considering the case where 1 < p ≤ 3/2, we have 0 < p−1 ≤ 1/2, kp−1
kp

= 1

and therefore

λ =
1
σ
fZ (zq; p− 1)
FZ (zq; p)

.

Notice here that in this case, fZ (zq; p− 1) preserves the form of the density for
GST, but it is not a density function because

R∞
−∞ fZ (x; p− 1) dx diverges. In

Figure 3, we provide a graph relating λ and the parameter p, for p > 1 and
q = 0.95, for the GST distribution. The dotted line in the figure is the limiting
case (p→∞) which is exactly that of the Normal distribution.
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Figure 3: The relationship between λ and the parameter p for the GST distribution.

3. Logistic Distribution. As earlier described, for this class of distribution, the
density generator has the form g (u) = e−u

(1+e−u)2
. Therefore,

G (x) = c

Z x

0

e−u

(1 + e−u)2
du = c

h¡
1 + e−x

¢−1 − 1/2i
where it can be verified that the normalizing constant c = 1/2. Thus,

1

σ
G
¡
1
2
z2q
¢
=

1

2σ

·
1−

³
1 + e−

1
2
z2q

´−1¸
=
1

2σ

1√
2π
e−

1
2
z2q

1√
2π
+ 1√

2π
e−

1
2
z2q

=
1

2

1

σ
ϕ (zq)¡√

2π
¢−1

+ ϕ (zq)
,
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where ϕ (·) is the density of a standard normal distribution. Therefore, for a
logistic random variable, we have the expression for λ:

λ =

"
1
2

1¡√
2π
¢−1

+ ϕ (zq)

# 1
σ
ϕ (zq)

FZ (zq)

which resembles that for a normal distribution but with a correction factor.

4. Exponential Power Distribution. For exponential power distribution with
density generator of the form g (u) = exp (−rus) for some r, s > 0, we have

G (x) = c

Z x

0

e−ru
s

du = c
¡
sr1/s

¢−1 Z rxs

0

w1/s−1e−wdw

= c
¡
sr1/s

¢−1
Γ (rxs; 1/s) ,

where

Γ (z; 1/s) =

Z z

0

w1/s−1e−wdw (32)

denotes the incomplete Gamma function. One can determine the normalizing
constant to be

c =
sr1/(2s)√
2Γ (1/(2s))

(33)

by a straightforward integration of the density function. In effect, we have

1

σ
G
¡
1
2
z2q
¢
=
h√
2Γ (1/(2s)) σ

i−1 ©
Γ (1/s)− Γ

£
r
¡
1
2
z2q
¢s
; 1/s

¤ª
and

λ =
1

FZ (zq)

1√
2Γ (1/(2s))σ

©
Γ (1/s)− Γ

£
r
¡
1
2
z2q
¢s
; 1/s

¤ª
. (34)

It is clear that when s = 1 and r = 1, the density generator for the exponential
power reduces to that of a normal distribution. From (33), it follows that
c =

¡√
2π
¢−1
, and from (34), it follows that

λ =
1

1− Φ (zq)

³√
2π
´−1 £

1− Γ
¡
1
2
z2q ; 1

¢¤
=

1

1− Φ (zq)

³√
2π
´−1 h

1−
³
1− e−1

2
z2q

´i
=

1
σ
ϕ (zq)

1− Φ (zq)

which is exactly that of a normal. The Laplace or Double Exponential distrib-
ution is another special case belonging to the exponential power family. In this
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case, s = 1/2 and r =
√
2. From (34), it follows that

λ =
1

FZ (zq)

1

2σ
[Γ (2)− Γ (|zq| ; 2)]

=
1

FZ (zq)

1

2σ

Ã
1−

Z |zq |

0

we−wdw

!
=

1

FZ (zq)

1

2σ
e−|zq| (1 + |zq|)

= 2
1

FZ (zq)

1

σ
fZ∗(zq),

where fZ∗(z) = 1
2
fZ(z)(1 + |z|) = 1

4
e−|z| (1 + |z|) is density of the new ran-

dom variable Z∗, and σ2Z = 2 is a variance of standard Double Exponential
distribution that well confirms with (24).

4 TCE and Multivariate Elliptical Distributions

Let X = (X1, X2, ..., Xn)
T be a multivariate elliptical vector, i.e. X ∼En (µ,Σ,gn).

