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Abstract
Classical credibility models provide for predictive claims in linear form. For

example, the Bühlmann and the Bühlmann-Straub credibility models express
the next period’s claim as a weighted average of historical claims arising from
each group’s own experience and the entire portfolio’s experience. The weight
that is attached to the own experience reflects a credibility factor. These clas-
sical models typically assume claim independence. In this paper, we extend
the notion of predicting the next period’s claims by relaxing these indepen-
dence assumptions. We specify claim dependence structure using the concept
of copula models which in recent years, has received considerable attention for
modelling dependencies. This paper extends the models offered by Frees and
Wang (2005) and Yeo and Valdez (2004) that respectively used the frameworks
of copula models and common effects. Here in this paper, we find that the pre-
dictive claim can be expressed as an expectation under a change of probability
measure which reflects the ratio of the densities of the copulas relating to the
historical claims. We examine this expectation for different families of copulas
and in several instances, we find we are able to explicitly express the predictive
claim in terms of historical claims. As we suspect, these predictive claims are
no longer linear in form.
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1 Introduction and Motivation

In the pricing of a general insurance contract, its premium is typically determined
by assessing the observable claims from a portfolio of such homogeneous contracts.
These observable claims can, for example, be represented by random variables Xj,t

where j = 1, 2, . . . , J denotes the individual risk and t = 1, 2, . . . , T denotes the time
period. Here, J refers to the number of contracts in the portfolio and T is the time
period where historical claims are available. To simplify our illustration, the same
time period will apply to all the individuals and this is typically called a balanced
model. However, with a slight variation to the model, one can always extend the
notion to the unbalanced case.

Insurers usually group individual risks such that the risks within each group are as
homogeneous as possible in terms of certain observable risk characteristics. A common
premium for the group, also known as the manual premium, is then calculated and
charged. The grouping is made primarily to reach a fair and equitable premium across
all individuals. Such grouping also helps isolate a large group of independent and
identically distributed risks so that the law of large numbers can be invoked during
the claims prediction process. This minimises variability in the claims experience
within the same group. However, the grouping of the individual risks will not be
precise, thereby causing the risks within each group to be not entirely homogeneous.
An unknown number of unobservable traits will always contribute to the possible
presence of heterogeneity among the individuals.

In premium calculation, which also requires prediction of claims, historical claims
experience provides an invaluable insight into the unobservable characteristics of the
individual risks. Furthermore, it is a common practice to allow for past claims ex-
perience of the insured individual in claims prediction and in premium calculation.
This exercise is known as experience rating and is generally made for the purpose of
reaching a fair and equitable insurance premium rate. For example, in motor insur-
ance, a driver may have had a number of years of experience available to the insurer.
Those drivers with little or no claims experience will simply be assessed an additional
risk premium, and prediction of its own future claims will be based on the claims
experience of the group it belongs to.

These considerations naturally point to some sort of a compromise between the
two sets of experience in claims prediction: the group’s claims experience and the
individual’s claims experience, if any. This in turn has led actuaries to utilise a
pricing formula of the form

Premium = Z ·Own Experience + (1− Z) ·Group Experience, (1)

where Z, a value between 0 and 1 (inclusive), is commonly known as the “credibility
factor”. The credibility factor in (1) is a weight assigned to the individual’s own
claims experience. The vast majority of credibility models developed for almost a
century now in turn leads to the computation of this weight. It is to be noted that
on one hand, the group’s collective experience is extensive enough for the law of large
numbers to be applicable and therefore, ignores the presence of heterogeneity. On
the other hand, the individual’s own experience contains useful information about
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the risk characteristics of the individual but may be subject to random fluctuations
due to lack of volume. Credibility models must therefore be able to reach an in-
tuitively appealing formula allowing for larger credibility for larger number of years
of individual experience, for example. Such a credibility factor should be close to
unity when individual risk experience is abundant or where there is a high degree
of heterogeneity in the overall experience. It should be close to nil if individual risk
experience is lacking or unreliable, or where there is a high degree of homogeneity in
overall experience.

In the construction of credibility models, it has been a common practice to as-
sume independence of claims, although some of the models may have relaxed this
assumption by assuming conditionally i.i.d. random variables that are uncorrelated
instead. Using our notation introduced earlier, claims X1,t, X2,t, . . . , XJ,t are assumed
to be independent across the individuals for a fixed time t, stating that claims of
one insured individual do not directly impact those of other insured individuals. For
a fixed individual j = 1, 2, . . . , J , claims Xj,1, Xj,2, . . . , Xj,T are also often assumed
independent across different time periods. Modelling the time dependence appears to
be a more common practice when developing credibility models, but not dependence
across individuals. The early paper by Gerber and Jones (1975) and the more recent
ones by Frees, et al. (1999) are examples of credibility models with time dependence
of claims.

As we have observed in the recent past, in the actuarial and insurance literature,
the notion of claim dependencies is increasingly becoming an important part of the
modelling process. In Wang (1998), a set of statistical tools for modelling dependen-
cies of risks in an insurance portfolio has been suggested. Valdez and Mo (2002) and
Albrecher and Kantor (2002) have both examined the impact of claim dependencies
on the probability of ruin under the copula framework. The works of Heilmann (1986)
and Hürlimann (1993) have investigated the effect of dependencies of risks on stop-
loss premiums. Several generalisations and alternative models of dependence have
since followed including, Dhaene and Goovaerts (1996, 1997) and Müller (1997), ad-
dressing their impact on stop-loss premiums. Other models have included the works
of Genest, et al. (2003) and Cossette, et al. (2002) where claim dependence have been
addressed in the framework of individual risk models. Furthermore, using the notion
of a stochastic order, the recent papers by Purcaru and Denuit (2002, 2003) provide
excellent discussion of dependencies in claim frequency for credibility models. In the
credibility theory context, Frees (2003) considered multivariate credibility premiums
based upon the frailty construction for different lines of business. The main driver
for dependence between risks was assumed to be via the claims incidence rates only.
More recently, Frees and Wang (2005) considered a generalised linear model frame-
work for modelling marginal claims distributions and allowed for dependence using
copulas. In their paper, the Student-t copula has been used to model the dependence
over time for a class of risks.

In this paper, we offer additional insight into the modelling of claim dependencies,
and within the framework of developing credibility premiums, or to be more precise,
predicting the next period’s claims given the history of claims available. In the
early part of the paper, we consider the case where we only have one particular
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contract, or class of risks, say j, and we allow for claims dependence across time.
We demonstrate that the next period’s claims, given the history of claims, can be
conveniently expressed as

E (XT+1|X1 = x1, . . . , XT = xT ) =

∫ ∞

−∞
xT+1

cT+1 (uT+1)

cT (uT )
dFT+1 (xT+1) ,

where cT+1 (·) and cT (·) are respectively the density of the copulas associated with
the claim vectors XT+1 = (X1, . . . , XT+1)

′ and XT = (X1, . . . , XT )′. This ratio of

densities of the copula,
cT+1 (uT+1)

cT (uT )
, in fact induces a change of probability measure so

that in effect, we can then write the claims prediction as the unconditional expectation

E (XT+1|X1 = x1, . . . , XT = xT ) = EQ (XT+1)

under a change of measure dFQ
T+1 (xT+1) =

cT+1 (uT+1)

cT (uT )
dFT+1 (xT+1). This change

of measure allows us then to be able to construct an explicit expression for the
credibility premium. With the exception of the multivariate Normal case, we no
longer are able to express this credibility premium in a linear form that we commonly
find in the classical credibility models such as that in expression (1). In illustrating
the convenience of this formulation, we consider different families of copulas such as
the familiar Normal and Student-t copulas, the Farlie-Gumbel-Morgenstern (or FGM,
for short) as well as the family of Archimedean copulas.

In this work, we place importance on the modelling of claim dependence across
time, that is, the claims of an individual risk over time are dependent in some sense.
For example, in motor insurance, this dependence can partly be explained by the
individual’s proneness to accidents which may well depend on personal behaviour
and driving style. In medical insurance, this dependence is influenced by the individ-
ual’s health over time and some unobservable characteristics like genes and lifestyle
contribute to his or her well-being. Claim dependence across individuals will be
considered towards the end of this work.

The rest of the paper has been organised as follows. In the next section, we de-
rive generic formulas for the credibility premium when claims experience over time is
modelled by copulas. Here, we find that the copula density ratio plays an important
role in computing the credibility premium. The subsequent sections examine cases of
various copulas. In Section 3, we consider the case of the Gaussian and the Student-t
copulas. In Section 4, we consider the family of Archimedean copulas which are gen-
erated by a single-valued Archimedean generator. Section 5 develops the credibility
premiums for the case of the Farlie-Gumbel-Morgenstern copulas. To visualize the
effects of tilting induced by the copula density ratio, we provide some illustrative
examples in Section 6. Section 7 provides a brief sketch of how to extend the work to
include simultaneous dependence of claims across individuals. We provide concluding
statements in Section 8.
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2 Relaxing the independence assumption across

time periods

This section considers the case of only a single contract j, or a single class of risks,
and assumes that claim dependencies are specified using copula functions. Effectively,
we continue to assume independence across individual contracts, although we address
this issue in a later section. To avoid the cumbersome notation, we drop the part of
the subscript referring to the contract so that the observed claims vector is denoted
by XT = (X1, . . . , XT )′.

There has been a number of papers on copulas, hence we do not provide introduc-
tion here. Rather, we only give a short discussion about copulas as a matter of intro-
ducing the notation. We also advise the reader to examine textbooks and references
therein found in Mari and Kotz (2001) and Nelsen (1999). Copulas are functions that
join or couple multivariate distribution functions to their one-dimensional marginal
distributions functions. Specifically, we have

HT (x1, . . . , xT ) = P (X1 ≤ x1, . . . , XT ≤ xT ) = CT (F1 (x1) , . . . , FT (xT )) ,

where Ft (·) refers to the marginal distribution associated with Xt, HT is their joint
distribution function, and CT is the corresponding copula function where subscripts
of H and C refer to the dimension of the claim vector. Sklar (1959) proved the
existence of copulas for every joint distribution function and demonstrated that they
are indeed unique if the marginal distribution functions are continuous. It is also
sometimes convenient to write this as

HT (x1, . . . , xT ) = CT (u1, . . . , uT ) , (2)

where uT = (u1, . . . , uT )′ and ut = Ft (xt) refers to the distribution function for
t = 1, . . . , T .

Vectors shall be written in bold letters. For example, we shall denote the observed
values of XT by xT = (x1, . . . , xT )′ and similarly for XT+1 by xT+1 = (x1, . . . , xT , xT+1)

′.
For ease of notation, we will also denote the vectors uT = (u1, . . . , uT )′ and uT+1 =
(u1, . . . , uT , uT+1)

′. We shall assume that the densities of the copulas exist and are
respectively denoted by

cT (uT ) =
∂T CT (uT )

∂u1 . . . ∂uT

(3)

and

cT+1 (uT+1) =
∂T+1CT+1 (uT+1)

∂u1 . . . ∂uT ∂uT+1

. (4)

Notice that the marginal distribution functions have been denoted by

Ft (xt) = P (Xt ≤ xt) for t = 1, . . . , T, T + 1

and if the corresponding density functions exist, we denote them by

ft (xt) =
dFt (xt)

dxt

for t = 1, . . . , T, T + 1.
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Similarly, the multivariate density functions, if they exist, will be respectively denoted
by

hT (xT ) =
∂T HT (xT )

∂x1 . . . ∂xT

and

hT+1 (xT+1) =
∂T+1HT+1 (xT+1)

∂x1 . . . ∂xT ∂xT+1

.

Our primary motivation here is to construct predictors for the next period’s claim
of an individual contract based on all its observed claims X1, . . . , XT , for which the
next period’s claim is to be denoted by the random variable XT+1. As previously
stated, we assume that there is dependence only over time periods for the same
individual and this dependency structure is specified with a copula function as in
(2). In this work, we incorporate the copula dependence structure into the predictor
for claims, which may result in other forms of explicit credibility formulas. It should
be noted that the credibility premium may no longer be linear with respect to the
historical claims, but rather be non-linear in form. Hence, it may not be possible to
have the linear credibility form that we have been used to.

It is well-known in statistics that the best predictor of XT+1, based on all its
observed claims X1, . . . , XT , in the sense of the “mean squared prediction error” is
the conditional expectation

E (XT+1|XT = xT ) . (5)

In other words, the predictor in (5) is the required functional g (XT ) that minimises
the following mean squared prediction error:

E [XT+1 − g (XT )]2 .

See, for example, Shao (2003) for a nice proof on page 40. This same result is well-
known in the actuarial and insurance literature, for example, see Dannenburg, Kaas,
and Goovaerts (1996).

Proceeding now, the conditional density, fXT+1|XT
(xT+1|xT ), is desired as the

conditional expectation in (5) gives our best estimate of the next period’s claims and
also gives our desired credibility premium. This conditional density has been referred
to in Frees and Wang (2005) as the predictive density and we shall assume it exists.
The predicted claims can be conveniently expressed as

E (XT+1|XT = xT ) =

∫ ∞

−∞
xT+1 · fXT+1|XT

(xT+1|xT ) dxT+1, (6)

where the integral is the Riemann-Stieltjes integral. Notice that the limits of the
integral is the entire real line so that we are not confined to the assumption that claims
are non-negative. We now give the following result for the conditional expectation as
a proposition.
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Proposition 1 Consider the copula model satisfying the assumptions described in
this section. The conditional expectation of XT+1|XT can be expressed in the following
manner:

E (XT+1|XT = xT ) =

∫ ∞

−∞
xT+1 · cT+1 (uT+1)

cT (uT )
dFT+1 (xT+1) , (7)

where cT+1 (uT+1) and cT (uT ) are respectively defined in (3) and (4), and that FT+1

is a known marginal distribution function of XT+1.

Proof. It is clear from the definition of conditional density, that if it exists, we
must have

fXT+1|XT
(xT+1|xT ) =

hT+1 (xT+1)

hT (xT )
.

The numerator can be written as

hT+1 (xT+1) =
∂T+1CT+1 (uT+1)

∂u1 . . . ∂uT ∂uT+1

×
T+1∏
t=1

ft (xt)

= cT+1 (uT+1)×
T+1∏
t=1

ft (xt) ,

where uT+1 is understood to be evaluated at the respective marginals Ft (xt) for
t = 1, . . . , T, T + 1. Similarly, we have

hT (xT ) = cT (uT )×
T∏

t=1

ft (xt) .

From these, we now have

E (XT+1|XT = xT ) =

∫ ∞

−∞
xT+1 · hT+1 (xT+1)

hT (xT )
dxT+1

=

∫ ∞

−∞
xT+1 · cT+1 (uT+1)×

∏T+1
t=1 ft (xt)

cT (uT )×∏T
t=1 ft (xt)

dxT+1

=

∫ ∞

−∞
xT+1 · cT+1 (uT+1)

cT (uT )
fT+1 (xT+1) dxT+1,

and the result given in (7) follows.

We observe that the ratio cT+1 (uT+1) /cT (uT ) induces a change of measure of
the original probability measure corresponding to the observable claim XT+1 in the
next period. The above conditional expectation can be rewritten as an unconditional
expectation with respect to the new marginal density

dFQ
T+1 (xT+1) =

cT+1 (uT+1)

cT (uT )
dFT+1 (xT+1) ,
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that is,

E (XT+1|XT = xT ) =

∫ ∞

−∞
xT+1 · f c

T+1 (xT+1) dxT+1 = EQ (XT+1) , (8)

where EQ denotes taking the expectation under the said new marginal density. As a
matter of fact, the copula density ratio is the conditional density

c (uT+1|uT ) =
cT+1 (uT+1)

cT (uT )
,

so that one may effectively call this tilting induced by the conditional density copula.
In the case where we have independence, notice that we have cT+1 (uT+1) /cT (uT ) = 1
so that we have E (XT+1|XT = xT ) = E (XT+1). Thus, the next period’s claim is not
influenced by previous claims.