Denote the (i, j) element of Σ by σij so that Σ = kσijkni,j=1. Moreover, let

FZ (z) = c1

Z z

0

g1
¡
1
2
x2
¢
dx

be the standard one-dimensional distribution function corresponding to this elliptical
family and

G (x) = c1

Z x

0

g1 (u) du (35)

be its cumulative generator. From Theorem 1 and (10), we observe immediately that
the formula for computing tail conditional expectations for each component of the
vector X can be expressed as

TCEXk (xq) = µk + λk · σ2k
where

λk =

1

σk
G
¡
1
2
z2k,q
¢

FZ (zk,q)
and zk,q =

xq − µk
σk

,

or

λk =

1

σk
fZ∗(zq)

FZ (zq)
σ2Z ,

if σ2Z <∞.
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4.1 Sums of Elliptical Risks

Suppose X ∼En (µ,Σ,gn) and e = (1, 1, ..., 1)T is the vector of ones with dimension
n. Define

S = X1 + · · ·+Xn =
nX
k=1

Xk = e
TX (36)

which is the sum of elliptical risks. We now state a theorem for finding the TCE for
this sum.

Theorem 2 The tail conditional expectation of S can be expressed as

TCES (xq) = µS + λS · σ2S (37)

where µS = e
Tµ =

Xn

k=1
µk, σ

2
S = e

TΣe =
Xn

i,j=1
σij and

λS =

1

σS
G
³
1
2
z2
S,q

´
FZ (zS,q)

(38)

with zS,q =
µS − xq

σS
. If the covariance matrix of X exists, λS can be represented by

(24).

Proof. It follows immediately from (11) that S ∼ En
¡
eTµ, eTΣe, g1

¢
and the

result follows using Theorem 1.

4.2 Portfolio Risk Decomposition with TCE

When uncertainty is due to different sources, it is often natural to ask how to decom-
pose the total level of uncertainty to these sources. Frees (1998) suggested methods
for quantifying the degree of importance of various sources of uncertainty for in-
surance systems. In particular, he showed the effectiveness of the use of coefficient
of determination in such decomposition and applied it in situations involving risk
exchanges and risk pooling.
For our purposes, suppose that the total loss or claim is expressed as in (36) where

one can think of each Xk as the claim arising from a particular line of business or
product line in the case of insurance, or the loss resulting from a financial instrument
or a portfolio of investments. As it was noticed by Panjer (2002), from the additivity
of expectation, the tail conditional expectation allows for a natural decomposition of
the total loss:

TCES (xq) =
nX
k=1

E (Xk |S > xq ) . (39)
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Note that this is not in general equivalent to the sum of the tail conditional expecta-
tions of the individual components. This is because

TCEXk (xq) 6= E (Xk |S > xq ) .

Instead we denote this as

TCEXk|S (xq) = E (Xk |S > xq ) ,

the contribution to the total risk attributable to risk k. It can be interpreted as
follows: that in the case of a disaster as measured by an amount at least as large as
the quantile of the total loss distirbution, this refers to the average amount that would
be due to the presence of risk k. Panjer (2002) obtained important results for this
decomposition in the case where the risks have a multivariate normal distribution.
In this paper, we extend his result for essentially more general elliptical multivariate
class for which the multivariate normal family belongs to.
To develop the formula for decomposition, first, we need the following two lemmas.

Lemma 1 Let X ∼ En (µ,Σ, gn) . Then for 1 ≤ k ≤ n, the vector Xk,S = (Xk, S)
T

has an elliptical distribution with the same generator, i.e., Xk,S ∼ E2
¡
µk,S,Σk,S, g2

¢
,

where µk,S=
³
µk,
Pn

j=1 µj

´T
,

Σk,S =

µ
σ2k σkS
σkS σ2S

¶
,

and σ2k = σkk,σkS =
Xn

j=1
σkj, σ

2
S =

Xn

i,j=1
σij.

Proof. Define the matrix A as

A=

µ
0 0 .... 1 .... 0 0
1 1 .... 1 .... 1 1

¶
which consists of 0’s in the first row, except the k-th column which has a value of 1,
and all of 1’s in the second row. Thus, it is clear that

AX =(Xk, S)
T = Xk,S.

It follows from (9) that
AX ∼ E2

¡
Aµ,AΣAT , g2

¢
where its mean vector is

µk,S = Aµ =

Ã
µk,

nX
j=1

µj

!T
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and its variance-covariance structure is

Σk,S = AΣA
T =

 σ2k
Xn

j=1
σkjXn

j=1
σkj σ2S

 .
Thus, we see that Xk,S ∼ E2

¡
µk,S,Σk,S, g2

¢
.

Lemma 2 Let Y =(Y1, Y2)
T ∼ E2 (µ,Σ, g2) such that condition (12) holds. Then

TCEY1|Y2 (yq) = E (Y1 |Y2 > yq )
= µ1 + λ2 · σ1σ2ρ12

where

λ2 =

1

σ2
G
¡
1
2
z22,q
¢

FZ (z2,q)

and ρ12 =
σ12
σ1σ2

, σ1 =
√
σ11, σ2 =

√
σ22, and z2,q =

yq − µ2
σ2

.