The use of copulas to model the time dependence of claims for a single individual
risk is similar in structure to that discussed in Frees and Wang (2005). Nonetheless,
there are vital differences between our respective works. The most important differ-
ence lies in the representation of the conditional expectation. In our work, we show
that the conditional expectation can be interpreted as a change of measure and hence
succinctly written as an unconditional expectation under a revised marginal density.
This revision of the marginal density can be interpreted as a “re-weighting” of the
density function after observing the previous claims. Therefore, the observed claims
have a direct influence on the next period’s claim. The magnitude of this impact is
affected by the structure of the specified copula and is measured by how the ratio of
the densities of the copula affects the re-shaping of the distribution.

Another clear difference in our respective works has to do with the explicit con-
struction of the resulting unconditional expectation. We show, in the next few sec-
tions, that for special families of copulas, we are able to construct explicit expressions
for the predicted claims. We even find that in the case of the Normal copula, the
resulting unconditional expectation has the form of the Wang transformation.

Finally, unlike that of the work of Frees and Wang (2005), we do not limit the
application of the formulas to the family of Student-t copulas. We extend the applica-
tions to various families of copulas such as familiar elliptical copulas like the Normal
and Student-t copulas, the Archimedean family of copulas, as well as the FGM family
of copulas. We consider these various copulas separately in the next few sections to
demonstrate appreciation of the applicability of Proposition 1.

3 The Gaussian and Student-t copulas

This section considers the Normal and Student-t copulas. For both of these types of
copulas, we shall denote the correlation matrix by ΣT with representation ΣT =

(
ρij

)
where ρij = 1 for all i = j, i, j = 1, . . . , T so that diag(ΣT ) = 1.
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3.1 The case of the Gaussian copula

Consider the Gaussian copula with correlation matrix ΣT which has the form

CT (uT ) = ΦΣT

(
Φ−1 (u1) , . . . , Φ−1 (uT )

)
(9)

where ΦΣT
is a standardised T -dimensional Normal distribution function and Φ−1

refers to the quantile function of the standard one-dimensional Normal distribution.
It can be shown that the corresponding density of this Gaussian copula has the form

cT (uT ) =
exp

(−1
2
ς ′TΣ−1

T ςT

)
√

(2π)T |ΣT |
∏T

k=1 φ (Φ−1 (uk))
(10)

where ς ′T = (Φ−1 (u1) , . . . , Φ−1 (uT )) and φ (z) = (2π)−1/2 exp
(−1

2
z2

)
, the density of

a standard Normal.

Proposition 2 Let XT be a claims vector with a Normal copula structure as specified
in (9). The ratio of the densities of the Normal copula can be expressed as

cT+1 (uT+1)

cT (uT )
=

1

σZ.T+1

· φ (Φ−1 (ŭT+1))

φ (Φ−1 (uT+1))

where Φ−1 (ŭT+1) =
(
Φ−1 (uT+1)− µZ.T+1

)
/σZ.T+1, µZ.T+1 = ρ′T+1,TΣ−1

T ςT and σZ.T+1 =

1− ρ′T+1,TΣ−1
T ρT+1,T .

Proof. First, from (10), we find the ratio of the densities is given by

cT+1 (uT+1)

cT (uT )
=

exp
[−1

2

(
ς ′T+1Σ

−1
T+1ςT+1 − ς ′TΣ−1

T ςT

)]
√

2π |ΣT+1| /|ΣT |φ (Φ−1 (uT+1))

From (27) of Appendix A, we find that

ς ′T+1Σ
−1
T+1ςT+1 − ς ′TΣ−1

T ςT =

(
Φ−1 (uT+1)− µZ.T+1

σZ.T+1

)2

,

where we write µZ.T+1 = ρ′T+1,TΣ−1
T ςT and σZ.T+1 = 1−ρ′T+1,TΣ−1

T ρT+1,T . By noting
the properties of determinant, we have

|ΣT+1| / |ΣT | =
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)
= σ2

Z.T+1.

Thus we can write

exp
[−1

2

(
ς ′T+1Σ

−1
T+1ςT+1 − ς ′TΣ−1

T ςT

)]
√

2π |ΣT+1| /|ΣT |

=

exp

[
−1

2

(
Φ−1(uT+1)−µZ.T+1

σZ.T+1

)2
]

√
2πσZ.T+1

= φ
[(

Φ−1 (uT+1)− µZ.T+1

)
/σZ.T+1

]
/σZ.T+1.

The results in the proposition then follow.

Using Proposition 2, the following result becomes immediate.
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Corollary 1 Let XT be a claims vector with a Normal copula structure as specified
in (9). Then the next period’s predicted claims has the representation

E (XT+1|XT = xT ) = EZ

{
F−1

T+1

[
Φ

(
µZ.T+1 + σZ.T+1Z

)]}
,

where the expectation on the right-hand side is computed for a standard Normal ran-
dom variable Z.

Proof. From propositions 1 and 2, we find the conditional expectation is

E (XT+1|XT = xT )

=

∫ ∞

−∞
xT+1

φ
[(

Φ−1 (uT+1)− µZ.T+1

)
/σZ.T+1

]

φ (Φ−1 (uT+1))
dFT+1 (xT+1) .

Applying the transformation z =
(
Φ−1 (uT+1)− µZ.T+1

)
/σZ.T+1, we find that

E (XT+1|XT = xT ) =

∫ ∞

−∞
F−1

T+1

[
Φ

(
µZ.T+1 + σZ.T+1z

)] · φ (z) dz

= EZ

{
F−1

T+1

[
Φ

(
µZ.T+1 + σZ.T+1Z

)]}
,

which is the desired result.

We observe that the term F−1
T+1

[
Φ

(
µZ.T+1 + σZ.T+1Z

)]
is a specific example of

the Wang transformation when FT+1 = Φ, with µZ.T+1 as the market price of risk
or risk aversion parameter and with σZ.T+1 as the parameter allowing for parameter
uncertainty. Taking expectation of F−1

T+1

[
Φ

(
µZ.T+1 + σZ.T+1Z

)]
will therefore give a

risk-adjusted expected loss. As an example, consider the bivariate case with correla-
tion parameter ρ. We then have µZ.T+1 = ρx1 and σZ.T+1 =

√
1− ρ2. It is interesting

to note that the risk aversion parameter µZ.T+1, depends on observed values of past
claims experience. Indeed, the adjustment for risk increases for worse past claims
experience, resulting in a higher credibility premium. This is a result expected of a
credibility premium. For more on the Wang transformation, see Wang (2000, 2002).

Example 3.1.1: The multivariate Normal distribution
Consider the special case where XT+1 has a multivariate Normal distribution with
common pairwise correlation of ρ so that we can write the correlation matrix as

ΣT =




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


 = (1− ρ)

(
IT +

ρ

1− ρ
eTe′T

)

where e′T = (1, 1, . . . , 1) is a row-vector of dimension T and IT is the T × T identity
matrix. Then it can be shown that

Σ−1
T = (1− ρ)−1

(
IT − ρ

1− ρ + ρT
eTe′T

)
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so that

µZ.T+1 =
ρ

1− ρ + ρT
e′T ςT =

ρ

1− ρ + ρT

T∑
i=1

(
xi − µ

σ

)
,

where we have assumed that all the marginals are also identically distributed with
mean µ and variance σ2. Thus, we see that the predicted claim becomes

E (XT+1|XT = xT ) = EZ

[
F−1

T+1

(
Φ

(
µZ.T+1 + σZ.T+1Z

))]
= µZ.T+1σ + µ,

and this expression can be written in the familiar credibility form

E (XT+1|XT = xT ) =
ρT

1− ρ + ρT
x +

1− ρ

1− ρ + ρT
µ.

This result is as expected. A further special situation is when T = 1, the bivariate
case in which case, we would have

E (X2|X1 = x1) = ρx1 + (1− ρ) µ.

This is the answer we would expect to arrive at.¥

Example 3.1.2: The Normal copula with Uniform marginals
In the special case where XT+1 is believed to be Uniform on (0, 1) so that F−1

T+1 (w) =
w, we have the following explicit form

E (XT+1|XT = xT ) = EZ

[
Φ

(
σZ.T+1Z + µZ.T+1

)]
= Φ

(
µZ.T+1√

1 + σZ.T+1

)
.¥

3.2 The case of the Student-t copula

The so-called Student-t copula with a correlation parameter ΣT has the form

CT (uT ) = TΣT ,r

(
T−1

r (u1) , . . . , T−1
r (uT )

)
(11)

where TΣT ,r is a standardised T -dimensional Student-t distribution function and T−1
r

refers to the quantile function of the standard one-dimensional Student-t distribution
with r degrees of freedom. It can be shown that the corresponding density of this
copula can be expressed as

cT (uT ) =
Γ

(
r+T

2

) (
1 + 1

r
ς ′TΣ−1

T ςT

)−(r+T )/2

Γ
(

r
2

) √
(rπ)T |ΣT |

∏T
k=1 tr (T−1

r (uk))
(12)

where ς ′T = (T−1
r (u1) , . . . , T−1

r (uT )) and Tr refers to the distribution function of a
univariate standardised Student-t distribution with r degrees of freedom.

11



Proposition 3 Let XT be a claims vector with a Student-t copula structure as spec-
ified in (11). The ratio of the densities of the Student-t copula can be expressed as

cT+1 (uT+1)

cT (uT )
=

1

σ∗Z.T+1

· tr+T (T−1
r (ŭT+1))

tr (T−1
r (uT+1))

,

where T−1
r (ŭT+1) =

(
T−1

r (uT+1)− µZ.T+1

)
/σ∗Z.T+1, µZ.T+1 = ρ′T+1,TΣ−1

T ςT and σ∗2Z.T+1 =

rσ2
Z.T+1

(
1 + 1

r
ς ′TΣ−1

T ςT

)
/ (r + T ).

Proof. From (11), we find the ratio of the densities is given by

cT+1 (uT+1)

cT (uT )
=

Γ
(

r+T+1
2

) (
1 + 1

r
ς ′T+1Σ

−1
T+1ςT+1

)−(r+T+1)/2

Γ
(

r+T
2

) √
rπ |ΣT+1| /|ΣT |

(
1 + 1

r
ς ′TΣ−1

T ςT

)−(r+T )/2
tr (T−1

r (uT+1))
,

From (28) in the appendix, we also have that

ς ′T+1Σ
−1
T+1ςT+1 =

(
T−1

r (uT+1)− µZ.T+1

)2

1− ρ′T+1,TΣ−1
T ρT+1,T

+ ς ′TΣ−1
T ςT

=

(
T−1

r (uT+1)− µZ.T+1

σZ.T+1

)2

+ ς ′TΣ−1
T ςT .

where µZ.T+1 = ρ′T+1,TΣ−1
T ςT and σ2

Z.T+1 = 1− ρ′T+1,TΣ−1
T ρT+1,T . Now consider the

term in the numerator of the ratio of the density copulas where we find

1 +
1

r
ς ′T+1Σ

−1
T+1ςT+1 = 1 +

1

r

[(
T−1

r (uT+1)− µZ.T+1

σZ.T+1

)2

+ ς ′TΣ−1
T ςT

]
.

By multiplying and dividing the term 1 + 1
r
ς ′TΣ−1

T ςT , we can further re-write it as

1 +
1

r
ς ′T+1Σ

−1
T+1ςT+1 =

(
1 +

1

r
ς ′TΣ−1

T ςT

)




1 + 1
r

[(
T−1

r (uT+1)−µZ.T+1

σZ.T+1

)2

+ ς ′TΣ−1
T ςT

]

1 + 1
r
ς ′TΣ−1

T ςT





=

(
1 +

1

r
ς ′TΣ−1

T ςT

) [
1 +

1

r + T

(
T−1

r (ŭT+1)
)2

]
,

where we write T−1
r (ŭT+1) =

(
T−1

r (uT+1)− µZ.T+1

)
/σ∗Z.T+1. Finally, by noting that

the ratio of the determinants

|ΣT+1| / |ΣT | = 1− ρ′T+1,TΣ−1
T ρT+1,T = σ2

Z.T+1,

we write

Γ
(

r+T+1
2

) (
1 + 1

r
ς ′T+1Σ

−1
T+1ςT+1

)−(r+T+1)/2

Γ
(

r+T
2

) √
rπ |ΣT+1| /|ΣT |

(
1 + 1

r
ς ′TΣ−1

T ςT

)−(r+T )/2

=
Γ

(
r+T+1

2

)

Γ
(

r+T
2

) √
(r + T ) πσ∗Z.T+1

[
1 +

1

r + T

(
T−1

r (ŭT+1)
)2

]−(r+T+1)/2

= tr+T

[
T−1

r (ŭT+1)
]
/σ∗Z.T+1.

12



The result in the proposition then follows.

Using Proposition 3, the following result should now follow.

Corollary 2 Let XT be a claims vector with a Student-t copula structure as specified
in (11). Then the next period’s predicted claims can be expressed as

E (XT+1|XT = xT ) = EZ

{
F−1

T+1

[
Tr

(
µZ.T+1 + σ∗Z.T+1Z

)]}
,

where the expectation on the right-hand side is computed for a standard univariate
Student-t random variable Z with (r + T ) degrees of freedom.

Proof. From propositions 1 and 3, we find the conditional expectation as

E (XT+1|XT = xT )

=

∫ ∞

−∞
xT+1

tr+T

[(
T−1

r (uT+1)− µt.T+1

)
/σ∗Z.T+1

]

tr (T−1
r (uT+1))

dFT+1 (xT+1) .

Applying the transformation z =
(
T−1

r (uT+1)− µt.T+1

)
/σ∗Z.T+1,we find that

E (XT+1|XT = xT ) =

∫ ∞

−∞
F−1

T+1

[
Tr

(
µZ.T+1 + σ∗Z.T+1z

)] · tr+T (z) dz

= EZ

{
F−1

T+1

[
Tr

(
µZ.T+1 + σ∗Z.T+1Z

)]}
,

which is the desired result.

The result above can further assist us in finding conditional expectations of a
multivariate Student-t distributed random vector. This is usually not commonly
found in standard textbooks on multivariate distributions.

Example 3.2.1: The multivariate Student-t distribution
Consider the special case where XT+1 has a multivariate Student-t distribution with
common pairwise correlation of ρ and degrees of freedom r. This is similar to the
Gaussian copula case in example 3.1.1. Thus we have

Σ−1
T = (1− ρ)−1

(
IT − ρ

1− ρ + ρT
eTe′T

)

so that

µZ.T+1 =
ρ

1− ρ + ρT
e′T ςT =

ρ

1− ρ + ρT

T∑
i=1

(
xi − µ

σ

)
,

where we have assumed that all the marginals are also identically distributed as
Student-t with location parameter µ and scale parameter σ. Note that the variance
of the Student-t is not equal to square of the scale parameter. We see that the
predicted claim (or conditional expectation) becomes

E (XT+1|XT = xT ) = EZ

[
F−1

T+1

(
Tr

(
µZ.T+1 + σ∗Z.T+1Z

))]
= µZ.T+1σ + µ,

13



and this expression can be written in the familiar credibility form

E (XT+1|XT = xT ) =
ρT

1− ρ + ρT
x +

1− ρ

1− ρ + ρT
µ.

A further special situation is when T = 1, the bivariate case in which case, we would
have

E (X2|X1 = x1) = ρx1 + (1− ρ) µ.

Both these answers are what we expect them to be.¥

4 Archimedean copulas

Consider the family of Archimedean copulas constructed by means of a single-valued
generator function. This family of copulas has been widely used in the modelling of
insurance and financial risks, primarily due to the numerous interesting properties
they possess. One of these is the ease in which they are constructed, and a large variety
of copulas belong to this family. Nelsen (1999) provides a discussion on constructing
copulas belonging to the Archimedean family, as does Schweizer & Sklar (1983).