Proof. First note that by definition and from (6), we have

E (Y1 |Y2 > yq )
=

1

F Y2 (yq)

Z ∞

−∞

Z ∞

yq

y1fY (y1, y2) dy2dy1

=
1

FZ (z2,q)

Z ∞

−∞

Z ∞

yq

y1
c2p|Σ|g2

h
1
2
(y − µ)T Σ−1 (y − µ)

i
dy2dy1 (40)

=
1

FZ (z2,q)
× I,

where I is the double integral in (40). In the bivariate case, we have

|Σ| =
¯̄̄̄
σ21 σ12
σ12 σ22

¯̄̄̄
=
¡
1− ρ212

¢
σ21σ

2
2

and

(y − µ)T Σ−1 (y − µ)

=
1

(1− ρ212)

"µ
y1 − µ1

σ1

¶2
− 2ρ12

µ
y1 − µ1

σ1

¶µ
y2 − µ2

σ2

¶
+

µ
y2 − µ2

σ2

¶2#

=
1

(1− ρ212)

(·µ
y1 − µ1

σ1

¶
− ρ12

µ
y2 − µ2

σ2

¶¸2
+
¡
1− ρ212

¢µy2 − µ2
σ2

¶2)
.
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Using the transformations z1 =
y1 − µ1

σ1
and z2 =

y2 − µ2
σ2

, and the property that

the marginal distributions of multivariate elliptical distribution are again elliptical
distributions with the same generator, we have

I =
c2p
1− ρ212

Z ∞

z2,q

Z ∞

−∞
(µ1 + σ1z1) g2

"
1
2

(z1 − ρ12z2)
2

(1− ρ212)
+ 1

2
z22

#
dz1dz2 (41)

= µ1FZ (z2,q) + σ1I
0,

where

I 0 = c2

Z ∞

z2,q

Z ∞

−∞
c2

z1p
1− ρ212

g2

"
1

2

(z1 − ρ12z2)
2

(1− ρ212)
+
1

2
z22

#
dz1dz2

is the double integral in the second term of the above equation. After transformation

z0 =
z1 − ρ12z2p
1− ρ212

we get

I 0 =
q
1− ρ212

Z ∞

z2,q

Z ∞

−∞
c2

Ã
z0 +

ρ12z2p
1− ρ212

!
g2
£
1
2

¡
z02 + z22

¢¤
dz0dz2. (42)

By noticing that the integral of odd functionZ ∞

−∞
z0c2g2

£
1
2

¡
z02 + z22

¢¤
dz0 = 0,

and again using the property of the marginal elliptical distribution, givingZ ∞

−∞
c2g2

£
1
2

¡
z02 + z22

¢¤
dz0 = c1g1

¡
1
2
z22
¢
,

we have in (42)

I 0 =

Z ∞

z2,q

ρ12z2c1g1
¡
1
2
z22
¢
dz2 = ρ12

Z ∞

1
2
z22,q

c1g1 (u) du

= ρ12σ2
1

σ2
Ḡ
¡
1
2
z22,q
¢

(43)

and the result in the theorem then immediately follows from (40), (41) and (43).
Using these two lemmas, we obtain the following result.

Theorem 3 LetX =(X1, X2, ..., Xn)
T ∼ En (µ,Σ, gn) such that condition (12) holds

and let S = X1 + · · ·+Xn. Then the contribution of risk Xk, 1 ≤ k ≤ n, to the total
tail conditional expectation can be expressed as

TCEXk|S (xq) = µk + λS · σkσSρk,S, for k = 1, 2, ..., n (44)

where ρk,S =
σk,S
σkσS

, and λS is the same as in Theorem 2.
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Proof. The result immediately follows from Lemma 2 by simply putting Y =
(Xk, S)

T and using Lemma 1.

Let us observe that at the same time that matrix Σ coincides with the covariance
matrix up to a constant, see (14), the formally defined

ρij =
σij√

σii
√
σjj

as the ratio of elements of matrix Σ, is really a correlation coefficient between Xi and
Xj . The same can be said about ρk,S.
Notice that if we take the sum of TCEXk|S (xq) in (44), we have

nX
k=1

TCEXk|S (xq) =
nX
k=1

µk + λS

nX
k=1

σkσSρk,S

= µS + λS

nX
k=1

σk,S

= µS + λS · σ2S,
because from Lemma 1 we get that

nX
k=1

σk,S =
nX
k=1

nX
j=1

σkj = σ2S

which gives the result for the TCE of a sum of elliptical risks, as given in (37). It
was demonstrated in Panjer (2002) that in the case of a multivariate normal random
vector i.e. X ∼ Nn (µ,Σ), we have

E (Xk |S > xq ) = µk +


1

σS
ϕ
³
xq−µ
σS

´
1− Φ

³
xq−µ
σS

´
σ2k

µ
1 + ρk,−k

σ−k
σk

¶
, (45)

where they have used the negative subscript −k to refer to the sum of all the risks
excluding the kth risk, that is, S−k = S −Xk. Therefore, according to this notation,
we have

ρk,−k
σ−k
σk

=
σk,−k
σkσ−k

σ−k
σk

=
σk,−k
σ2k

=
Cov (Xk, S −Xk)

σ2k
=

σk,S
σ2k
− 1.