They are characterised by a generator, which is a single-valued function, thereby
reducing the search for a high dimensional distribution function. Let ψ, an Archimedean
generator, be a mapping from [0, 1] to [0, 1] satisfying the following three conditions:
(1) ψ (1) = 0; (2) ψ is monotonically decreasing; and (3) ψ is convex.

A copula CT is called a T -dimensional Archimedean copula if there exists a gen-
erator function ψ such that

CT (uT ) = ψ−1 (ψ (u1) + · · ·+ ψ (un)) , (13)

where ψ−1 denotes the inverse function of the generator. Notice that if the first
derivative, ψ′, exists, then by condition (2), we must have ψ′ ≤ 0, and if the second
derivative, ψ′′, exists as well, then by condition (3), we must have ψ′′ ≤ 0. For our
purposes, we consider only Archimedean generators which are continuous and whose
higher derivatives exist. Indeed, for CT to be a proper copula, ψ−1 must be completely
monotone so that if all derivatives exist, we must have

(−1)k dkψ−1 (u)

duk
≥ 0 for k = 1, 2, . . . , T .

Examples of familiar Archimedean copulas and their respective generators are defined
in Table 1 below.

The Archimedean family of copulas is a clear favourite for modelling dependent
risks. The Frank copula, in particular, whose Archimedean generator has the form

ψ (u) = log

(
δu − 1

δ − 1

)
, for δ ≥ 0,

is a very popular choice for modelling dependent risks.
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It allows for a wide range of dependence, one of which is it allows up to maximal
positive dependence depending on the choice of parameter value. It has very few
parameters, usually just one, to describe dependence. This simplifies the calibration
process, but sometimes, this limits the modelling of more complex dependence struc-
tures unlike the Gaussian and Student-t copulas discussed in the previous section.
This copula was derived by Frank (1979). Genest (1987) further examined many of
the interesting properties of this family of copulas including explicit forms for evalu-
ating the Kendall’s and Spearman’s correlation coefficients. Frees, et al. (1996) used
the Frank copula to fit bivariate distributions of the lifetimes of a husband and wife.

The subsequent proposition gives an explicit representation of the conditional den-
sity copula necessary to evaluate the predicted claims for the family of Archimedean
copulas.

Proposition 4 Let XT be a claims vector with an Archimedean copula structure
as specified in (13). The ratio of the densities of the Archimedean copula has a
representation

cT+1 (uT+1)

cT (uT )
=

ψ−1(T+1) [ψ (CT+1 (uT+1))]

ψ−1(T ) [ψ (CT (uT ))]
ψ′ (uT+1)

where ψ−1(T+1) and ψ−1(T ) are the (T + 1)-th and T -th derivatives of ψ−1 and ψ′ is
the derivative of the generator function ψ.

Proof. It can be shown that indeed

cT (uT ) = ψ−1(T )

(
T∑

t=1

ψ (ut)

)
T∏

t=1

ψ′ (ut)

and the result above should be immediate.

For better appreciation of the use of the tilting induced by this conditional density
copula, we present example 4.1 below that considers the specific case of the Cook-
Johnson copula. This type of a copula is sometimes called the Clayton copula in the
literature.

Example 4.1: The Cook-Johnson copula
Consider the multivariate Cook-Johnson copula with

CT (uT ) =
(∑T

k=1
u−δ

k − T + 1
)−1/δ

.

It can be shown, for example, see p. 225 of Cherubini, et al. (2004), that the density
of the Cook-Johnson copula can be expressed as

cT (uT ) =
δT Γ (T + 1/δ)

Γ (1/δ)
×

(∏T

k=1
u−δ−1

k

)(∑T

k=1
u−δ

k − T + 1
)−(1/δ)−T

.
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This can also be derived by first noting that its generator ψ (u) = u−δ − 1 so that

ψ′ (u) = −δu−δ−1 and that ψ−1 (u) = (1 + u)−1/δ. The T -th derivative of the inverse
can be shown to be

ψ−1(T ) (u) = (−1)T (1 + u)−(1/δ)−T ∏T
k=1

(
1

δ
+ k

)

= (−1)T (1 + u)−(1/δ)−T Γ (T + 1/δ)

Γ (1/δ)
.

This therefore simplifies the ratio of the Cook-Johnson density copula as follows

cT+1 (uT+1)

cT (uT )
=

δ (T + (1/δ))(∑T
k=1 u−δ

k − T + 1
)−(1/δ)−T

× u−δ−1
T+1

(∑T+1

k=1
u−δ

k − T
)−(1/δ)−T−1

and by defining the constant

ξ =
∑T

k=1
u−δ

k − T

which depends only on past values of x1, . . . , xT , we can further re-write this ratio as

cT+1 (uT+1)

cT (uT )
= δ (T + (1/δ)) (1 + ξ)(1/δ)+T × u−δ−1

T+1

(
u−δ

T+1 + ξ
)−(1/δ)−T−1

.

Now, applying the transformation y = u−δ
T+1, we could write

E (XT+1|XT = xT ) = (T + (1/δ)) (1 + ξ)(1/δ)+T

∫ ∞

1

F−1
T+1

(
yδ

)×(y + ξ)−(1/δ)−T−1 dy.

(14)

Now consider the random variable Y with density function expressed as

fY (y) =
((1/δ) + T ) (1 + ξ)(1/δ)+T

(y + ξ)(1/δ)+T+1
for y > 1. (15)

Indeed, this is the density function of a translated Pareto random variable with
parameters (1/δ) + T and 1 + ξ, where the magnitude of the translation is −B. The
expression in (14) becomes

E (XT+1|XT = xT ) =

∫ ∞

1

F−1
T+1

(
yδ

)× ((1/δ) + T ) (1 + ξ)(1/δ)+T

(y + ξ)(1/δ)+T+1
dy

= EY

[
F−1

T+1

(
Y δ

)]
,

where the unconditional expectation is evaluated under the translated Pareto with
density given in (15).¥
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5 The case of the F-G-M copula

We now consider the Farlie-Gumbel-Morgenstern (FGM) family of copulas whose
members have the form

CT (uT ) =

{
1 +

T∑
s=2

∑
1≤t1<...<ts≤T

αt1,...,ts

s∏
j=1

[
1− utj

]
}

T∏
t=1

ut, (16)

where the parameters αt1,...,ts must satisfy the following conditions:

1 +
m∑

s=2

∑

k1≤t1<...<ts≤km

(
αt1,...,ts

s∏
j=1

ζtj

)
≥ 0

where
∣∣∣ζtj

∣∣∣ ≤ 1 (in fact, each ζtj
is either a +1 or a −1) and 1 ≤ k1 < km ≤ T

successively for m = 2, . . . , T . It is clear that the total number of parameters αt1,...,ts

is 2T − T − 1. For further discussion of constraints on these parameters, we refer to
Mari and Kotz (2001). We shall implicitly assume, in the foregoing discussion, that
these parameter constraints hold. For a discussion of various properties of the FGM
copula, see Johnson and Kotz (1975, 1977), Cambanis (1977), Mari and Kotz (2001)
and Nelsen (1999).

To illustrate the FGM copula, for example, consider the bivariate case where
T = 2, then we have

C2 (u2) = u1u2 [1 + α12 (1− u1) (1− u2)] ,

where the sole dependence parameter α12 satisfies |α12| < 1. In the trivariate case
where T = 3, we would have

C3 (u3) = u1u2u3

[
1 + α12 (1− u1) (1− u2) + α13 (1− u1) (1− u3)
+α23 (1− u2) (1− u3) + α123 (1− u1) (1− u2) (1− u3)

]
,

where the parameters α12, α13, α23 and α123 must satisfy

1 + α12ζ1ζ2 + α13ζ1ζ3 + α23ζ2ζ3 + α123ζ1ζ2ζ3 ≥ 0

with ζk = +1 or −1, k = 1, 2, 3.
An interesting representation of the FGM copula can be made by defining the

polynomial term

PT (uT ) =

{
1 +

T∑
s=2

∑
1≤t1<...<ts≤T

αt1,...,ts

s∏
j=1

[
1− utj

]
}

(17)

so that the FGM copula becomes

CT (uT ) = PT (uT )
T∏

t=1

ut.
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This specification of the FGM copula allows us to produce a succinct representation
of the density of the copula. By differentiating T times, the density of the FGM
copula in (16) can be expressed as

cT (uT ) = 1 +
T∑

s=2

∑
1≤t1<...<ts≤T

αt1,...,ts

s∏
j=1

[
1− 2utj

]
= PT (2uT ) (18)

where 2uT = (2u1, . . . , 2uT ). For the additional dimension T + 1 then, we can also
write

cT+1 (uT+1) = PT+1 (2uT+1) .