Thus, the formula in (45) becomes

E (Xk |S > xq ) = µk +


1

σS
ϕ
³
xq−µ
σS

´
1− Φ

³
xq−µ
σS

´
σkσSρk,S
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that (44) gives in the case of multivariate normal, and consequently (44) generalizes
(45) for the class of elliptical distributions.

5 Conclusion
In this paper, we have developed an appealing way to characterize the tail condi-
tional expectations for elliptical distributions. In the univariate case, the class of
elliptical distributions consists of the class of symmetric distributions which include
familiar distributions like normal and Student t. This class can easily be extended
into the multivariate framework by simply characterizing them either in terms of the
characteristic generator or the density generator. This paper studied this class of
multidimensional distributions rather extensively to allow the reader to understand
them more thoroughly particularly many of the properties of the multivariate normal
is shared by this larger class. Thus, someone wishing to use multivariate elliptical
distributions in their practical work may find this paper self-contained. Furthermore,
this paper defines the cumulative generator resulting from the definition of the den-
sity generator, and uses this generator quite extensively to generate formulas for tail
conditional expectations. We also know that tail conditional expectations naturally
permits a decomposition of this expectation into individual components consisting of
the individual risks making up the multivariate random vector. We extended TCE
formulas developed for the univariate case into the case where there are several risks
which when taken together behaves like an elliptical random vector. We further ex-
tended the results into the case where we then decompose the TCE into individual
components making up the sum of the risks. We are able to verify, using the results
developed in this paper, the formulas that were investigated and developed by Panjer
(2002) in the case of the multivariate normal distribution.
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Appendix. In this appendix, we prove (8), that is the normalizing constant in
the density of a multivariate elliptical random variable can be expressed as

cn =
Γ (n/2)

(2π)n/2

·Z ∞

0

xn/2−1gn(x)dx
¸−1

.

We prove this by transformation from the rectangular to polar coordinates in several
dimensions. The authors show this because this is uncommon knowledge to actuaries
and that this procedure is not readily available in several calculus textbooks. The po-
lar transformation considered in what follows has been suggested by Anderson (1984).
The transformation from rectangular to polar coordinates in several dimension is the
following:

x1 = r sin θ1

x2 = r cos θ1 sin θ2

x3 = r cos θ1 cos θ2 sin θ3

...

...

xn−1 = r cos θ1 cos θ2 · · · cos θn−2 sin θn−1
xn = r cos θ1 cos θ2 · · · cos θn−2 cos θn−1
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where −π/2 < θk ≤ π/2 for k = 1, 2, ..., n− 2, and −π < θn−1 ≤ π. It can be shown
that

xTx =
nX
k=1

x2k = r
2

and that the Jacobian of the transformation is

|J | =
¯̄̄̄

∂ (x1, ..., xn)

∂ (θ1, ..., θn−1, r)

¯̄̄̄
= rn−1 cosn−2 θ1 cosn−3 θ2 · · · cos θn−2.

Thus, for the density in (6) to be valid, it must integrate to 1. Without loss of gener-
ality, we consider the case where µ = 0 and Σ =In (the identity matrix). Therefore,Z ∞
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· · ·
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k dθk ·

Z π

−π
dθn−1 ·

Z ∞

0

rn−1gn

µ
1

2
r2
¶
dr.

By letting u = cos2 θk so that du = 2 cos θk sin θkdθk and recognizing we get a beta
function, it can be shown thatZ π/2

−π/2
cos θn−k−1k dθk =

Γ
£
1
2
(n− k)¤Γ ¡1

2

¢
Γ
£
1
2
(n− k + 1)¤ =

Γ
£
1
2
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Γ
£
1
2
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Furthermore, we haveZ ∞

0

rn−1gn
¡
1
2
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¢
dr =

Z ∞

0

h
(2x)1/2

in−2
gn (x) dx

= 2n/2−1
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0

xn/2−1gn (x) dx.

Finally, we have

cn =

(
n−2Y
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Γ
£
1
2
(n− k)¤√π

Γ
£
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0

xn/2−1gn (x) dx

)−1
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·
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#−1
and the desired result immediately follows.
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