Because CT (uT ) = CT+1 (uT , 1), it follows therefore that

PT (2uT ) = PT+1 (2uT , 1)

where the right hand side is evaluated at uT+1 = 1. Thus, we write the ratio as

cT+1 (uT+1)

cT (uT )
=

PT+1 (2uT+1)

PT (2uT )
=

PT+1 (2uT+1)

PT+1 (2uT , 1)
. (19)

Another useful expression is to re-write

cT+1 (uT+1) = PT+1 (2uT+1) = PT (2uT ) + DT+1 (uT ) (1− 2uT+1) (20)

where

DT+1 (uT ) =
T∑

s=1

∑
1≤t1<...<ts≤T

αt1,...,ts,T+1

s∏
j=1

[
1− 2utj

]

which involves only terms from the observed vector uT . Therefore, we have the
following result giving a representation of the conditional expectation.

Proposition 5 Let XT be a claims vector with a Farlie-Gumbel-Morgenstern copula
structure as specified in (16). Then the next period’s predicted claims can be expressed
as

E (XT+1|XT = xT ) =

∫ ∞

−∞
xT+1 · PT+1 (2uT+1)

PT+1 (2uT , 1)
dFT+1 (xT+1)

=

∫ 1

0

F−1
T+1 (uT+1) · PT+1 (2uT , 2uT+1)

PT+1 (2uT , 1)
duT+1

= EU

[
F−1

T+1 (U) · PT+1 (2uT , 2U)

PT+1 (2uT , 1)

]

where U is a Uniform on (0, 1) random variable.
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Proof. Using Proposition 1 and the expressions in (19) and 20, we obtain

E (XT+1|XT = xT ) =

∫ ∞

−∞
xT+1 · PT+1 (2uT+1)

PT+1 (2uT , 1)
dFT+1 (xT+1) .

Applying the transformation uT+1 = FT+1 (xT+1) gives the desired result.

By applying integration by parts, we can rewrite the predicted claims as

E (XT+1|XT = xT )

=

∫ ∞

−∞
xT+1 · PT+1 (2uT+1)

PT+1 (2uT , 1)
dFT+1 (xT+1)

= E (XT+1)− DT+1 (uT )

PT (uT )

∫ ∞

−∞
FT+1 (xT+1) [1− FT+1 (xT+1)] dxT+1. (21)

The expression above allows us to derive closed form expressions for the conditional
expectations with various assumed marginal distributions. First, consider the bivari-
ate case.

Example 5.1: The bivariate FGM copula
Consider the situation where T = 1, then it becomes easy to show that

E (X2|X1 = x1) = E (X2) + α12 (2F1 (x1)− 1)

∫ ∞

−∞
F2 (x2) [1− F2 (x2)] dx2.

where α12 denotes the sole parameter describing the dependence between X1 and
X2.¥

Observe that in (21), although the terms DT+1 (uT ) and PT (uT ) are cumbersome
looking, they are simply polynomial in the powers of the elements of uT and are
straightforward to evaluate. In the illustrative examples below, we therefore empha-
sise evaluating the term

∫∞
−∞ FT+1 (xT+1) [1− FT+1 (xT+1)] dxT+1 in the proposition.

Example 5.2: The exponential marginal
In the case where XT+1 has exponential distribution with mean parameter 1/υ so
that its distribution function FT+1 (xT+1) = 1− exp (−υxT+1), then it is easy to see
that

∫ ∞

0

FT+1 (xT+1) [1− FT+1 (xT+1)] dxT+1 =
1

2υ
.

In this case, the predicted claim reduces to

E (XT+1|XT = xT ) =
1

υ

[
1− DT+1 (uT )

2PT (uT )

]
.¥
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Example 4.3: The Weibull marginal
In the case where XT+1 has a Weibull distribution with distribution function FT+1 (xT+1) =
1− exp

(−xκ
T+1

)
, then it can be shown that

∫ ∞

0

FT+1 (xT+1) [1− FT+1 (xT+1)] dxT+1 =
(
1− 2−1/κ

)
Γ [1 + (1/κ)] ,

where Γ (·) denotes the gamma function. Thus, we obtain the formula

E (XT+1|XT = xT ) = Γ (1 + (1/κ))

[
1− (

1− 2−1/κ
) DT+1 (uT )

PT (uT )

]
.¥

Example 4.4: The Pareto marginal
In the case where XT+1 has a Pareto distribution with distribution function FT+1 (xT+1) =

1−
(

λ

λ + xT+1

)β

, then it can be shown that

∫ ∞

0

FT+1 (xT+1) [1− FT+1 (xT+1)] dxT+1 =
β

λ (β + 1) (2β + 1)
,

which is a straightforward integration. This then gives

E (XT+1|XT = xT ) =
λ

β − 1
− βDT+1 (uT )

λ (β + 1) (2β + 1) PT (uT )
.¥

The FGM family of copulas is suitable for modelling certain dependence struc-
tures. It is noted that most other families of multivariate copulas have only one or
at most a few parameters. This essentially implies that the correlation structure is
identical for all pairs of risks. This would not be realistic as one would expect risks
that are “further apart” to exhibit weaker forms of dependence. As such, the suit-
ability of these families for modelling risks where distances are involved, e.g. physical
distance or time, is much reduced. The FGM copula is a notable exception to this.
It can be easily observed from the form of its copula that it is possible to uniquely
assign a dependence parameter for each pair or group of risks. This allows it to model
more complicated dependence structures should the need arise. Another important
advantage is that the conditional expectation can be solved analytically as we have
demonstrated.

The downside of this feature is the calibration process would be much more tedious
with the large number of parameters involved. Another disadvantage of the FGM
copula is the limitation on its parameter values in order for the resulting density
function to remain valid. This limits the dependence structure it can model to cases
where there is only weak dependence.
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Table 2: Relationship between Kendall’s τ and Parameter of each Copula

Copula Relationship to Kendall’s τ

Gaussian τ =
2

π
arcsin ρ

Student-t τ =
2

π
arcsin ρ

Cook-Johnson τ =
δ

δ + 2

FGM τ =
2α

9

6 Illustration

Here in this section, we consider some illustration on the effects of tilting induced by
the conditional density copula. To do so, we provide visual illustrations of the effects
of the copula density ratio because this ratio is the one affecting the change of the
probability measure.

For ease of illustration, we consider the case whereby a single period’s claims
experience, X1, has been observed. We are therefore looking at the copula density
ratio, c2 (u2) /c1 (u1). For our purposes, X2 is assumed to have the Pareto distribution
with density

fX2 (x2) =
βλβ

(λ + x2)
β+1

, for x2 > 0.

In the illustrations that follow, we assume the Pareto parameters take on the values
of λ = 1000 and β = 3 so that E (XT+1) = λ/ (β − 1) = 500.

In Figure 1, we present four graphs of copula density ratios, pertaining to the
Gaussian, Student-t, Cook-Johnson and the FGM copulas respectively. For the case
of the Student-t copula, we have, in addition, assumed that the underlying Student-t
distribution has 10 degrees of freedom. For each copula, we examined the effects
of “high”, “moderate” and “low” levels of dependence on the copula density ratio.
Levels of dependence are measured in terms Kendall’s τ . Table 2 summarises the
relationship between the Kendall’s τ and the dependence parameter of each copula
considered. In particular, the “low”, “moderate” and “high” levels relate to Kendall’s
τ of 0.2, 0.5 and 0.8 respectively. In the case of the FGM copula that only allows
up to weak levels of dependence, we graph the cases of “very low” and “low” which
corresponds to Kendall’s τ of 0.1 and 0.2 respectively. The case of independence, in
the figure, is represented by a horizonal line at 1. We have also assumed the observed
claim X1 = 1000.

Examining Figure 1, we easily observe that greater weightage is placed on past
claims experience, X1, with higher levels of positive dependence. This is observed
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for all the four copulas considered here. Where there is high positive dependence, a
maximum point is observed near the observed value of X1. This is especially true for
the Gaussian and Student-t copulas. All these results are as expected.

In Figure 2, we present another four graphs of copula density ratios for the same
copulas. Now this time, we assume a “moderate” level of dependence (“low” for the
case of the FGM copula) and allow the value of past claims experience, X1, to vary.
We considered the case X1 = 200 corresponding to a “low” observed amount, X1 =
500 corresponding to an “average” observed amount, and X1 = 1000 corresponding to
a “high” observed amount. All other assumptions remain identical to that assumed
in Figure 1.

Examining Figure 2, we observe a similar pattern of having a greater weightage
placed on past experience, X1. In addition, lower weightage is now placed on values
that are “further away” from X1. This occurs for all the different assumed values of
X1. Indeed, for the cases of the Gaussian and Student-t copulas, maximum points
are even observed near these observed values.

Collectively, these results reaffirm those already observed from classical credibility
models that gave linearised solutions. Greater weightage is placed upon past claims
experience as the level of positive dependence between risks increases. Although in
our case, the solutions will not be linear in general, this general observation still holds.
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7 Extension

In a previous work, Yeo and Valdez (2004) addressed a simultaneous dependence of
claims across individuals for a fixed time period and across time periods for every
individual. This was accomplished by introducing the notion of a common effect
affecting all individuals and another common effect affecting each individual over
time. Specifically, a random variable Λ was used to describe the common dependence
across the insured individuals, and for a fixed individual j, the random variable Θj was
used to describe the common dependence across the time periods. In statistics, such
dependence has sometimes been called “common effects”, “latent or unobservable
variables”, and the term “frailty” variables is more often used in the biostatistics and
survival models literature. See, for example, Vaupel, et al. (1979) and Oakes (1989).

In the subsequent subsections, we summarise the results of this work and show
how the two-level common effects specification, together with copulas, help to extend
the idea of simultaneous dependence among individual risks and across time period.

7.1 Credibility and Common Effects

We named our model the two-level common effects model. Our primary interest
is again to predict the next period’s claim for each individual based on all the ob-
served claims X1,X2, . . . ,XJ , where Xj = (Xj,1, Xj,2, . . . , Xj,T )′. This is given by
E (Xj,T+1|X1,X2, . . . ,XI) since it is well known to be the best predictor of Xj,T+1,
based on all the observed claims X1,X2, . . . ,XJ , in the sense of the “mean squared
prediction error”. With some reasonable assumptions made, we showed the following
general result holds:

fXj,T+1|X (xj,T+1|x)

=

∫ ∫
· · ·

∫
fXj,T+1|Θj ,Λ (xj,T+1|θj, λ) fΘ,Λ|X (θ, λ|x)

(
J∏

i=1

dθi

)
dλ,

where X = (X′
1, . . . ,X

′
J)′ and Θ = (Θ1, Θ2, . . . , ΘJ)′. With the conditional density,

Xj,T+1|X1,X2, . . . ,XJ now known, we can compute E (Xj,T+1|X1,X2, . . . ,XJ).
With this general result, we then considered the credibility premium, i.e. the

conditional expectation E (Xj,T+1|X1,X2, . . . ,XJ), for the case where the common
effects are Normally distributed. Specifically, we assumed that

Xj,t|θj, λ ∼ Normal
(
θj + λ, σ2

x

)
, for j = 1, 2, . . . , J , t = 1, 2, . . . , T ,

Θj ∼ Normal
(
µθ, σ

2
θ

)
, for j = 1, 2, . . . , J and

Λ ∼ Normal
(
µλ, σ

2
λ

)
.

Without loss of generality, we considered j = 1. Based on these assumptions, we
were then able to derive an explicit expression for the credibility premium and found
that it takes the form

E (X1,T+1|X1,X2, . . . ,XI) = w1X1 + wj 6=1Xj 6=1 + wθ,λ (µθ + µλ) ,
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where X1 = 1
T

∑
t X1,t is the observed sample mean of the individual 1 and Xj 6=1 =

1
(J−1)T

∑
j 6=1

∑
t Xj,t is the observed sample mean of the rest of the individuals. The

credibility premium can be seen to be the weighted average of these observed sample
means together with the aggregated means of the common effects. The weights have
the following expressions:

W1. the weight attached to individual’s own experience:

w1 =
T [(σ2

λJ + σ2
θ) σ2

θT + σ2
x (σ2

λ + σ2
θ)]

[(σ2
λJ + σ2

θ) T + σ2
x] (σ

2
θT + σ2

x)
;

W2. the weight attached to the rest of the group’s experience:

wj 6=1 =
T (J − 1) σ2

λσ
2
x

[(σ2
λJ + σ2

θ) T + σ2
x] (σ

2
θT + σ2

x)
; and

W3. the weight attached to prior beliefs:

wθ,λ =
σ2

x (σ2
θT + σ2

x)

[(σ2
λJ + σ2

θ) T + σ2
x] (σ

2
θT + σ2

x)
.

These credibility premium and weights were found to possess properties expected
of a realistic credibility factor, such as unbiasedness and w1 + wj 6=1 + wθ,λ = 1. The
numerous asymptotic properties of this credibility premium formula were also found
to be intuitively appealing.

Finally, we compared the credibility premium based on our model and that of the
ordinary Bayesian Normal model using simulated observations that assumed the two-
level common effects model assumptions held in reality. We found that the ordinary
Bayesian Normal model tended to overstate the credibility premium from its true
value.

The two-level common effects model does have its shortcomings. For one, it
is not tractable in general due to some of the complicated integration operations
involved. See the appendix of Yeo and Valdez (2004) for an example. As such,
explicit solutions may not be available in many cases. In addition, the types of
dependence structures allowed for via common effects may also be limited. There is
therefore a need to consider other constructions that allow for a broader spectrum of
dependence structures. To address these considerations, the alternative construction
using copulas was considered in this work.

7.2 Model with simultaneous dependence

Consider a portfolio of J insurance contracts where each individual contract has
observable claims vector of T periods denoted by

X′
j = (Xj,1, Xj,2, . . . , Xj,T ) for j = 1, 2, . . . , J
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and we denote the observable claims vector for all the contracts by

X′ = (X1,X2, . . . ,XJ) .

One can also view X as a random matrix with a total of J × T single valued random
variables. Similar to before, small letters will refer to the observed claim amounts.
In the previous sections, we investigated the case where for a single individual risk
j, there is dependence of claims across time periods. This section suggests how to
extend these constructions when there is also dependence across the individuals.

We model the dependence structure across individuals using common effects sim-
ilar to the construction suggested in Yeo and Valdez (2004) and briefly outlined in
the previous section. Conditional on Θ, we shall assume that Xj’s are independent
so that in effect, we have

fX (x) =

∫ ∞

−∞
fΘ (θ) fX|Θ (x|θ) dθ =

∫ ∞

−∞
fΘ (θ)

J∏
j=1

fXj |Θ (xj|θ) dθ. (22)

We also model the dependence structure over time periods, t = 1, . . . , T , for the same
individual j with a copula function denoted C. This is similar in construction as
discussed in section 2. For convenience, we may assume the same copula C applies
to all the individuals so that we would have

FXj |Θ (xj|θ) = C
(
uj|θ

)
, for j = 1, . . . , J ,

where we have denoted uj|θ =
(
uj,1|θ, uj,2|θ, . . . , uj,T |θ

)
and uj,t|θ = FXj,t|Θ (xj,t|θ).

Now taking partial derivatives with respect to xj,1, xj,2, . . . , xj,T , we obtain the
joint conditional density

fXj |Θ (xj|θ) = c
(
uj|θ

) T∏
t=1

fXj,t|Θ (xj,t|θ) . (23)

Substituting (23) back to (22), we then obtain

fX (x) =

∫ ∞

−∞
fΘ (θ)

J∏
j=1

(
c
(
uj|θ

) T∏
t=1

fXj,t|Θ (xj,t|θ)
)

dθ. (24)

We are interested in computing the predicted claim E (Xj,T+1|X = x) for each
contract j = 1, . . . , J . Denote the random vector

X
(T+1)′
j = (Xj,1, Xj,2, . . . , Xj,T , Xj,T+1) for j = 1, 2, . . . , J ,

augmented by the next period’s observable claim, and the corresponding overall ran-
dom vector

X(j,T+1)′=
(
X1, . . . ,X

(T+1)
j , . . . ,XJ

)
for j = 1, 2, . . . , J .
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Then, following similar steps to that one described in developing formula (24), we
find that

fX(j,T+1)

(
x(j,T+1)

)
=

∫ ∞

−∞
fΘ (θ) c

(
uj|θ

) T+1∏
t=1

fXj,t|Θ (xi,t|θ)

×
J∏

i=1
i6=j

(
c
(
ui|θ

) T∏
t=1

fXi,t|Θ (xi,t|θ)
)

dθ. (25)

From the above intermediate results, the predictive claims density can then be ex-
pressed as the ratio of (25) and (24)

fXj,T+1|X (xj,T+1|x) =
fX(j,T+1)

(
x(j,T+1)

)

fX (x)

so that our predicted claims can be evaluated using the conditional expectation

E (Xj,T+1|X = x) =

∫ ∞

−∞
xj,T+1fXj,T+1|X (xj,T+1|x) dxj,T+1

=

∫ ∞

−∞
xj,T+1

fX(j,T+1)

(
x(j,T+1)

)

fX (x)
dxj,T+1. (26)

Because of the integration, it is no longer possible to isolate the marginal density of
Xj,T+1 in order to be able to write this as an unconditional expectation. It will be an
interesting challenge in the future to explore how one might be able to evaluate this
conditional expectation and be able to construct explicit results. We leave this work
for future research.

8 Concluding statements

Credibility theory has long been considered a milestone in the actuarial and insur-
ance literature. Even today, many insurance companies adopt the methodology in
evaluating experience-rated premium. The fundamental idea is to predict the next
period’s claims, given the history of all available claims. This history could include
the previous claims records of the individual risks (or a group of considered homoge-
neous risks) and those of everyone else in the insurance portfolio. Credibility theory
then is all about deriving the optimal mix of the claims experience of the individual
and the collective group.

Classical credibility models provide for predictive claims in linear form. For ex-
ample, the Bühlmann and the Bühlmann-Straub credibility models express the next
period’s claims as a weighted average of historical claims arising from each group’s
own experience and the entire portfolio’s experience, with the weight that is attached
to the own experience reflecting a credibility factor. These classical models typically
assume claim independence, or at best conditional independence.

29



This paper provides further extension to the notion of predicting the next period’s
claims by relaxing these independence assumptions. Claims dependence structure is
specified according to copula models which, in the recent past, have been a widely
accepted statistical tool for handling non-independence. This paper extends the mod-
els offered by Frees and Wang (2005) and Yeo and Valdez (2004), which respectively
used the frameworks of copula models and common effects. Here we find that the
predictive claim can be expressed as an expectation under a new probability measure
(in effect, a change of measure) that reflects the ratio of the densities of the copulas
relating to the historical claims. This ratio of densities can also be interpreted as a
“re-weighting” of the marginal density function after observing one or more of the
claims. From the various figures shown in this paper, we observe that heavier weigh-
tage is placed on the prior mean for cases of weak positive dependence. For cases of
strong positive dependence, heavier weightage is placed on the claims history.

We examine this expectation for different families of copulas and in several in-
stances, we find we are able to explicitly express the predictive claim in terms of
historical claims, and as we suspect, these predictive claims are in general no longer
linear in form. There are certain cases where the usual linear form prevails, as is shown
via several examples. However, these cases require some additional assumptions to
be made.

Finally, we also suggest a further extension to the use of copula models. In
particular, it may possible to use it to model the dependence structure described in
the two-level common effects model, i.e. dependence between individual risks as well
as dependence over time period. We leave this important work for future research.
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Appendix A: Inverse of the partitioned correlation

matrix

Here in this appendix, we show how we can simplify the inverse of the partitioned
correlation matrix ΣT+1 used in Section 3 for the case of the Gaussian and t copulas.
First, notice that we can express this correlation as the partition matrix as

ΣT+1 =

(
ΣT ρT+1,T

ρ′T+1,T 1

)

where ρ′T+1,T =
(
ρ1,T+1, ρ2,T+1, . . . , ρT,T+1

)
which refers to the vector of correlations

of XT+1 with each element of XT . Using the inverse of partitioned matrix, we find
that its inverse can be written as

Σ−1
T+1 =

(
εT,T εT+1,T

ε′T+1,T εT+1,T+1

)

where

εT,T = Σ−1
T + Σ−1

T ρT+1,T

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T ,

εT+1,T+1 =
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
,

εT+1,T = −Σ−1
T ρT+1,T

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
and

ε′T+1,T = − (
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T .

Therefore, using these results, we can write for the case of the Gaussian copula,

ς ′T+1Σ
−1
T+1ςT+1

=
(
ς ′T , Φ−1 (uT+1)

) (
εT,T εT+1,T

ε′T+1,T εT+1,T+1

)(
ςT

Φ−1 (uT+1)

)

=
(
ς ′T εT,T + Φ−1 (uT+1) ε′T+1,T , ς ′T εT+1,T + Φ−1 (uT+1) εT+1,T+1

) (
ςT

Φ−1 (uT+1)

)

= ς ′T εT,T ςT + Φ−1 (uT+1) ε′T+1,T ςT + ς ′T εT+1,T Φ−1 (uT+1) + Φ−1 (uT+1) εT+1,T+1Φ
−1 (uT+1) .

Substituting back εT,T , εT+1,T+1, εT+1,T and ε′T+1,T , we obtain

ς ′T+1Σ
−1
T+1ςT+1

= ς ′TΣ−1
T ςT + ς ′TΣ−1

T ρT+1,T

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T ςT

−Φ−1 (uT+1)
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T ςT

−ς ′TΣ−1
T ρT+1,T

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
Φ−1 (uT+1)

+Φ−1 (uT+1)
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
Φ−1 (uT+1)

= ς ′TΣ−1
T ςT + ς ′TΣ−1

T ρT+1,T

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T ςT

−2Φ−1 (uT+1)
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T ςT

+Φ−1 (uT+1)
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
Φ−1 (uT+1) ,
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where by symmetry, we have applied the relationship

Φ−1 (uT+1)
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
ρ′T+1,TΣ−1

T ςT

= ς ′TΣ−1
T ρT+1,T

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1
Φ−1 (uT+1) .

Factorising, we obtain

ς ′T+1Σ
−1
T+1ςT+1

= ς ′TΣ−1
T ςT +

(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1 (
Φ−1 (uT+1)− ρ′T+1,TΣ−1

T ςT

)2
.

Thus, it becomes clear that

ς ′T+1Σ
−1
T+1ςT+1 − ς ′TΣ−1

T ςT

=
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1 (
Φ−1 (uT+1)− ρ′T+1,TΣ−1

T ςT

)2
. (27)

In a similar manner, the inverse of the augmented correlation matrix ΣT+1 for the
case of the Student-t copula can be shown to be

ς ′T+1Σ
−1
T+1ςT+1 − ς ′TΣ−1

T ςT

=
(
1− ρ′T+1,TΣ−1

T ρT+1,T

)−1 (
T−1

r (uT+1)− ρ′T+1,TΣ−1
T ςT

)2
. (28)
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